2019/11/21
二、 误差的表示方法
1.误差(error)
误差(E)是指测定值(x)与真实值(μ )之间 的差。误差越小,表示测定结果与真实值越接近 ,准确度越高;反之,误差越大,准确度越低。
一般用绝对误差和相对误差来表示。 绝对误差E = xi – μ 相对误差RE = E/μ ×100%
2019/11/21
第一章 定量分析中的误 差与数据处理
第一节 定量分析中的误差
一、 准确度和精密度 二、误差的表示方法 三、误差的表示、种类、 性质、产生的原因及减 免
2019/11/21
§1.1 定量分析的误差
1.1.1 准确度和精密度
典型实例:甲、乙、丙三人同时测定一铁矿石中Fe2O3的含 量(真实含量以质量分数表示为50.36%),各分析四 次,测定结果如下:
10.37%;10.47%;10.43%;10.40% ,计算单次分析结果的 平均偏差,相对平均偏差,标准偏差和变异系数。
解: 平均偏差d= di 0.18% 0.036%
n
5
相对平均偏差Rd d 0.036% 100% 0.35%
x 10.43%
标准偏差s
di2 8.6107 4.7 104 0.047%
特点:简单;
n
缺点:大偏差得不到应有反映。
标准偏差: S = [∑di2/(n -1)]0.5
特点:较大的偏差能够更显著地反映。
相对平均偏差 = d / X ×100% 相对标准偏差 :(变异系数)CV% = S / X ×100%
2019/11/21
例题
用标准偏差比用平均偏差更科学更准确。 例: 两组数据 (1) X-X: 0.11, -0.73, 0.24, 0.51,