难加工材料
- 格式:doc
- 大小:65.50 KB
- 文档页数:28
难加工材料的主要种类及应用领域难加工材料是指具有较高硬度、强度和耐磨性的材料,其加工性和可塑性较差。
这些材料通常需要使用特殊的加工工艺和设备来进行加工和形成。
主要的难加工材料包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。
以下将对每种材料的性质和应用领域进行详细介绍。
高速钢:高速钢是一种含有大量合金元素(如钨、钼、钴等)的高温刚性材料。
其具有耐高温、耐磨和耐热腐蚀的特点,硬度较高,加工性较差。
高速钢广泛应用于切削工具、模具零件和刀具等领域,如数控机床刀具、高硬度切削刀具等。
高铬铸铁:高铬铸铁是一种具有较高强度和硬度的铸造材料。
其含有较高的铬含量,能够增加材料的耐磨性和耐蚀性。
高铬铸铁被广泛应用于矿山机械、冶金工程、水处理设备和石化设备等领域,如磨矿机、破碎机、球磨机等。
硬质合金:硬质合金是一种由硬质颗粒(如碳化钨、碳化钼等)和金属结合剂(如钴或镍)组成的复合材料。
硬质合金具有较高的硬度和耐磨性,广泛应用于切削和研磨工具、矿山工具、粉末冶金等领域,如车削刀片、铣削刀片、刨刀等。
陶瓷材料:陶瓷材料是由金属元素和非金属元素形成的非金属材料。
其具有较高的硬度、耐磨性和耐腐蚀性。
陶瓷材料广泛应用于高温炉具、电子器件、医疗器械和化学工业等领域,如陶瓷刀具、瓷砖、陶瓷零件等。
航空铝合金:航空铝合金是一种具有良好强度和轻质的金属材料。
其具有较高的硬度和耐磨性,加工难度较大。
航空铝合金广泛应用于航空航天工业和汽车工业的结构部件,如飞机主机壳、发动机部件、汽车车身等。
钛合金:钛合金是一种具有较高强度和轻质的金属材料。
其具有较高的硬度、耐腐蚀性和耐高温性,加工性较差。
钛合金被广泛应用于航空航天工业、化工设备和医疗器械等领域,如航空发动机零部件、化工反应容器、人工关节等。
综上所述,难加工材料主要包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。
这些材料具有较高的硬度、强度和耐磨性,但加工性较差。
难加工材料材料加工是指对原料进行加工改造,使其达到设计要求的一系列工艺。
在材料加工中,有些材料由于其特殊的性质,使得加工变得困难,需要采取一些特殊的加工方法。
下面就为大家介绍几种难加工材料及其加工方法。
首先,难加工材料之一是高温合金。
高温合金由于其高熔点和高硬度,使得加工变得困难。
在加工高温合金时,常用的加工方法包括电火花加工、激光加工和超音波加工等。
电火花加工是利用电火花放电腐蚀工件表面,使其形成所需轮廓的一种加工方法。
激光加工则是利用激光束将工件表面的材料熔融并挥发,从而获得所需形状。
超音波加工是利用超音波振动工具切割工件表面的一种加工方法。
其次,还有难加工材料是复合材料。
复合材料由于其由不同性质的材料组合而成,使得加工变得困难。
在加工复合材料时,常用的加工方法包括研磨加工、射出成型和压制成型等。
研磨加工是利用砂轮或研磨片对工件表面进行切削磨削的一种加工方法。
射出成型是将熔融的复合材料通过射出机加热喷射到模具中,并经冷却固化得到所需形状。
压制成型则是利用压力将熔融的复合材料填充到模具中,经冷却固化得到所需形状。
最后,还有难加工材料是硬质合金。
硬质合金由于其高硬度和脆性,使得加工变得困难。
在加工硬质合金时,常用的加工方法包括电火花加工、磨削加工和激光加工等。
电火花加工能够在硬质合金表面形成一层陶瓷膜,从而减小工件和工具的接触面积,降低切削力,从而使得加工更容易进行。
磨削加工则是利用砂轮或研磨片对硬质合金表面进行切削磨削的一种加工方法。
激光加工则是利用激光束将硬质合金表面的材料熔融并挥发,从而实现加工目的。
综上所述,对于难加工材料,我们需要结合其特殊性质采取相应的加工方法。
这些方法中包括电火花加工、激光加工、超音波加工、研磨加工、射出成型和压制成型等。
这些方法能够较好地克服难加工材料的特点,实现高质量、高效率的加工过程。
摘要:阐述了难加工材料的特点,重点介绍了对难加工材料进行车削加工时应采取的措施,列举了几种不同材料车削时应选取的参数。
