继电器工作原理及特性原理分解
- 格式:ppt
- 大小:2.53 MB
- 文档页数:38
继电器工作原理通俗易懂
继电器工作原理:
一、继电器的结构:
1、继电器的外壳:继电器的外壳由金属或塑料制成,通过塑料或铝制夹板来固定元件、导线和电阻,以及维护其机械强度和电气断路安全程度。
2、电极:继电器有两个电极,一个叫动极,另一个叫静极,它们分别连接电路的一侧,也叫回路。
3、线圈:线圈是继电器的核心部分,也叫磁场线圈。
线圈就当把动极和静极电极连接起来,形成一个圆环,它能产生电磁感应,影响磁铁的运动,控制开关接触。
4、磁铁:磁铁决定了继电器的位置变化,如果有电磁感应,则会鼓励磁铁运动,否则磁铁会回复原位。
二、工作原理:
1、电路断开:正常情况下,动极和静极的磁场线圈之间没有连接,磁铁在继电器的动极和静极之间形成一个断开的空间,动极和静极的连接断开,电流不能通过,因而断开电路。
2、电路接通:当继电器通电受磁场线圈的磁环感应时,磁铁会接近动极,使动极和静极连接,从而通过电路。
3、断电保持:当断电后,继电器的内部磁铁由弹力装置牢牢固定,当另外一次电源失效或断开时,继电器会恢复到原来的位置,即断电保持的原理。
三、益处:
1、功率特性:继电器能够依靠较低的功率控制电路,从而节约电力并减少浪费。
2、可靠性:继电器能够抵御有害因素,如腐蚀性气体、灰尘等,具有很高的
可靠性。
3、低成本:由于结构紧凑,生产费用低廉,可以大量元件化组装而成。
4、灵敏性:继电器大多控制用在精密装置和机器上,它有良好的反应灵敏性。
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种〃自动开关〃。
故在电路中起着自动调节、安全保护、转换电路等作用。
电磁继电器的工作原理和特性电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合、释放,从而达到了在电路中的导通、切断的目的。
对于继电器的“常开、常闭〃触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为〃常开触点〃;处于接通状态的静触点称为〃常闭触点〃。
热敏干簧继电器的工作原理和特性热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。
它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。
热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。
恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。
固态继电器(SSR)的工作原理和特性固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。
按开关型式可分为常开型和常闭型。
按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。
继电器主要产品技术参数额定工作电压是指继电器正常工作时线圈所需要的电压。
根据继电器的型号不同,可以是交流电压,也可以是直流电压。
直流电阻是指继电器中线圈的直流电阻,可以通过万能表测量。
吸合电流是指继电器能够产生吸合动作的最小电流。
在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。
五种继电器分的工作原理继电器是一种电气控制装置,用于实现电路的自动控制。
它可以在一个电路中通过小电流控制大电流的开关操作。
继电器分为多种类型,其中包括电磁式继电器、热继电器、固态继电器、时间继电器和电子式继电器。
下面将详细介绍这五种继电器的工作原理。
1.电磁式继电器电磁式继电器是一种最常见的继电器类型。
它由电磁线圈和一对可触电触点组成。
当电源施加在电磁线圈上时,形成磁场,吸引触点闭合,通电流通路。
当电源断开时,磁场消失,触点开启,断开电路。
工作原理是通过磁场的产生和消失来控制触点的开合,实现电路的开关操作。
2.热继电器热继电器是一种基于热效应的继电器。
它由热元件和电气触点组成。
热元件通常是热敏电阻或热敏电位器,它的电阻值随温度的变化而变化。
当电流通过热元件时,它会产生热量,导致温度升高。
当温度达到一定值时,电气触点会闭合或开启,实现电路的开关操作。
3.固态继电器固态继电器是一种没有机械活动部件的继电器。
它由半导体材料制成。
固态继电器的工作原理是利用光电或电电转换效应来完成电路的开关操作。
当控制信号施加在固态继电器上时,光电或电电转换设备会改变电流的导通或阻断状态,实现电路的开关操作。
4.时间继电器时间继电器是一种带有定时功能的继电器。
它通过设定一个时间延迟,在延迟时间结束后,触发电路的开关操作。
时间继电器通常采用电子电路或机械装置实现。
