调幅和检波电路的设计仿真
- 格式:doc
- 大小:288.50 KB
- 文档页数:14
基于Multisim的调幅电路的仿真1.前言信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。
调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。
而要还原出被调制的信号就需要解调电路。
调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。
论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。
AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。
与AM信号相比,因为不存在载波分量,DSB调制效率是100%。
我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。
论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。
此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关内容。
同时加强了团队合作意识,培养分析问题、解决问题的综合能力。
本次综合课设于2011年6月20日着手准备。
我团队四人:曹翔、李婷婷、赖志娟、刘少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。
2.基本理论由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。
因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。
所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。
调幅与检波实验报告调幅与检波实验报告引言:调幅与检波是无线电通信中常见的技术,它们在广播、电视等领域中发挥着重要作用。
本实验旨在探究调幅与检波的原理和应用,并通过实际操作来加深对这两种技术的理解。
一、调幅的原理与实验步骤调幅是一种将音频信号转换成无线电信号的技术。
它通过改变无线电信号的幅度来携带音频信息。
在实验中,我们使用了一个信号发生器和一个调幅解调器进行调幅实验。
首先,我们将信号发生器的输出连接到调幅解调器的输入端,调幅解调器的输出连接到示波器。
然后,我们设置信号发生器的频率和幅度,调整调幅解调器的解调频率,观察示波器上的波形变化。
实验结果表明,当调幅解调器的解调频率与信号发生器的频率相同时,示波器上显示出较为清晰的音频波形。
而当解调频率与信号发生器的频率不匹配时,示波器上的波形变得模糊不清。
这说明调幅解调器能够正确还原信号发生器中的音频信号。
二、检波的原理与实验步骤检波是一种将调幅信号还原成音频信号的技术。
在实际的无线电通信中,接收到的信号是经过调幅的,我们需要通过检波技术将其还原成原始的音频信号。
本实验中,我们使用了一个调幅信号发生器和一个检波器进行检波实验。
实验中,我们将调幅信号发生器的输出连接到检波器的输入端,检波器的输出连接到扬声器。
然后,我们调整调幅信号发生器的频率和幅度,观察扬声器中的音频输出。
实验结果显示,当调幅信号发生器的频率和幅度适当时,扬声器中可以听到清晰的音频声音。
这表明检波器能够有效地将调幅信号还原成原始的音频信号。
三、调幅与检波的应用调幅与检波技术在广播、电视等领域中得到广泛应用。
在广播中,调幅技术使得音频信号能够通过无线电波传播,使得人们可以在不同地方收听同一电台的节目。
而检波技术则使得收音机能够将接收到的调幅信号还原成音频信号,供人们收听。
在电视领域,调幅与检波技术同样发挥着重要作用。
调幅技术使得视频信号能够通过无线电波传输,使得人们可以在不同地方收看同一电视节目。
振幅调制与检波仿真实验报告班级:姓名:学号:指导教师:路勇实验日期: 2012.11.28实验名称:振幅调制与检波电路仿真一、 实验目标1.理解AM 、DSB 和SSB 信号调制与解调的原理2.通过使用EWB 或multisim 的仿真,更好的理解振幅调制与检波电路的实现方法二:实验原理及内容1. AM 信号的调制解调原理AM 信号是载波信号振幅在0m V 上下按输入调制信号规律变化的一种调幅信号,表达式如下:[]t w t u k V t v c a m o cos )()(0Ω+=由表达式可知,调幅电路的组成模型可由一个相加器和一个相乘器组成,如图M A 为相乘器的乘积常数,A 为相加器的加权系数,且a cm M k AV A k A ==,2.DSB 信号的调制解调原理DSB 是在普通调幅的基础上抑制掉不携带有用信息的载波,保留携带有用信息的两个边带。
双边带调制信号的包络已不再反映)(t u Ω的变化,但它仍保持频谱搬移的特性,因而仍是振幅调制波的一种。
双边带调制表示为:t w t u k t u c a cos )()(0Ω= 双边带调制信号组成模型:DSB 调制器模型图:其中,设正弦载波为0()cos()c c t A t ωϕ=+式中,A 为载波幅度;c ω为载波角频率;0ϕ为初始相位(假定0ϕ为0)。