引言在压缩机的生产过程中,经常会接触到一些难加工的材料,如制造压缩机叶轮的材料有一种含有Cr、Ni、Mo等合金元素的高强度结构钢,这种钢材一经调质处理达到一定的硬度时,很难车削。
钦合金叶轮因为钦合金元素的存在给车削带来诸多麻烦,大型硬齿面齿轮,渗碳淬火的过程会造成一些需要加工的表面过硬而难以车削加工;还有一些运输机械常用紫铜等纯金属制造的套类零件也给车削带来相当大的麻烦。
为了解决这些难加工材料的车削加工问题,需要对难加工材料的特性有足够的了解,然后采取有针对性的措施才能予以解决。
1 难加工材料的加工特点1.何谓难加工材料所谓难加工材料,主要是指切削加工性能差的材料。
金属材料切削加工性的好坏,主要是从切削时的刀具耐用度、已加工表面的质量及切屑形成和排除的难易程度3个方面来衡量。
只要上述这3个方面有一项明显的差,就可认为是难加工材料。
常见的难加工材料有高强度钢、不锈钢、高温合金、钦合金、高锰钢和纯金属(如紫铜)等。
2.难加工材料的切削特点a.车削温度:在切削难加工材料时,切削温度一般都比较高,主要原因有以下两方面。
i.导热系数低:难加工材料的导热系数一般都比较低(纯金属紫铜等除外),在切削时切削热不易传散,而且易集中在刀尖处。
ii.热强度高:如镍基合金等高温合金在500一800℃时抗拉强度达到最高值。
因此在车削这类合金时,车刀的车削速度不宜过高,一般不宜超过10m/min,否则刀具切人工件的切削阻力将会增大。
b.切削变形系数和加工硬化:难加工材料中的高温合金和不锈钢等,这些材料的变形系数都比较大。
在较小的切削速度开始,变形系数就随着车削速度的增大而增大,在切削速度大约达到6m/min的情况下,切屑的变形系数将达到最大值。
由于车削过程中形成切屑时的塑性变形,金属产生硬化和强化,使切削阻力增大,刀具磨损加快,甚至产生崩刃。
加工高温合金、不锈钢材料时,刀具切削用量的选用一、高温合金的切削特点1.性能特征高温合金是一种多组元、激活能很高的高熔点,金属元素含量很多的复杂合金化材料。
有极好的热稳定性及热强性。
热稳定是高温下抗氧化、抗腐蚀的能力。
热强性是指高温下抵抗塑性变形和断裂的能力。
如以45号钢的切削加工性为100%,则高温合金的相对切削加工性为5%—20%。
可以说高温合金是各种各种难加工材料中最难切削的材料。
2.切削特点⑴切削力大:由于高温合金出众的高熔点、激活能大的组元,原子结合十分稳定。
切削时要使其原子脱离平衡位置,所需的能量很大,变形抗力大大上升。
合金中沉淀的硬化相对会增大塑性变形抗力,而塑性变形抗力使晶格严重扭曲,硬度大大提高,使变形抗力加大。
所以切削高温合金时,切削力比一般钢大2-3倍。
⑵切削温度高:由于切削时巨大的塑性变形,刀具与工件,切屑之间存在着强烈的摩擦,产生大量的切削热。
高温合金的导热系数很低,致使变形区的切削热高度集中于极小的切削区域内,使刀具切削刃及刀尖处的温度非常高。
在高温下会加剧刀具的扩散磨损和氧化磨损。
⑶加工硬化现象严重:高温中,高温合金的强化系数大,并且在切削过程中,合金中的强化相从固液中分解出来,弥散分布,使强化能力增加,加大了硬化程度。
切削高温合金时,已加工表面硬度要比基体硬度高的多约50%—100%。
⑷刀具易磨损:由于高温合金中的各种强化相和加工硬化现象,在切削过程中给刀具造成了巨大的摩擦,发生磨料磨损。
在高温高压条件下,刀具材料与被加工材料之间的亲和作用而造成粘附,使切屑与刀具之间出现粘结现象,造成粘结磨损。
在切削高温合金时,刀具除出现一般的正常磨损外,还会出现边界磨损及沟纹磨损。
主要原因是加工过程中高温合金的加工硬化所造成。
3.刀具的选用根据前面的了解,高温合金的切削加工性的确很差,导致刀具的耐用度低。
因此,应当寻求各种提高刀具的耐用度的措施。
⑴从刀具材料的选择着手:切削高温合金的刀具,要具备有高温硬度,高的耐磨性,强度和冲击韧性,良好的导热性,抗粘性及抗氧化性。
难切削材料的切削加工性研究【摘要】新材料的出现,使得传统的切削加工变得困难,切削加工性降低。
本文主要介绍了三种难切削材料的切削加工性的一些特点,并以此提出了提高难切削材料切削加工性的途径。