其中,电子时间继电器基于电容或电感元件的充放电过程来实现时间延迟,机械时间继电器则基于钟摆或齿轮装置来实现时间延迟。
5.电子式继电器电子式继电器是一种基于电子元件的继电器。
它由半导体器件、逻辑电路和控制电路组成。
电子式继电器的工作原理是通过逻辑电路和控制电路的操作来实现电路的开关操作。
电子式继电器可以实现多种功能,例如逻辑运算、滤波、放大等。
以上是五种常见的继电器类型的工作原理。
它们分别基于电磁、热效应、固态、时间和电子原理来完成电路的开关操作。
不同类型的继电器在实际应用中具有各自的特点和适用范围,可以根据具体的应用需求进行选择。
继电器的工作原理和特性
本文介绍了继电器的工作原理和特性
(1)继电器的工作原理
继电器是一种电子控制器件,通常应用于自动控制电路中。
继电器实际上是用较小的电流去控制较大电流的一种自动开关,故在电路中起着自动调节、安全保护及转换电路等作用。
继电器的种类较多,如电磁式继电器、舌簧式继电器、启动继电器、限时继电器、直流继电器及交流继电器等,在电子电路中应用得最广泛的是电磁式继电器。
电磁式继电器又可分为直流和交流两种。
凡是交流电磁继电器,其铁芯上都嵌有一个铜制的短路环,而直流继电器是没有的。
(2)继电器的工作特性
①额定工作电压。
继电器正常工作时线圈所需要的电压。
根据继电器的型号不同,可以是交流电压,也可以是直流电压。
②直流电阻。
继电器中线圈的直流电阻,可以用万用表测试。
③吸合电流。
继电器能够产生吸合动作的最小电流。
在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。
而对于线圈所加的工作电压,一般不要超过额定工作电压的1 .5 倍,否则会产生较大的电流而把线圈烧毁。
④释放电流。
继电器产生释放动作的最大电流。
当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。
这时的电流远远小于吸合电流。
⑤触点切换电压和电流。
继电器允许加载的电压和电流,它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易。
继电器工作原理及特性原理分解继电器是一种电器控制装置,可以将不同电路之间的信号进行隔离,使各个电路之间不受干扰,从而使电器的安全性和稳定性得到更好的保障。
继电器利用电磁作用来控制开关,并将控制信号传送到其他电路中。
继电器的工作原理继电器的工作原理是利用电磁的吸合作用,通过控制电路的开关来实现电路的控制。
继电器主要由三个部分组成:触点、线圈和磁路。
当线圈中通入一定的电流后,磁路会产生磁力,吸引触点的铁芯,使得触点闭合或者断开,从而控制电路的开关状态。
具体来说,当电路中的控制信号传递到继电器的线圈中时,线圈中会产生磁场,吸引触点的铁芯,使得触点闭合。
反之,当控制信号断开时,线圈中的磁场会消失,触点的铁芯会恢复到原来的状态,触点断开。
继电器的特性原理分解继电器的特性原理主要包括以下几个方面。
1. 动作特性继电器的动作特性反映了线圈电流和动作时间的关系。
例如,根据负载电流和电压的不同,继电器的动作时间也会有所不同。
当电流较小时,继电器的动作时间较长,而当电流较大时,继电器的动作时间较短。
2. 接点特性继电器的接点特性反映了触点的接点电阻和最大开关容量。
随着线圈电流的增加,触点的接点电阻会逐渐降低,开关容量也会逐渐增加。
因此,继电器的接点特性直接影响着继电器的使用效果和可靠性。
3. 恢复特性继电器的恢复特性反映了线圈电流断开后,控制信号能否完全消失的时间。
当线圈电流断开后,磁场也会逐渐消失,触点的铁芯也会恢复到原来的状态。
恢复时间较长的继电器可以保证电路的稳定性和可靠性。
4. 电气寿命继电器的电气寿命反映了触点的寿命和机械寿命。
当继电器长时间工作后,接点会因为磨损而失效,因此,电气寿命较长的继电器可以延长继电器的使用寿命。
5. 环境适应性继电器还有适应不同环境的需求,例如尘土,湿度等环境。
根据环境不同,继电器的封闭性和防护等级也会有所不同。
综上所述,继电器是通过电磁的作用来控制电路的开关。
它的特性原理包括动作特性、接点特性、恢复特性、电气寿命和环境适应性。
继电器的工作原理一、继电器的工作原理和特性继电器是一种电子控制器件,它含有控制系统(又称输入回路)和被控制系统(又称输出回路),普通应用于自动控制电路中,它事实上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
1、电磁继电器的工作原理和特性电磁式继电器普通由铁芯、线圈、衔铁、触点簧片等构成的。
只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。
当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。
