数字电路第二章 逻辑代数基础
- 格式:ppt
- 大小:5.07 MB
- 文档页数:151
《数字电子技术基础》读书笔记02 逻辑代数基础2.1从布尔代数到逻辑代数1849年英国数学家乔治布尔(George Boole)提出布尔代数,使用数学方法进行逻辑运算。
把布尔代数应用到二值逻辑电路中,即为逻辑代数。
2.2逻辑代数中的运算(想想初等代数中的加减乘除)2.2.1三种基本运算与(AND):逻辑乘,Y=A B或(OR):逻辑加,Y=A+B非(NOT):逻辑求反,Y=Aˊ简单逻辑运算(与、或、非)的两套图形符号,均为IEEE(国际电气与电子工程师协会)和IEC(国际电工协会)认定。
上排为国外教材和EDA软件中普遍使用的特定外形符号;下排为矩形符号。
2.2.2复合逻辑运算(都可以表示为与、或、非的组合)与非(NAND):先与后非,与的反运算,Y=(A B)ˊ或非(NOR):先或后非,非的反运算,Y=(A+B)ˊ与或非(AND-NOR):先与再或再非,Y=(A B+C D)ˊ异或(Exclusive OR):Y=A⊕B=A Bˊ+AˊB A和B不同,Y为1;A和B相同,Y为0。
当A与B相反时,A Bˊ和AˊB,肯定有一个结果为1,则Y为1。
同或(Exclusive NOR):Y=A⊙B=A B+AˊBˊA和B相同,Y为1;A和B不同,Y为0。
当A与B相同时,A B和AˊBˊ,肯定有一个结果为1,则Y为1。
同或与同或互为反运算,即两组运算,只要输入相同,一定结果相反。
A⊕B=(A⊙B)ˊA⊙B=(A⊕B)ˊ复合逻辑运算的图像符号和运算符号。
2.3逻辑代数的基本公式和常用公式2.3.1基本公式(见对偶定理)2.3.2若干常用公式(见逻辑函数化简方法之公式化简法)2.4逻辑代数的基本定理2.4.1代入定理(相当于初等代数中的换元)任何一个包含逻辑变量A的逻辑等式中,若以另外一个逻辑式代入式中所有A的位置,则等式依然成立。
2.4.2反演定理对于任意一个逻辑式Y,若将其中所有的""换成"+","+"换成"","0"换成"1","1"换成"0",原变量换成反变量,反变量换成原变量,则得到的结果就是Yˊ。
第2章逻辑代数基础2.1 概述一、算术运算和逻辑运算在数字电路中,二进制数码不仅可以表示数值的大小,而且可以表示事物的状态,当两个二进制数码表示两个数值大小时,它们之间可进行数值运算,即算术运算。
当两个二进制数码表示不同逻辑状态时,它们之间的因果关系可进行逻辑运算。
算术运算与逻辑运算有本质的差别,下面重点介绍逻辑运算的各种规则。
二、几个基本概念1、逻辑状态表示法一种状态高电位有真是美生 1 0另一种状态低电位无假非丑死 0 12、两种逻辑体制1 高电位低电位0 低电位高电位正逻辑负逻辑3、高低电平的规定正逻辑负逻辑2.2 逻辑代数中的三种基本运算1、与逻辑(与运算)(逻辑乘)与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足时,事件(Y)才能发生。
表达式为:Y=ABC开关A,B串联控制灯泡Y2、或逻辑(或运算)或逻辑的定义:当决定事件(Y )发生的各种条件(A ,B ,C ,…)中,只要有一个或多个条件具备,事件(Y )就发生。
表达式为:Y=A+B+C+…开关A ,B 并联控制灯泡YA 、B 都断开,灯不亮。
A 断开、B 接通,灯亮。
A 接通、B 断开,灯亮。
A 、B 都接通,灯亮。
两个开关只要有一个接通,灯就会亮。
逻辑表达式为:Y=A+B功能表3(A )满足时,开关A 控制灯泡YA 断开,灯亮。
A 接通,灯灭。
功 能 表Y=A4((((1、代入定理:任何一个含有变量A A的位置都用同一个逻辑函数代替,则等式仍然成立。
这个规则称为代入定理。
例如,已知等式,用函数Y=AC代替等式中的A,根据代入规则,等式仍然成立,即有:(2)反演定理:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。
这个规则称为反演定理。