【关键词】切削加工性;钛合金;镍基高温合金;高强度钢一、钛合金的切削加工性钛合金是一种比强度和比刚度较高,在温度550℃以下耐腐蚀很高的材料。
它是应用很广泛的飞行器结构材料,也应用于造船、化工等行业。
钛合金从金属组织上可分为α相钛合金、β相钛合金、(α+β)相钛合金。
硬度及强度按α相、(α+β)相、β相的次序增加,而切削加工性按这个次序下降。
钛合金的切削加工性是较低对的,其原因如下:(1)钛合金导热性能低,切屑与前刀面的接触面积很小,致使切削温度很高,可为45钢切削温度的2倍。
(2)钛合金在600℃以上的温度时,与气体发生剧烈的化学作用。
(3)钛合金塑性较低,特别是和周围的气体发生化学变化后,硬度增高,剪切角增大,切屑与前角面的接触长度很小,使前刀面上应力很大,刀刃容易发生破损。
(4)钛合金的弹性模量低,弹性变形大,接近后刀面处工件表面的回弹量大,故已加工表面与后刀面的接触面积特别大,磨损也比较严重。
根据钛合金的性质和切削过程中的特点,切削时应该考虑的措施是:(1)尽可能使用硬质合金刀具,以提高生产率,应该选用与钛合金亲和力小,导热性能良好的强度高的细晶粒钨钴类硬质合金。
成型和复杂刀具可选用高温性能好的高速高。
(2)为增大切屑与前刀面的接触长度,以提高耐用度,应采用较小的前角。
后角应比切普通钢的大。
刀尖采用圆弧过渡刃,刀刃上避免有尖角出现。
(3)刀刃的粗糙度应尽可能小,以保证排屑流畅和避免崩刃。
(4)切削速度宜低,切削深度可以较大,进给量应适当。
进给量过大易引起刀刃的烧损;进给量过小将因刀刃在加工硬化层中工作而磨损过快。
(5)应进行充分冷却,慎用含氯的极压切削液。
在使用含氯的切削液时,使用后应将工件充分清洗,以防止应力腐蚀。
难加工材料绪论:1.难加工材料分类?特点?2.难切削材料有哪些特点?3.改善难切削材料切削加工性的基本途径有哪些?第一章淬火钢的切削加工1.1 什么是淬火钢?它有哪些切削特点?1.2怎样选择切削淬火钢的刀具材料?1.3切削淬火钢的实例有哪些?第二章不锈钢的切削加工第三章高强度钢和超高强度钢的切削加工第四章高锰钢的切削加工第五章冷硬铸铁和耐磨铸铁的切削加工第六章钛合金的切削加工第七章高温合金的切削加工第八章热喷涂材料的切削加工第九章难熔金属和纯金属的切削加工第十章其他难加工材料绪论:1.难切削材料分哪几类?各有什么特点?难加工材料,科学地说,就是切削加工性差的材料,即硬度>HB250,强度σb>1000MPa,延伸率>80%,冲击值αK>0.98MJ/m2,导热系数K<41.8W(m·K)。
难加工材料种类很多,从金属到非金属材料的范围也很广泛,初步可分为以下八大类:(1)微观高硬度材料:如玻璃钢、岩石、可加工陶瓷、碳棒、碳纤维、各种塑料、胶木、树脂、合成材料、硅橡胶、铸铁等。
这类材料的特点是含有硬质点相,其中有的研磨性很强。
由于这些材料的耐磨性很好,切削时起磨料作用,故刀具主要承受磨料磨损,在高速切削时也同时伴随着物理、化学磨损。
(2)宏观高硬度材料:如淬火钢、硬质合金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料(镍基、钴基)等。
这类材料的主要特点是硬度高。
切削这类材料时,由于切削力大,切削温度高,刀具主要是磨料磨损和崩刃。
(3)加工时硬化倾向严重的材料,如不锈钢、高锰钢、耐热钢、高温合金等。
这类材料的塑性高、韧性好、强度高,强化系数高。
切削加工时的切削表面和已加工表面硬化现象严重。
由于这类材料的强度高,导热系数低,切削温度高,切削力大,刀具主要承受磨料磨损、粘结磨损和热烈磨损。
(4)切削温度高的材料:如合成树脂、木材、硬质橡胶、石棉、酚醛塑料、高温合金、钛合金等。
这类材料的导热系数很低。
切削这类材料时,刀具易产生磨料磨损、粘结磨损、扩散磨损和氧化磨损。
(5)高塑性材料:如纯铁、纯镍、纯铜等。
由于这类材料延长率大于50%,塑性高,切削时塑性变形很大,易产生积屑瘤和鳞刺,刀具主要时磨料磨损和粘结磨损。
(6)高强度材料:是指强度σb>1000MPa的材料,如奥氏体不锈钢、高锰钢、高温合金和部分合金钢。
