运筹学-单纯形法证明
- 格式:pdf
- 大小:1.77 MB
- 文档页数:27
1(单纯形法)例:Min Z=-2x1-x2+x3 , s.t. 3x1+x2+x360≤x1-x2+2x310≤,x1+x2-x320≤,xj 0≥,解析:对第一、二、三个不等式添加松弛变量x4 x5 x6,则原线性问题化成标准形形式为:(略)因为B=(A4 A5 A6)是一单位矩阵,且b=(60 10 20)T>0 所以基B 是可行基,x4 x5 x6为基变量,x1 x2 x3为非基变量,基B 对应的基本可行解为检验数02>=ξ,故当前解不是最优解,A1列中有三个元素a11 a21 a31 均为正数,取min ()313212111,,a b a b a b =min ()120110360,,=10故转轴元为a21,x1为进基变量,x5为出基变量,进行旋转后得下表(略)它对应的基本可行解为x=(10 0 0 30 0 10)T,其目标函数值为Z0=-20,但,032>=ξ仍不是最优解,(以下的过程跟前面一样)最后得Z0=-35,检验向量0<ξ故为最优解。
故基本可行解x*=(15 ,5 ,0 )Tm 目标函数值为Z0=-35。
2(两阶段法)例 max z=3x1+4x2+2x3 s.t. x1+x2+x3+x430≤, 3x1+6x2+x3-2x40≤, x24≥解:化为标准形形式为min z=-3x1-4x2-2x3 s .t.分别加x5 x6 x7松弛变量,因为该线性规划的系数矩阵的系数矩阵已包含两个单位向量,就是A5=(100)T ,A6=(010)T ,第一阶段只要增加一个人工变量x8得到辅助LP 问题为min g=x8 s.t .以下略,作如下表(略),将表中第三行加到关于g 的第0行中,得到第一张单纯形表(略)按单纯形迭代,表略,第一阶段结束,得到辅助问题的一个最优解,3(对偶单纯形法)例 min 2x1+3x2+4x3, s.t. x1+2x2+x33≥ 2x1-x2+3x34≥ x1 x2 x3 0≥,解:引进非负的剩余变量x40≥,x50≥,将不等式约束化为等式约束直接利用对偶单纯形法求解,b2=- 4<b1=-3,所以x5为出基变量,由以下比值决定进基变量min(3422,----)=21a ξ=1,所以x1为进基变量,以a21为转轴元进行旋转变换得下表(略)因为b1=-1<0,所以x4为出基变量,因为min( )所以x2为进基变量,以a12为转轴得表(略)此时b>0,故原问题最优解为x*=( )T,其最优值Z0=() 4写出下面线性规划的对偶规划。