双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。
在解调过程中,输入信号和噪声可以分别单独解调。
相干解调的原理框图如图所示:3.SSB 信号的调制解调原理SSB 是在双边带调幅的基础上,去掉一个边带,只传输一个边带的调制方式。
单频时的SSB 信号仍是等幅波,但它与原载波电压是不同的。
SSB 信号的振幅和调制信号的幅度成正比,它的频率随着调制信号频率的不同而不同,因此它含有消息特征。
单边带信号的包络与调制信号的包络形状相同,在单频调制时,它们的包络都是一个常数。
东华大学普通调幅(AM)信号及包络检波实验报告【实验目的】利用multisim对普通调幅(AM)信号及包络检波进行仿真。
【实验原理】AM信号的数学表达式如下:[]t wtukVtvcamocos)()(0Ω+=由上式可见,将调制信号与直流相加后,再与载波信号相乘,即可实现普通调幅。
【实验仿真电路】在Multisim仿真电路窗口中创建如下图所示的由乘法器(K=1)组成的普通调幅(AM)电路。
【实验现象及相关分析】载波和基波的波形图如下载波(20kHz,2V)、基波(1kHz,0~5V)调节Rp值得到Ma<1,Ma=1,Ma>1的输出波形。
1)Ma<1:载波(20kHz,2V)、基波(1kHz)Rp取0.6k2)Ma=1:载波(20kHz,2V)、基波(1kHz)Rp取0.35k3)Ma>1:载波(10kHz,2V)、基波(1kHz)Rp取0.2k包络检波后的波形图1)Rp=0.85k 载波(10kHz,2V)、基波(1kHz)2)Rp=0.65k 载波(10kHz,2V)、基波(1kHz)【去耦滤波的实验对比】1)输出端加了2个0.01uF的电容,Rp=0.85k ,载波(10kHz,2V)、基波(1kHz)2)输出端加了4个0.01uF的电容,Rp=0.85k ,载波(10kHz,2V)、基波(1kHz)【惰性失真】将输出端电阻R2、R3从原来的10k到100k,由于输出电压降跟不上调幅波的包络变化,会出现惰性失真,如下图所示:R2=100k,Rp=0.85k ,载波(10kHz,2V)、基波(1kHz)由于参数的选择,检波器容易惰性失真。
在二级管截止期间,电容C两端电压下降的速度取决于RC的时常数。
如果电容放电速度很慢,使得输出电压不能跟随输入信号包络下降的速度,那么检波输出将与输入信号包络不一样,产生失真。
把由于RC时间常数过大而引起的这种失真称为惰性失真或者对角线切割失真。
调幅与检波电路的Multisim 仿真分析一、实验目的:(1)在掌握理论知识的基础上,学会利用multisim 等仿真软件进行实验的虚拟仿真,熟练掌握仿真的设计过程与方法。
(2)通过仿真以及仿真得到的结果能够进一步理解调幅、检波电路的结构与原理。
(3)通过观察仿真输出波形,分析仿真结果,得出并验证相关结论。
二、实验原理2.1 AM 信号AM 信号是载波信号振幅在0m V 上下按输入调制信号规律变化的一种调幅信号,表达式如下:t w t u k V t v c a m o cos )()(0(1)由表达式(1)可知,在数学上,调幅电路的组成模型可由一个相加器和一个相乘器组成。
设调制信号为:)(t u =M c U E cos t 载波电压为:cM t c U u )(cos t w c 上两式相乘为普通振幅调制信号:cM C t s U E K u ()(cos t )tw U c cM cos =C cM E KU (+tw t U c M cos )cos =tw t M E KU c a c cM cos )cos 1(=tw t M U c a S cos )cos 1(式中,CM a E U M 称为调幅系数(或调制指数) ,其中0<a M ≤1。
而当a M >1时,在t 附近,)(t u c 变为负值,它的包络已不能反映调制信号的变化而造成失真,通常将这种失真成为过调幅失)(t u c真,此种现象是要尽量避免的。
2.2 DSB 信号抑制掉调幅信号频谱结构中无用的载频分量,仅传输两个边频的调制方式成为抑制载波的双边带调制,简称双边带调制,并表示为:tw t u k t u c a cos )()(0显然,它与调幅信号的区别就在于其载波电压振幅不是在0m V 上下按调制信号规律变化。
这样,当调制信号)(t u 进入负半周时,)(t u o 就变为负值。
表明载波电压产生0180相移。
因而当)(t u 自正值或负值通过零值变化时,双边带调制信号波形均将出现0180的相移突变。
实验四振幅调制器一、实验目的:1.了解集成模拟乘法器的使用方法,掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
5.通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验原理1、幅度调制的基本原理在无线电通信中,其基本任务是远距离传送各种信息,如语音、图象和数据等,而在这些信息传送过程中都必须用到调制与解调。
调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。
通常称高频振荡为载波信号。