由于它们的强度高,切削时的切削力大,切削温度高,不仅刀具易磨损,而且切屑不易处理。
(7)化学活性大的材料:如钛、镍、钴及及其的合金。
这类材料化学活性大、亲和性强,切削加工时易粘结在刀具上,与刀具材料产生化学、物理反应、相互扩散。
(8)稀有高熔点材料:是指熔点高于17000C的难熔金属材料,如钨、钼、铌、钽、锆、铪、钒、铼的纯金属及其合金。
由于这些材料本身的熔点高,在切削加工时切削力大,切屑变形也大,刀具主要是磨料磨损和粘结磨损。
2.难切削材料有哪些切削特点?(1)切削力大:难切削材料大都具有高的硬度和强度,原子密度和结合力大,抗断裂韧性和持久塑性高,在切削过程中切削力大。
一般难切削材料的单位切削力是切削45钢的单位切削力的1.25-2.5倍。
(2)切削温度高:多数的难切削材料,不仅具有较高的常温硬度和强度,而且具有高温硬度和高温强度。
因此,在切削过程中,消耗的切削变形功率大,加之材料本身的导热系数小,切削区集中了大量的切削热,形成很高的切削温度。
例如,当切削速度为75m/min时,不同材料的切削温度比切削45钢的切削温度高的情况是:TC-4高435 0C,GH2132高3200C,GH2036高2700C,1Cr18Ni9Ti高1950C。
(3)加工硬化倾向大:一部分难切削材料,由于塑性、韧性高,强化系数高,在切削过程中的切削力和切削热的作用下,产生巨大的塑性变形,造成加工硬化。
无论是冷硬的程度还是硬化层深度都比切削45钢高好几倍。
加之在切削热的作用下,材料吸收周围介质中的氢、氧、氮等元素的原子,而形成硬脆的表层,给切削带来很大的困难。
如高温合金切削后的表层硬化程度比基体大50-100%,1Cr18Ni9Ti奥氏体不锈钢85-95%,高锰钢(Mn13)高200%,其硬化层深度达0.1mm 以上。
(4)刀具磨损大:切削难切削材料的切削力大,切削温度高,刀具与切屑之间的磨檫加剧,刀具材料与工件材料产生亲和力作用,材料硬质点的存在和严重的加工硬化现象的产生,使刀具在切削过程中产生粘结、扩散、磨料、边界和沟纹磨损,而使刀具丧失切削的能力。
(5)切削难处理:材料的强度高,塑性和韧性大,切削时的切削呈带状的缠绕屑,既不安全,又影响切削过程的顺利进行,而且也不便于处理。
3.改善难切削材料切削加工性的基本途径有哪些?改善难切削材料切削加工性的途径是多方面的,但我们研究切削加工,只能从切削加工上去考虑,但也要因地制宜采用其他的加工工艺。
(1)选用合理的刀具材料。
(2)改善切削条件。
(3)选择合理的刀具几何参数和切削用量。
(4)对被加工材料进行适当的热处理(5)重视切屑控制(6)采用其他加工措施:如采用等离子加热切削、振动切削、电熔爆切削,都可以获得较高的切削效率。
第一章淬火钢的切削加工1.什么是淬火钢?它有哪些切削特点?淬火钢是指金属经过淬火后,组织为马氏体,硬度大于HRC50的钢。
它在难切削材料中占有相当大的比重。
加工淬火钢的传统方法是磨削。
但是为了提高加工效率,解决工件形状复杂而不能磨削和淬火后产生形状和位置误差的问题,往往就需要采用车削、铣削、镗削、钻削和铰削等切削加工方法。
淬火钢在切削时有以下特点。
(1)硬度高、强度高,几乎没有塑性:这是淬火钢的主要切削特点。
当淬火钢的硬度达到HRC50-60时,其强度可达σb=2100-2600 MP,按照被加工材料加工性分级规定,淬火钢的硬度和强度为9a级,属于最难切削的材料。
(2)切削力大、切削温度高:要从高硬度和高强度的工件上切下切屑,其单位切削力可达4500MP。
为了改善切削条件,增大散热面积,刀具选择较小的主偏角和副偏角。
这时会引起振动,要求要有较好的工艺系统刚性。
(3)不易产生积屑瘤:淬火钢的硬度高、脆性大,切削时不易产生积屑瘤,被加工表面可以获得较低的表面粗糙度。
(4)刀刃易崩碎、磨损:由于淬火钢的脆性大,切削时切屑与刀刃接触短,切削力和切削热集中在刀具刃口崩碎和磨损。
(5)导热系数低:一般淬火钢的导热系数为7.2W(m·K),约为45钢的1/7.材料的切削加工性等级是9a级,属于很难切削的材料。
