复变函数:泰勒级数
- 格式:ppt
- 大小:350.00 KB
- 文档页数:18
实验一计算复变函数极限、微分、积分、留数、泰勒级数展开式【实验目的】1、熟悉Matlab运行环境,会在窗口操作和运行一些命令2、掌握求复变函数极限、微分、积分、留数以及泰勒级数命令3、熟练在计算机上操作复变函数极限、微分、积分、留数以及泰勒级数命令【实验仪器】一台电脑,要求安装matlab 软件【实验内容】MATLAB实现内容1、MATLAB求复变函数极限2、MATLAB求复变函数微分3、MATLAB求复变函数积分4、MATLAB求复变函数在孤立奇点的留数5、MATLAB求复变函数的泰勒级数展开式【实验步骤】1.打开matlab桌面和命令窗口,方式一,双击桌面快捷方式,方法二,程序里单击matlab图标,方式三,找到matlab文件夹,双击图标2.在matlab命令窗口输入命令3.运行,可以直接回车键,F5键【注意事项】1.命令的输入要细心认真,不能出错2.尤其是分号,逗号等符号的区别3. 注意数学上的运算和matlab中的不同,尤其是括号【实验操作内容】以下的例题都是在命令窗口输入源程序,然后运行,或回车就可以得到结果。
1、MATLAB 求复变函数极限用函数limit 求复变函数极限【Matlab 源程序】syms zf=;limit(f,z,z0) 返回极限结果例 1 求 在 的极限 解 【Matlab 源程序】syms zf=sin(z)/z;limit(f,z,0)ans=1limit(f,z,1+i)ans=1/2*sin(1)*cosh(1)-1/2*i*sin(1)*cosh(1)+1/2*i*cos(1)*sinh(1)+1/2*cos(1)*sinh(12、 MATLAB 求复变函数微分用函数diff 求复变函数极限【Matlab 源程序】zz z f sin )(=i z +=1,0f=();diff(f,z) 返回微分结果解 syms zf=exp(z)/((1+z)*(sin(z)));diff(f)ans =exp(z)/(1+z)/sin(z)-exp(z)/(1+z)^2/sin(z)-exp(z)/(1+z)/sin(z)^2*cos(z)3、 MATLAB 求复变函数积分用函数int 求解非闭合路径的积分.【Matlab 源程序】syms z a bf=int(f,z,a,b) 返回积分结果解 syms zx1=int(cosh(3*z),z,pi/6*i,0)x2=int((z-1)*exp(-z),z,0,i)结果为:例 3 求积分 π60i i 0x1=ch3zdz; x2(1)d z z e z -=-⎰⎰例2 设()()z f z z e z f z'+=求,sin 1)(x2 = -i/exp(i)4、 MATLAB 求复变函数在孤立奇点的留数(1)f(z)=p(z)/q(z);p(z)、q(z)都是按降幂排列的 多项式用函数residue 求f(z)=p(z)/q(z)在孤立奇点的留数【Matlab 源程序】[R,P,K]= residue (B,A) 返回留数,极点说明:向量B 为f(z)的分子系数;向量A 为f(z)的分母系数;向量R 为留数;向量P 为极点位置;向量k 为直接项:例4 求函数 在奇点处的留数. 解 [R,P,K]= residue([1,0,1],[1,1])结果为:R= 2P = -1K = 1 -15、MATLAB 求复变函数的泰勒级数展开式(1)用函数taylor 求f(z)泰勒级数展开式【Matlab 源程序】112++z zf=Taylor(f,z0) 返回f(z)在点z0泰勒级数展开式例5 求函数f=1/(z-b)在点z=a泰勒级数展开式前4项syms z a b;f=1/(z-b);taylor(f,z,a,4)ans =1/(a-b)-1/(a-b)^2*(z-a)+1/(a-b)^3*(z-a)^2-1/(a-b)^4*(z-a)^3(2)求二元函数z=f(x,y)在点(x0,y0)的泰勒级数展开式.【Matlab源程序】syms x y; f=();F=maple(‘mtaylor’,f,‘[x,y]’,m) 返回在(0,0)点处的泰勒级数展开式的前m项.F=maple(‘mtaylor’,f,‘[x=x0,y=y0]’,m) 返回在(x0,y0)点处的泰勒级数展开式的前m项.F=maple(‘mtaylor’,f,‘[x=a]’,m) 返回对单变量在x=a处的泰勒级数展开式的前m项.例6 求函数222==-z f x y x x e---(,)(2)x y xy在原点(0,0),以及(1,a)点处的Taylor展式.