这样吸合、释放,从而达成了在电路中的导通、切断的目的。
2、固态继电器(SSR)的工作原理和特性固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。
固态继电器按负载电源类型可分为交流型和直流型。
按开关型式可分为常开型和常闭型。
按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多 .我再讲得通俗一点:市面上普遍使用的是电磁继电器居多,因此我重点讲讲这个。
原理:继电器使能端不加电前,COM 和 NC 是导通的。
继电器使能端加电后,COM 和 NC 断开,COM 和 NO 导通。
使能端该加多少的电压,就是我们普通说的继电器是多少伏的。
例如 12VDC 的继电器指的是继电器使能端加 12V 直流电,继电器动作。
继电器 COM 和 NO(NC)能负载多大电压和电流,请参考不同继电器的阐明书和印刷示意标志。
注意:本图不代表继电器的管脚次序示意,每个继电器的管脚次序请参考继电器的阐明书和印刷在继电器上的对应的示意图。
该图是示意单刀单掷的继电器,所谓单刀双掷继电器就是说带两套 COM NC NO ,共八个管脚。
继电器的工作原理和特性继电器是一种电控制开关,它可以通过小电流控制大电流的开关动作。
它是由电磁铁和机械触点组成的,通过电磁铁吸合和释放来控制触点开关的状态。
继电器广泛应用于自动控制、通信等领域,具有以下工作原理和特性:1.工作原理:继电器的工作原理是基于电磁感应定律,当电流通过继电器的线圈时,会生成一个磁场,磁场作用在机械触点上使其闭合或断开。
继电器一般由线圈、铁芯和触点组成。
当通电时,线圈中的电流通过铁芯产生磁场,磁场吸引触点闭合,继电器导通;当断电时,线圈中的电流消失,磁场消失,触点弹开,继电器断开。
通过这种方式,继电器可以控制高功率或高电压电路的开关状态。
2.特性:2.1电磁吸合和释放时间短:继电器的动作速度较快,电磁吸合和释放时间通常在几毫秒至几十毫秒内,可以快速实现对电路的切换。
2.2继电器具有较高的开关容量:继电器由于可以通过小电流控制大电流,使得继电器可以承受较高的负载功率。
常见的继电器的开关容量可以达到几千瓦至几兆瓦。
2.3继电器具有较好的隔离性:继电器的触点具有良好的隔离特性,可以实现高电压、高电流线路的隔离保护功能。
同时,触点的隔离性也减小了电路中电磁噪声、干扰等问题。
2.4继电器具有较好的稳定性和可靠性:继电器的线圈和触点结构精密,材料质量高,因此具有较好的性能稳定性和可靠性。
继电器的寿命可以达到数十万次的开关次数,可以经受较高的工作压力。
2.5继电器可以实现多路控制和复杂的逻辑控制:继电器可以通过多个触点实现多路控制,可以完成复杂的逻辑控制功能。
通过组合不同的继电器和控制组合电路,可以实现多种复杂的控制要求。
综上所述,继电器是一个通过电磁铁吸合和释放来控制触点开关状态的电控制开关。
它具有较快的动作速度、较高的开关容量、较好的隔离性、较好的稳定性和可靠性以及多路控制和复杂逻辑控制等特性。
在自动控制和通信领域具有广泛的应用。
继电器工作原理及特性原理分解继电器是一种用来控制大功率电路的电器装置。
它由线圈、铁芯、触点等组成。
继电器的工作原理可以分解为如下几个步骤:1.线圈接通电流:当继电器的线圈接通电流时,它会产生磁场。
这个磁场将会使得铁芯被吸引,进而产生一些机械运动。
2.触点闭合:当铁芯被吸引后,它会将使得触点闭合。
触点是一个电气开关,可以连接或者断开电路。
当继电器的触点闭合后,电流将会通过继电器的触点流动。
3.铁芯释放:当线圈断开电流时,磁场消失,铁芯将会恢复原来的位置。
当铁芯恢复原来的位置时,触点也会打开,电流将不再流动。
继电器的特性主要包括以下几个方面:1.可控性:继电器可以通过供给线圈的电流来控制触点状态的开和闭。
通过改变线圈电流的大小,可以达到控制触点闭合或打开的目的。
2.隔离性:继电器的触点能够实现电气隔离。
当继电器的触点关闭时,能够将不同的电路隔离开来,防止电路之间相互干扰。
3.放大性:继电器的线圈电流可以比较小,但是通过触点可以控制较大功率电路的开闭。
因此,继电器可以起到信号放大的作用。
4.延迟性:由于继电器的机械运动需要一定的时间,所以在控制电路中引入继电器时,会导致控制信号的延迟。
此外,继电器还有一些其他的特性,如稳定性、可靠性、耐久性等。
继电器的稳定性指的是在给定条件下,继电器的工作状态保持稳定。
继电器的可靠性指的是继电器工作的可靠性,即保证在正常使用条件下,在预定寿命范围内正常工作。
继电器的耐久性指的是继电器在使用过程中能够承受的工作次数和工作环境。
总之,继电器的工作原理可以分解为线圈接通电流、触点闭合和铁芯释放三个主要步骤。
继电器的特性包括可控性、隔离性、放大性、延迟性以及稳定性、可靠性和耐久性等。
继电器在实际应用中具有广泛的用途,例如在电力系统、自动控制系统、交通信号灯等领域中都有着重要的作用。