自动控制原理习题分析第七章
- 格式:ppt
- 大小:2.12 MB
- 文档页数:16
自动控制原理习题分析第七章7-1已知系统的微分方程'''4X X +=,试画出相平面图 '''40X X +-=,特征方程2p +ap+b=0 中:a=1,b=0,属不稳定奇点型。
为表-3中第三类(M.>0)相迹。
'''441X X Xα-=-=-+ 等倾斜线'41X α=+为平行X 轴水平线。
α=0时,'X =4 既为等倾斜线也是相迹,也是其它相迹渐近线。
自动控制原理习题分析第七章7-1§7-2-4相平面图的八种类型+++='''x ax bx c 0=≠++=+=-=-+''''''b 0,(8)c 0,x ax c 0,ax c αx c (a )x 等倾斜线为水平线'c X a α=-+ α=0 时,'c X a =- 为相迹和相迹渐近线。
'''40X X +-=,a =1>,c= -4<0'''441X X X α-=-=-+自动控制原理习题分析第七章7-1 exp0026101.m,exp0026102自动控制原理习题分析第七章7-2已知系统的微分方程,试画出相平面图'''10X X ++=特征方程2p +ap+b=0 中:a=-1<0,b=0 : 属不稳定奇点型。
为表—3中第四类(M>0)相迹。
''''111X X Xα-+=-=- ,等倾斜线 '11X α=- 为平行X 轴水平线。
α=0时,'X =4 既为等倾斜线也是相迹,也是其它相迹渐近线。
.-+==<=>>><⎧+⎪==-==⎨⎪<<<⎩=== '''x x 10,a -10,c 10;0,x'1或x'0;-x'11α-10,x'1;x'x'0,0x'1c α0:x'-1相和相近a自动控制原理习题分析第七章7-2 exp0026201.m exp0026202.m自动控制原理习题分析第七章7-5 已知系统的微分方程,试画出相平面图。
⾃动控制原理第7章离散系统题库习题7-1已知下列时间函数()c t ,设采样周期为T 秒,求它们的z 变换()C z 。
(a )2()1()c t t t = (b )()()1()c t t T t =- (c )()()1()c t t T t T =-- (d )()1()atc t t te -=(e )()1()sin atc t t et ω-= (f )()1()cos atc t t te t ω-=7-2已知()x t 的拉⽒变换为下列函数,设采样周期为T 秒,求它们的z 变换()X z 。
(a )21()C s s = (b )()()aC s s s a =+(c )2()()aC s s s a =+(d )1()()()()C s s a s b s c =+++(e )2221()()C s s s a =+(f )()1()1sT C s e s-=-7-3求下列函数的z 反变换。
(a )0.5(1)(0.4)zz z --(b )2()()T T zz e z e ----(c )22(1)(2)z z z ++7-4已知0k <时,()0c k =,()C z 为如下所⽰的有理分式120121212()1nn nn b b z b z b z C z a z a z a z------++++=++++L L 则有0(0)c b =以及[]1()()nk i i c kT b a c k i T ==--∑式中k n >时,0k b =。
(a )试证明上⾯的结果。
(b )设23220.5()0.5 1.5z z C z z z z +-=-+-应⽤(a )的结论求(0)c 、()c T 、(2)c T 、(3)c T 、(4)c T 、(5)c T 。
7-5试⽤部分分式法、幂级数法和反演积分法,求下列函数的z 反变换:(a )10()(1)(2) zE z z z =--(b )1123()12z E z z z ----+=-+(c )2()(1)(31)zE z z z =++(d )2()(1)(0.5)zE z z z =-+7-6⽤z 变换法求下⾯的差分⽅程(2)3(1)2()0,(0)0,(1)1x k x k x k x x ++++===并与⽤迭代法得到的结果(0)x 、(1)x 、(2)x 、(3)x 、(4)x 相⽐较。
习 题7-1 根据定义*()e()enTsn E s nT ∞-==∑试求下列函数的E *(s )和闭合形式的E (z )。
(1) e (t ) = t ; (2) 2)(1)(a s s E +=解 (1) e (t ) = t 求解过程可分为以下三个步骤进行:① 求()e t 的采样函数*()e t :由()()|,0,1,2,t nT e nT e t nT n ==== ,得斜坡函数()e t 在各采样时刻的值()e nT 。
