互感电路及理想变压器
- 格式:ppt
- 大小:2.19 MB
- 文档页数:91
理想变压器理想变压器是实际变压器的理想化模型,是对互感元件的理想科学抽象,是极限情况下的耦合电感。
1.理想变压器的三个理想化条件条件 1 :无损耗,认为绕线圈的导线无电阻,做芯子的铁磁材料的磁导率无限大。
条件 2 :全耦合,即耦合系数条件 3 :参数无限大,即自感系数和互感系数但满足:上式中 N 1 和 N 2 分别为变压器原、副边线圈匝数, n 为匝数比。
以上三个条件在工程实际中不可能满足,但在一些实际工程概算中,在误差允许的范围内,把实际变压器当理想变压器对待,可使计算过程简化。
2. 理想变压器的主要性能满足上述三个理想条件的理想变压器与有互感的线圈有着质的区别。
具有以下特殊性能。
(1)变压关系图 4.15 为满足三个理想条件的耦合线圈。
由于,所以因此图4.15 耦合线圈图 4.16理想变压器模型1 根据上式得理想变压器模型如图4.16所示。
注意:理想变压器的变压关系与两线圈中电流参考方向的假设无关,但与电压极性的设置有关,若 u1、u2 的参考方向的“+”极性端一个设在同名端,一个设在异名端,如图4.17 所示,此时 u1 与 u2 之比为:(2)变流关系根据互感线圈的电压、电流关系(电流参考方向设为从同名端同时流入或同时流出):则图 4.17理想变压器模型2 图 4.18理想变压器的变流关系代入理想化条件:,得理想变压器的电流关系为:注意:理想变压器的变流关系与两线圈上电压参考方向的假设无关,但与电流参考方向的设置有关,若i1、i2的参考方向一个是从同名端流入,一个是从同名端流出,如图4.18所示,此时i1与i2之比为:(3)变阻抗关系设理想变压器次级接阻抗 Z ,如图4.19所示。
由理想变压器的变压、变流关系得初级端的输入阻抗为:图4.19理想变压器的阻抗变换作用图 4.20 理想变压器的初级等效电路由此得理想变压器的初级等效电路如图4.20所示,把Zin称为次级对初级的折合等效阻抗。
互感电路的计算范文互感电路是由两个或多个线圈组成的电路。
每个线圈都有一定的感应电动势,同时也会相互影响。
对于互感电路的计算,一般需要考虑以下几个方面:互感电路的等效电路模型、互感系数、互感电路的电流和电压关系、磁场能量的传递和损耗等。
一、互感电路的等效电路模型互感电路的等效电路模型是两个或多个线圈之间通过互感系数相互连接而成的。
互感电路可以通过理想变压器模型来进行等效。
理想变压器模型假设变压器没有损耗,可以表示为一个多绕组的互感电路。
在等效电路模型中,可以用理想变压器的等效电路来代替实际的互感电路。
二、互感系数互感系数表示了线圈之间的相互影响程度。
一般用k表示,其取值范围在0到1之间。
当k接近于1时,表示线圈之间的相互影响较大;当k接近于0时,表示线圈之间的相互影响较小。
互感系数可以通过几何方法和电磁方法来计算。
三、互感电路的电流和电压关系互感电路中,线圈的电流和电压之间存在相位差。
对于理想变压器模型,可以通过等效电路来计算电流和电压之间的相关关系。
在互感电路中,线圈的电流和电压之间满足相位差为90度的关系。
相位差的方向取决于线圈的极性。
四、磁场能量的传递和损耗互感电路中,线圈之间的磁场能量会相互传递。
当电流在其中一个线圈中产生磁场时,这个磁场会穿透其他线圈,从而诱发出电动势。
这个电动势会导致其他线圈中产生电流。
同时,在互感电路中,存在损耗,主要是由于线圈的电阻引起的。
通过计算这些损耗,可以评估互感电路的性能。
在进行互感电路的计算时,一般可以采用下面的步骤:1.确定互感电路的等效电路模型,即选择合适的理想变压器等效电路模型。
2.计算互感系数,可以通过几何方法或电磁方法来计算。
