中考数学第一轮复习第三章函数第12课时 二次函数(一)
- 格式:ppt
- 大小:754.50 KB
- 文档页数:12
(泰安专版)2019版中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((泰安专版)2019版中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(泰安专版)2019版中考数学第一部分基础知识过关第三章函数及其图象第12讲二次函数精练的全部内容。
第12讲二次函数A组基础题组一、选择题1。
(2018陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C。
第三象限D。
第四象限2.(2018威海)抛物线y=ax2+bx+c(a≠0)如图所示,下列结论错误的是()A.abc〈0 B。
a+c<bC.b2+8a〉4acD.2a+b>03。
(2017甘肃兰州)将抛物线y=3x2—3向右平移3个单位长度,得到的新抛物线的表达式为( )A。
y=3(x—3)2—3 B。
y=3x2C。
y=3(x+3)2—3 D。
y=3x2-64.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A。
—1≤x≤9 B.—1≤x〈9C。
—1〈x≤9D。
x≤—1或x≥95。
在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )二、填空题6。
(2017湖北武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0)。
第12讲 二次函数第1课时 二次函数的图象与性质知识点1 二次函数的概念1.关于x 的函数y =(m +1)x 2+(m -1)x +m ,当m =0时,它是二次函数;当m =-1时,它是一次函数.知识点2 二次函数的图象与性质2.已知h 与t 的函数关系式为h =12gt 2(g 为常数,t 为时间),则函数图象为(A )3.抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有(B )A .1个B .2个C .3个D .4个4.如图,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C )A .x >3B .x <3C .x >1D .x <15.二次函数y =x 2-2x -3的最小值是-4.知识点3 二次函数图象的平移6.抛物线y =(x +2)2-3由抛物线y =x 2先向左平移2个单位长度,再向下平移3个单位长度得到.7.将抛物线y =2(x -1)2+2向左平移3个单位长度,再向下平移4个单位长度,那么得到的抛物线的表达式为y =2(x +2)2-2.知识点4 确定二次函数的解析式8.已知二次函数的图象如图,则其解析式为(B)A.y=x2-2x+3B.y=x2-2x-3C.y=x2+2x-3D.y=x2+2x+39.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=-x2+4x-3.知识点5二次函数与方程、不等式10.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是(A)A.m<2 B.m>2C.0<m≤2 D.m<-211.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是(A)A.-1<x<3B.x>3C.x<-1D.x>3或x<-1重难点1二次函数的图象和性质(2017·枣庄)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【思路点拨】(1)将a=1代入原函数解析式,令x=-1求出y值,由此得出A选项不符合题意;(2)将a=2代入原函数解析式,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;(3)利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;(4)利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.【变式训练1】(2016·兰州)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是(D)A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【变式训练2】(2017·泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x -1 0 1 3y -3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x<1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个,方法指导解决二次函数图象和性质相关题,首先需明确二次函数图象的开口方向、对称轴、顶点坐标等与解析式中相关字母的关系,若确定解析式,也可通过将解析式配方,得出函数的对称轴,顶点坐标,函数图象与坐标轴的交点等,从而画出函数大致图象,再利用数形结合思想解题.方法指导比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.重难点2 同一坐标系中的函数图象共存问题(2016·毕节)一次函数y =ax +c(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一个坐标系中的图象可能是(D )【变式训练3】 函数y =kx与y =-kx 2+k(k ≠0)在同一直角坐标系中的图象可能是(B )方法指导解决函数图象共存问题主要有以下三种方法:(1)排除法:根据已知条件中得出的结论直接排除某选项,如:本例由已知条件可知两个函数的常数项都是c ,说明两个函数图象与y 轴交于同一个点,所以排除A 选项;(2)同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:本例B 选项,若一次函数图象正确,则a<0,c<0,这与抛物线开口向上相矛盾.故B 选项错误.重难点3 二次函数图象与字母系数的关系(2016·随州)二次函数y =ax 2+bx +c(a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)9a +c>3b ;(3)8a +7b +2c>0;(4)若点A(-3,y 1),点B(-12,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a(x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有(B )A.2个B.3个C.4个D.5个【思路点拨】(1)利用对称轴公式判别;(2)观察形式发现当x=-3时,y=9a-3b+c<0,可得9a+c<3b;(3)根据对称轴为x=2,得b=-4a,则8a+7b+2c=-20a+2c,由a<0,c>0,可得-20a+2c>0;(4)抛物线的开口向下,距离对称轴越远,纵坐标越小;(5)方程a(x+1)(x-5)=-3的两根x1和x2为直线y=-3与抛物线y=a(x +1)(x-5)的两个交点的横坐标,这两个交点在抛物线y=a(x+1)(x-5)与x轴两交点的两侧,因此x1<-1<5<x2.【变式训练4】(2017·荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(D)A.a<0,b<0,c>0B.-b2a=1C.a+b+c<0D.关于x的方程ax2+bx+c=-1有两个不相等的实数根变式训练4图变式训练5图【变式训练5】(2017·广安)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3,其中正确的有(B)A.1个B.2个C.3个D.4个方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小.1.(人教九上教材P37练习的变式题)(2017·长沙)抛物线y=2(x-3)2+4的顶点坐标是(A)A.(3,4) B.(-3,4)C.(3,-4) D.(2,4)。