故采样函数为*00()(0)()()()()()()()()n n e t e t e T t T e nT t nT e nT t nT nT t nT δδδδδ∞=∞==+-++-+=-=-∑∑② 求*()e t 的拉氏变换式*()E s :*()e t 的拉氏变换式为*()E s*0223'2'''2()()02[][(1)]1111(1)nTsnTsn n Ts TsnTsTs TsTsnTsTsTsTsnTs TsTs Ts Ts Ts E s e nT enTeTe TenTe e e eeeeeeTe e e e e ∞∞--==-------------===+++++=-+++++=-+++++⎡⎤⎡⎤=-=-=⎢⎥⎢⎥---⎣⎦⎣⎦∑∑③ 求()E z :由*1ln ()()|s znE z E s ==,得2()(1)Tz E z z =-(2) 2)(1)(a s s E +=① 求()e t :()ate t te -=② 求*()e t*0()()(),()()|anTt nTn e t e nT t nT e nT e t nTeδ∞-===-==∑所以 *0()()anTn e t nTet nT δ∞-==-∑③ 求*()E s*()()nTsanTnTsn n E s e nT enTee∞∞---====∑∑④ 求()E s*1ln 012()()|[()2()()]anTns zn Tat atatnE s E s nTeze z e z n e z T∞--==---===++++∑令1()at e z y -=,则2123''2()(123)()1(1)n nE y y y nyyT y y y y yTy Ty yT y y -=+++++=+++++⎛⎫== ⎪--⎝⎭将1()at y e z -=代入上式,可得()E z 为 1122()()[1()]()ataT at aTT e z Tze E z e z z e----==--7-2 求下列函数的Z 变换X (z )。
第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。
解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。
e计算列表,画出相轨迹如图解7-1所示。
x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。
注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。
7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。
(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。
系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。
2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。
第七章 线性离散系统的分析与校正例7-1 复合控制离散系统如图7-1所示。
试求出系统的闭环脉冲传递函数)()(z R z C 或输出的z 函数)(z C 。
图7-1 例7-1图解:分析:若系统输入端的)(1s G 环节含有零、极点,而输入信号)(t r 未经采样就输入该环节,因此该系统不存在)(t r 为输入的闭环脉冲传递函数)()(z R z C ,但仍可得到输出信号的z函数)(z C 。
在采样开关和系统输出端处可得⎩⎨⎧-⋅-=+⋅=)()()()()()()()()(303213032z H G RG z H G G z E z RG z E z G RG z G G z E z C 消除中间变量)(z E 。
最后得[])(1)()()()()(323013230z H G G z H G RG z RG z G G z G RG z C +-+=注意:因离散系统中既有连续信号也有离散信号,因此,连续系统结构图等效变换法则不能直接套用于离散系统。
一般可由采样开关处的变量写出对应的方程组,并求解得到系统的输出z 函数或脉冲传递函数。
)()()1(])1[(kT y ekT e eT k y RCT RCT --+-=+例7-2 离散控制系统如图7-2所示,试求其脉冲传递函数表达式。
图7-2 例7-2图解:开环脉冲传递函数为 ])([)1(]1[)(1a s s K Z zas K seZ z G Ts+-=+⋅-=--)()1(])(11[)1(1aTaT ez e aK a s a asZ z K -----⋅=+--=闭环脉冲传递函数为aTaTaTeaK aK ez e aKz G z G z ----+--=+=Φ)1()(1)()(例7-3 数字控制系统如图7-3所示,试计算0)(=t r ,)(1)(t t n =,1)(1-=z z K z D 时的稳态输出。
图7-3 例7-3图解:首先要导出以干扰为输入,)(t y 为输出的脉冲传递函数,⎥⎦⎤⎢⎣⎡--+=-)()(1)(11)(z Y z D s e s N s s Y Ts代入ss N 1)(=,上式两端求Z 变换,有)()()1(1)1()1(1)(1z Y z D s s Z z s s Z z Y ⎥⎦⎤⎢⎣⎡+--⎥⎦⎤⎢⎣⎡+=-)()1(1)1(1)1(1)(1z D s s Z z s s Z z Y ⎥⎦⎤⎢⎣⎡+-+⎥⎦⎤⎢⎣⎡+=-而))(1()1()1(1TTe z z ze s s Z -----=⎥⎦⎤⎢⎣⎡+,所以TTe z e s s Z z-----=⎥⎦⎤⎢⎣⎡+-1)1(1)1(1于是 )]()1())[(1()1()(z D e ez z ez z Y TTT----+---=代入1)(1-=z z K z D ,得TTTTez e eK z ez z Y ----++--+-=)]1()1([)1()(12)(z Y 的表达式中,已包含了干扰作用量,采用终值定理计算)(∞Y ,所有的极点必须在单位圆内。