dz
� �( z �
z0
)n
¥
ᆬ n0
f
( n) ( z0 n!
)(z
z0
)n
.
定理 4.10 给出了函数在 z0 点的邻域内展开成 Taylor 级数的公式 , 同时给出了展开式的收敛半
径 R=|z0-|, 其中是离 z 最近的 f (z) 的奇点 .
Taylor 展开式的惟一性定理
e , ( 1)ln(1+ z)
f ᄁᄁ(z) ( 1)e( 2)ln(1+z) ,
L LL
f (n) (z) ( 1)L( n + 1)e( n)ln(1+z) ,
L LL 令 z=0, 有
f (0) 1, f ᄁ(0) , f ᄁᄁ(0) ( 1), L,
可展开为幂级
数
f (z) cn (z z0 )n , n0
其中
cn
1 n!
f
(n)(z0 )
D
z z在0 < R 内可
R
z0 .
( n 0, 1, 2,L) . 系数 cn 按上述表示的幂级数称为
f (z)在 z0 点的 Taylor 级数 .
证明 使得 r < R,
对
z
+L
z <1 .
( ) 例 3.4 将 f (z)
1 1+ z2
2 展开为 z 的幂级数 .
根据例 3.3 ,
¥ ( ) 1
(1 + x )2
ᆬ
(1)n(n + 1)x n
n0
x <1 ,