代表信息的低频信号称为调制信号,调制即是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数(振幅、频率或相位)按照调制信号的规律变化。
按照所控制载波参数(幅度、频率、相位)区分,调制可分为幅度调制、频率调制和相位调制。
幅度调制(调幅)就是载波的振幅(包络)受调制信号的控制,随调制信号的变换而变化的一种调制。
在幅度调制中,又根据所取出已调信号的频谱分量不同,分为普通调幅(标准调幅,AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。
它们的主要区别是产生的方法和频谱结构。
在学习时要注意比较各自特点及其应用。
2、单片集成双平衡模拟相乘器MC1496集成模拟乘法器是完成两个模拟量相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频等过程,均可看成两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件简单,且性能优越。
因此,在无线电通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有:BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等等。
腹有诗书气自华一、实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。
②依照电路图修改各个电阻与电容的参数。
③设置信号发生器的参数为Frequency 1kHz,Amplitude 10mV,选择正弦波。
④修改晶体管参数,放大倍数为40,。
(2)电路调试,主要调节晶体管的静态工作点。
若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。
(3)仿真腹有诗书气自华(↑图1)(↓图2)腹有诗书气自华2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。
信号发生器1设置成1kHz、10mV的正弦波,作为u i1;信号发生器2设置成1kHz、20mV的正弦波,作为u i2。
满足运算法则为:u0=(1+R f/R1)*(R2/R2+R3)*u i2-(R f/R1)*u i1仿真图如图3图1-2腹有诗书气自华图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。
电路图如图1-4,仿真结果如图4.腹有诗书气自华图1-4 调幅波检波电路图4 调幅波检波电路仿真结果腹有诗书气自华三、结果分析参数不同所得的波形不同,太大或太小都会失真。
四、仿真中遇到的问题仿真中,Channel A的波看起来一直是一条直线,检查连线没有错误,更改参数也没有变化,微调Scale也看不出差别,此时继续调Scale,调到一定程度会看到波形。
五、使用Multisim的体会我觉得Multisim这个软件主要有以下优点:1) 基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类。
2) 比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可以把三极管设置成漏电等)这样在实际中更具有实用性。
实验六 AM 包络检波仿真电路一、实验目的1.掌握二极管包络检波的原理及电路设计方法。
2.了解二极管包络检波电路中元件选择要求及对检波器性能的影响; 3. 学会检波器的检测方法。
二、实验仪器1.计算机(EWB 仿真软件)三﹑实验原理 1.二极管包络检波器调幅波的解调是从调幅信号中取出调制信号的过程,通常称之为检波。
调幅波解调方法有二极管包络检波器,同步检波器。
本实验主要完成二极管包络检波。
二极管包络检波器是包络检波中最简单、最常用的一种电路。
它适合于解调含有较大载波分量电平的AM 波(俗称大信号,通常要求峰-峰值为1V 以上)。
它具有电路简单,检波线性好,易于实现等优点。
电路构成如图4-6-1所示: 图4-6-1包络检波器电路图图中D 为检波二极管,C 、L R 为检波负载,C 起高频旁路作用。
当输入电压su 为正半周时,二极管D 导通,电流对C 迅速充电,由于二极管的正向电阻D R 较小,C 上的电压很快上升到峰值;当s u 由最大下降时,D 截止,C 通过L R 放电,由于D L R R ,所以放电很慢,C 上的电压稍有下降。
第二个周期正半周上升到 C 上的电压后,二极管D再次导通。
这样循环往复的结果,在C 、L R 上得到包含直流分量、低频调制信号分量和微小高频信号分量的低频输出电压o u ,如图4-6-2所示。
图4-6-22.检波器的非线性失真在二极管峰值型检波器中,如果电路参数选择不恰当,将出现两种特有失真,(1)惰性失真:在二极管峰值型检波器中,如果检波负载时间常数C R L 太大,则电容C 的放电速度很慢,C 的两端电压不能随输入已调波包络而迅速变化,就会产生输出信号的非线性失真,这种非线性失真是因电容放电的惰性引起的,故称为惰性失真,如图4-6-3所示。
图4-6-3由此可知,在二极管峰值型检波器中,RC 时间常数的选择很重要,RC 时间常数过大,则会产生惰性失真。
RC 常数太小,高频分量会滤不干净。