17.4棣莫弗定理及欧拉公式复习过程
- 格式:docx
- 大小:80.71 KB
- 文档页数:8
棣莫弗—拉普拉斯定理证明-回复什么是棣莫弗—拉普拉斯定理?棣莫弗—拉普拉斯定理是微积分中的一个重要定理,通过它可以将一个函数的复杂积分转化为由函数的导数组成的级数进行计算。
这个定理在数学分析和物理学的许多领域都有广泛的应用。
定理的表述如下:设函数f(x)在区间[a, b]上连续,其导数在开区间(a, b)上也连续,则对于区间[a, b]上的任意点x0,函数f(x)在点x0的傅里叶级数的和可以通过棣莫弗—拉普拉斯公式来表示,即:f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n \pi x}{L})]其中,a_0 为常数项,a_n 和b_n 分别为该傅里叶级数的余弦系数和正弦系数,L为[a, b]区间的长度。
那么,我们接下来将一步一步来证明这个定理。
首先,我们需要证明傅里叶级数的和公式(如上所述)可以收敛于f(x),即该级数在[a, b]区间上逐点收敛于f(x)。
为了证明这一点,我们将使用微积分中的连续函数逼近定理。
根据连续函数逼近定理,对于任意一个连续函数f(x),我们可以选择一个多项式函数P(x)来逼近它。
也就是说,对于任意的ε> 0,存在一个多项式函数P(x),使得在[a, b]区间上有f(x) - P(x) < ε成立。
我们现在来构造一个多项式函数P(x)使得它逼近f(x)。
首先,我们选择多项式的常数项为a_0 / 2。
然后,我们选择一个一次多项式为P_1(x) = a_1 cos(\frac{\pi x}{L}) + b_1 sin(\frac{\pi x}{L}),其中a_1和b_1是待定系数。
在第一次选择之后,我们可以设置多项式P_1(x)与f(x)的误差小于ε/2。
接下来,我们选择一个二次多项式P_2(x) = P_1(x) + a_2 cos(\frac{2\pi x}{L}) + b_2 sin(\frac{2\pi x}{L}),同样地,我们要求多项式P_2(x)与f(x)的误差小于ε/4。
棣莫弗—拉普拉斯定理证明棣莫弗—拉普拉斯定理是微积分中的一个重要定理,它描述了函数的泰勒级数在其收敛区间内的收敛性。
在这篇文章中,我们将围绕着棣莫弗—拉普拉斯定理展开讨论,一步步回答中括号内的问题。
首先,让我们来了解一下棣莫弗—拉普拉斯定理的内容。
它的全称是“棣莫弗—拉普拉斯定理”,有时也称为“拉普拉斯方法”。
这个定理是由法国数学家棣莫弗和拉普拉斯在18世纪末独立提出的,它主要用于估计含有大参数的定积分。
棣莫弗—拉普拉斯定理的核心思想是利用函数的极大值点来近似估计定积分的值。
现在,让我们开始证明这个定理。
首先,我们来回答第一个问题:为什么要利用函数的极大值点来近似估计定积分的值?原因在于,对于一个充分光滑的函数,它在极大值点附近的函数值将会迅速变化。
因此,我们可以利用这个特点来近似估计定积分的值。
具体来说,我们可以将函数在极大值点的邻域内进行泰勒展开,然后取其中的高阶项来进行近似。
接下来,让我们进行具体的证明。
首先,我们假设函数f(x)在区间[a, b]上连续,并且有n+1阶连续导数。
我们要证明的是:\[I = \int_{a}^{b} e^{nf(x)} dx = e^{nf(x^*)}\int_{a}^{b}e^{-\frac{1}{2}n[f''(x^*)]^2(x-x^*)^2} dx + O(n^{-\frac{1}{2}})\]其中,x^*是f(x)的极大值点。
为了证明这个定理,我们首先对积分I进行换元。
令t = x - x^*,我们可以将积分I转化为:\[I = e^{nf(x^*)}\int_{a-x^*}^{b-x^*} e^{-\frac{1}{2}n[f''(x^*)]^2t^2} dt\]然后,我们将积分区间进行扩展。
我们假设M是使得f''(x)在区间[a, b]上的绝对值的最大值,即M = max f''(x) 。
棣美弗定理
维基百科,自由的百科全书
复平面上的立方根等于1.
棣美弗定理是一个关于复数的定理。
历史
法国数学家棣美弗(Abraham de Moivre,1667年-1754年)于1707年创立了棣美弗定理,并于1730年发表。
定理
当一个复数z以极坐标形式表达,即z = cosθ+ isinθ时,其n次方(cosθ+ isinθ)n = cos(nθ) + isin(nθ),其中n属于任何整数。
证明
证明的思路是用数学归纳法证明正整数的情形。
正整数情形
用数学归纳法,
设命题
n为1时,式左
式右。
因此 P(1)成立。
假设P(k)成立,即
(cosθ + isinθ)k = cos(kθ) + isin(kθ)
当n = k + 1时,
因此P(k + 1)也成立。
由数学归纳法可知,,P(n)成立。
整数情形
只需运用恒等式:
即可。
用棣美弗定理求根
此定理可用来求单位复数的 n 次方根。
设 | z | = 1,表为
z = cosθ + isinθ
若 w n = z,则 w 也可以表成 w = cosφ + isinφ。
根据棣美弗定理:
于是得到
nφ = θ + 2kπ(其中)
也就是:
当 k 取,我们得到 n 个不同的根。
有理数情形
注意到,将θ换为 mθ就有:
因此
这样就证明了有理数的情形。
备注§17.4 棣莫弗定理与欧拉公式教学目标:1.掌握复数的代数形式、三角形式及指数形式,并会进行三种 形式的互化;2.掌握复数的三角形式的乘、除和棣莫弗定理与欧拉公式。
教学重点:掌握复数的三角形式的乘、除和隶莫弗定理与欧拉公式。
教学难点:掌握复数的代数形式、三角形式及指数形式,并会进行 三种形式的互化。
新课讲授:棣莫弗定理与欧拉公式 一、复习导入在三角形式下对复数进行的运算主要是乘除。
二、探究设复数z 1= 2(cos6π+isin6π),z 2= 4(cos3π+isin3π),则z 1 ·z 2等于多少?三、知识链接(1)一般z 1= r 1(cos θ1 +isin θ1),z 2= r 2 (cos θ2+isin θ2), 则有z 1 ·z 2= r 1 r 2 [cos(θ1 +θ2 )+isin (θ1+θ2)]由此可见,复数的积的模等于模的积,积的辐角等于辐角的和。
(2)一般z 1= r 1(cos θ1 +isin θ1),z 2= r 2 (cos θ2+isin θ2), 则有21z z = 21r r[cos(θ1 -θ2 )+isin (θ1-θ2)] 由此可见,复数的积的模等于模的商,积的辐角等于辐角的差。
四、典型例题 例1、计算 (1)3(cos6π+isin6π)·4(cos12π+isin12π)(2)2(cos 500+isin500)·3(cos400+isin400)例2、计算:[6(cos 700+isin700)]÷[3(cos400+isin400)]若3(cos6π+isin6π),那么z 2与z 3的值分别为多少?练习1.计算: (1)2(cos6π+isin6π)·2( cos12π+isin12π)(2)2(cos83π+isin83π)·3( 1+i )(3)2(cos6π-isin6π)÷2( cos12π+isin12π)课内练习:P77练习一、复习导入学习了复数三角形式的乘法后,接下来我们学习复数三角形式的 幂运算。