【Matlab源程序】syms x y;f=(x^2-2*x)*exp(-x^2-y^2-x*y);maple(‘mtaylor’,f,‘[x,y]’,4)在(0,0)点处的泰勒级数展开式:ans =-2*x+x^2+2*x^3+2*y*x^2+2*y^2*xmaple(‘mtaylor’,f,‘[x=1,y=a]’,2)在(1,a)点处的泰勒级数展开式:ans =-exp(-1-a-a^2)-exp(-1-a-a^2)*(-2-a)*(x-1)-exp(-1-a-a^2)*(-2*a-1)*(y-a)maple(‘mtaylor’,f,‘[x=a]’,2) 在x=a处泰勒级数展开式:ans =(a^2-2*a)*exp(-a^2-y^2-a*y)+((a^2-2*a)*exp(-a^2-y^2-a*y)*(-2*a-y)+(2*a-2)*exp(-a^2-y^2-a*y))*(x-a)。
复变函数复习资料复变函数是数学中的一个重要分支,它研究的是具有复数变量和复数值的函数。
复变函数的研究对于数学的发展和应用有着重要的意义。
在这篇文章中,我将为大家提供一些复变函数的复习资料,希望对大家的学习有所帮助。
一、复变函数的基本概念复变函数是指定义在复数域上的函数,它的自变量和因变量都是复数。
复变函数可以表示为f(z)=u(x,y)+iv(x,y),其中z=x+iy,u(x,y)和v(x,y)分别是实部和虚部函数。
复变函数的导数和积分也有相应的定义,与实数函数的导数和积分有一些不同之处。
二、复变函数的解析性与调和性复变函数的解析性是指函数在某个区域内处处可导,它是复变函数的重要性质。
根据柯西—黎曼方程,只有满足一定条件的函数才能是解析函数。
解析函数具有很多重要的性质,例如它的实部和虚部都是调和函数,它的导数也是解析函数。
三、复变函数的级数表示复变函数可以用级数表示,这是复变函数研究中常用的一种方法。
泰勒级数是复变函数的一种重要的级数表示形式,它可以将函数展开成一系列幂函数的和。
而洛朗级数则是将函数展开成一系列幂函数和互补幂函数的和,适用于具有奇点的函数。
四、复变函数的积分复变函数的积分是复分析中的重要内容,它与实数函数的积分有一些不同之处。
复变函数的积分可以沿着一条曲线进行,这就是复积分的概念。
复积分有一些重要的性质,例如柯西—黎曼积分定理和柯西公式等,它们在复分析中有着广泛的应用。
五、复变函数的应用复变函数在物理学、工程学和计算机科学等领域有着广泛的应用。
它可以用来描述电磁场、流体力学和信号处理等问题。
复变函数的解析性和级数表示等性质使得它在实际问题的求解中具有很大的优势。
总结:复变函数是数学中的一个重要分支,它研究的是具有复数变量和复数值的函数。
复变函数的解析性、级数表示和积分等性质是复变函数研究的核心内容。
复变函数在物理学、工程学和计算机科学等领域有着广泛的应用。
希望通过这些复习资料,能够帮助大家更好地理解和掌握复变函数的知识。
复变函数泰勒级数展开条件
泰勒级数是将函数在某一点附近展开成幂级数的一种方法,它在求解复变函数的性质中有着重要的应用。
但是,不是所有的函数都能够通过泰勒级数展开来表示,下面我们就来探讨一下复变函数泰勒级数展开的条件。
设f(z)在z0的某个邻域内解析,则f(z)在z0处的泰勒级数为 $f(z)=sum_{n=0}^{infty}
frac{f^{(n)}(z_0)}{n!}(z-z_0)^n$
其中$f^{(n)}(z_0)$为f(z)在z0处的n阶导数。
那么,f(z)能否通过泰勒级数展开来表示呢?
对于实变函数来说,泰勒级数展开的条件是函数在展开点处有无穷阶导数。
但对于复变函数来说,情况要更为复杂。
我们可以通过考虑柯西-黎曼方程来求解这个问题。
根据柯西-
黎曼方程,如果f(z)在某个区域内可解析,则它在该区域内满足以下条件:
$frac{partial u}{partial x}=frac{partial v}{partial y}$ $frac{partial u}{partial y}=-frac{partial v}{partial x}$ 其中,f(z)=u(x,y)+iv(x,y)。
根据这个条件,我们可以得到如下结论:
当f(z)在z0处可解析时,它在z0处的泰勒级数展开收敛于f(z)的充要条件是:
1. f(z)在z0的某个邻域内解析。
2. f(z)在z0处有无穷阶导数。
3. 泰勒级数在z0处收敛于f(z)。
4. f(z)在z0处的导数的幅值不超过某一常数。
这些条件是复杂函数泰勒级数展开的基本要求,只有同时满足这些条件,才能通过泰勒级数展开来表示复变函数。