则
(1) 当 0 时, 收敛半径 R ;
形式上可以记为
(2)
当
时,
R
收1敛半径
R 0;
(3)
当0
时,
收敛半径
R
1.
证明:由于
为数列, 记为n.
定义4.1 设 n是数列, a ib 是常数.
如果e >0, 存在正整数N, 使得当n>N 时, 不等式
n e 成立, 则称当n时, an收敛于 ,
或称 是n的极限, 记作
lim
n
n
.
复数列收敛与实数列收敛的关系
定理一
lim
n
n
的充分必要条件是
lim
n
an
a,
lim
cnzn 发散.
n0
• z0
2 收敛圆与收敛半径
定理3.由6 (Abel定理), 幂若级级数数 ccnnzznn在收z敛1 情0 况有三种: n00
处收敛(1,) 则对当所有z 的z1正时实, 数级都数 收 敛cnz. n 绝对收敛; n0 级数在复平面内绝对收敛.
若级数(2)n对0 cn所zn 有在的z2 正处发实散数,都则发当散z. z2 时, 级数
因此,幂级数 cn(z z0 )n的收敛范围是 n0
以 z z0为中心的圆域.
问题:幂级数在收敛圆周上的敛散性如何?
事实上, 幂级数在收敛圆周上敛散性的讨 论比较复杂, 没有一般的结论, 要对具体级数
进行具体分析.
例 1 求级数 zn 的收敛半径与和函数.
解
n0
z 1
lim zn 0
n
级数 zn 发散.
fn(z) f1(z) f2(z)
n1