由于淬火钢的导热系数低,切削热很难通过切屑带走,切削温度高,加快了刀具磨损。
2.怎样选择切削淬火钢的刀具材料?合理选择刀具材料,是切削加工淬火钢的重要条件。
根据淬火钢的切削慝点,刀具材料不仅要有高的硬度、耐磨性,耐热性,而且要有一定的强度和导热性。
(1)硬质合金:为了改善硬质合金的性能,在选择硬质合金时,应优先选择加入适量TaC或NbC的超细微粒的硬质合金。
因为在WC-Co类硬质合金中,加入TaC以后,可将其原来的8000C 高温强度提高150-300MP,常温硬度提高HV40-100.加入NbC以后,高温强度提高150-300MP,常温硬度提高HV70-150。
而且Ta和NbC 可以细化晶粒,提高硬质合金抗月牙洼磨损的能力。
TaC还可以降低磨檫系数,降低切削温度,增强硬质合金抗热烈和热塑性性变形的能力,同时也将WC的晶粒细化到0.5-1μm,其硬度提高HRA1.5-2,抗弯强度可提高600-800MP,高温硬度比一般硬质合金高。
常用来切削淬火钢的硬质合金牌号有:YS8、YN05、YN10、600、610、726、758、767、813等。
(2)热压复合陶瓷和热压氮化硅陶瓷:在Al2O3中加入TiC等金属元素并采用热压工艺,改善了陶瓷的致密性,提高了氧化铝基陶瓷的性能,使它的硬度提高到HRA95.5,抗弯强度可达800-1200MP,耐热性可达1200-13000C,在使用中可减少粘结和扩散磨损。
其主要牌号有AG2、AG3、AG4、LT35、LT55、AT6等。
氮化硅基陶瓷是在Si3N4中加入TiC等金属元素,其硬度为HRA93-94,抗弯强度为70-1100MP。
主要牌号有HS73、HS80、F85、ST4、TP4、SM、HDM1、HDM2、HDM3。
这两种陶瓷适用于车、铣、镗、刨削淬火钢。
(3)立方氮化硼复合片(PCBN)刀具:它的硬度为HV8000-9000,复合抗弯强度为900-1300MP,导热性比较高,耐热性为1400-15000C,是刀具材料最高的。
它十分适合于淬火钢的半精加工和精加工。
综上所述,切削淬火钢最好的刀具材料是立方氮化硼,其次是复合陶瓷,再其次是新牌号硬质合金。
3.怎样选择切削淬火钢时的切削用量?切削加工淬火钢的切削用量,主要是根据刀具材料、工件材料的物理、力学性能、工件形状、工艺系统刚性和加工余量来选择。
在选择切削用量三要素时,首先考虑选择合理的切削速度,其次是切削深度,再次是进给量。
(1)切削速度:硬质合金刀具速度为30-75m/min;陶瓷刀具速度为60-120m/min;立方氮化硼刀具速度为100-200m/min。
在连续切削和工件材料硬度太高时,应降低切削速度,一般约为上面最低切削速度的1/2.在连续切削时的最佳切削速度,以切下的切屑呈暗红色为宜。
(2)切削深度:一般根据加工余量和工艺系统刚性选择,一般情况下a p=0.1-3mm。
(3)进给量一般为0.05mm/r到0.4mm/r。
在工件材料硬度高或断续切削时,为了减小单位切削力,应当减小进给量,以防崩刃和打刀。
第二章不锈钢的切削加工1.什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金叫做不锈钢。
这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>4500C)下具有较高的强度。
含铬量达16-18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。
钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。
为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。
这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的不能热处理。
由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。
所含有的合金元素对切削加工性影响很大,有时甚至很难切削。