3.根据互感系数和等效电路模型,建立互感电路的等效电路图。
4.根据等效电路图,进行电流和电压之间的计算,包括计算互感电路中的电流和电压相位差。
5.根据互感电路的等效电路模型和磁场能量的传递关系,计算磁场能量的传递和损耗。
6.进行互感电路的分析和设计,包括选择合适的元器件和参数,优化互感电路的性能。
第5章 互感电路和理想变压器 131
5.3.3 理想变压器的阻抗变换
理想变压器不仅能实现电压和电流的变换,而且能实现阻抗变换。
如图5-19(a )所示为理想变压器模型,设初级线圈的输入电阻为i R 。
根据理想变压器电压和电流的变换关系,有
12u nu =
121i i n
= 所以初级线圈的输入电阻为 221221221i L u nu u R n n R i i i n ==== (5-3-3)
式(5-3-3)表明:从初级线圈看进去,次级线圈的电阻改变为原来的2n 倍,这就是理想变压器变换电阻的特性。
通常将2L n R 称为次级电阻在初级电路的折合电阻。
根据折合电阻2L n R 可作出的初级等效电路如图5-19(b )所示。
图5-19
在正弦交流电路中,式(5-3-3)可用相量形式表示。
当负载阻抗为L Z 时,初级线圈的输入阻抗i Z 为 211i L U Z n Z I ==&& (5-3-4)
式(5-3-4)中,2L n Z 称为次级阻抗在初级电路的折合阻抗。
例5.5 含有理想变压器的电路如图5-20(a )所示,已知1200V U =∠°&,求电流1I &和2I &。
解 由图5-20(a )可知次级线圈的阻抗为
1j 1()L Z =+Ω
其折合到初级线圈的阻抗为 222(1j1)4j4()L
L Z n Z ′==×+=+Ω 作初级等效电路,如图5-20(b )所示,由图5-20(b )可得。
第十章 耦合电感和变压器电路分析一 内容概述1 互感的概念及VCR :互感、同名端、互感的VCR 。
2 互感电路的分析方法:①直接列写方程:支路法或回路法; ②将互感转化为受控源; ③互感消去法。
3 理想变压器:①理想变压器的模型及VCR ; ②理想变压器的条件;③理想变压器的阻抗变换特性。
本章的难点是互感电压的方向。
具体地说就是在列方程时,如何正确的计入互感电压并确定“+、-”符号。
耦合电感1)耦合电感的伏安关系耦合电感是具有磁耦合的多个线圈 的电路模型,如图10-1(a)所示,其中L 1、 L 2分别是线圈1、2的自感,M 是两线圈之 间的互感,“.”号表示两线圈的同名端。
设线圈中耦合电感两线圈电压、电流 选择关联参考,如图10-1所示,则有:dtdiM dt di L )t (u dt di M dt di L )t (u 12222111±=±=若电路工作在正弦稳态,则其相量形式为: .1.2.2.2.1.1I M j I L j U I M j I L j U ωωωω±=±=其中自感电压、互感电压前正、负号可由以下规则确定:若耦合电感的线圈电压与电流的参考方向为关联参考时,则该线圈的自感电压前取正号(如图10-l (a)中所示)t (u 1的自感电压),否则取负号;若耦合电感线圈的线圈电压的正极端与该线圈中产生互感电压的另一线圈的电流的流入端子为同名端时,则该线圈的互感电压前取正号(如图10-l (a)所示中)t (u 1的互感电压),否则取负号(如图10-1(b)中所示)t (u 1的互感电压)。
2)同名端当线圈电流同时流人(或流出)该对端钮时,各线圈中的自磁链与互磁链的参考方向一致。
2 耦合电感的联接及去耦等效 1) 耦合电感的串联等效两线圈串联如图10-2所示时的等效电感为:M 2L L L 21eq ±+= (10-1)图10-1(10-1)式中M前正号对应于顺串,负号对应于反串。