第二篇逻辑代数基础2
- 格式:ppt
- 大小:414.00 KB
- 文档页数:36
第2章逻辑代数基础2.1 概述一、算术运算和逻辑运算在数字电路中,二进制数码不仅可以表示数值的大小,而且可以表示事物的状态,当两个二进制数码表示两个数值大小时,它们之间可进行数值运算,即算术运算。
当两个二进制数码表示不同逻辑状态时,它们之间的因果关系可进行逻辑运算。
算术运算与逻辑运算有本质的差别,下面重点介绍逻辑运算的各种规则。
二、几个基本概念1、逻辑状态表示法一种状态高电位有真是美生 1 0另一种状态低电位无假非丑死 0 12、两种逻辑体制1 高电位低电位0 低电位高电位正逻辑负逻辑3、高低电平的规定正逻辑负逻辑2.2 逻辑代数中的三种基本运算1、与逻辑(与运算)(逻辑乘)与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足时,事件(Y)才能发生。
表达式为:Y=ABC开关A,B串联控制灯泡Y2、或逻辑(或运算)或逻辑的定义:当决定事件(Y )发生的各种条件(A ,B ,C ,…)中,只要有一个或多个条件具备,事件(Y )就发生。
表达式为:Y=A+B+C+…开关A ,B 并联控制灯泡YA 、B 都断开,灯不亮。
A 断开、B 接通,灯亮。
A 接通、B 断开,灯亮。
A 、B 都接通,灯亮。
两个开关只要有一个接通,灯就会亮。
逻辑表达式为:Y=A+B功能表3(A )满足时,开关A 控制灯泡YA 断开,灯亮。
A 接通,灯灭。
功 能 表Y=A4((((1、代入定理:任何一个含有变量A A的位置都用同一个逻辑函数代替,则等式仍然成立。
这个规则称为代入定理。
例如,已知等式,用函数Y=AC代替等式中的A,根据代入规则,等式仍然成立,即有:(2)反演定理:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。
这个规则称为反演定理。