Aqmjus2007年普通高等学校招生全国统一考试(重庆卷)数学(文科)试卷参考答案
- 格式:doc
- 大小:295.50 KB
- 文档页数:10
2007年普通高等学校招生全国统一考试数学(文科)(必修+选修I )注意事项:1 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页,总分150分考试时间120分钟.2 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。
3 选择题的每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
4 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。
5 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。
6 考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率 P n (k)=C kn P k (1-P)n -k一.选择题 1. cos3300 =(A) 21(B) -21(C) 23 (D) -232.设集合U={1,2,3,4},A={1,2},B={2,4},则C U (A ∪B)=(A) {2}(B){3}(C) {1,2,4} (D) {1,4}3.函数f(x)=|sinx|的一个单调递增区间是(A)(-4π,4π) (B) (4π,43π)(C) (π,23π) (D) (23π,2π)4.以下四个数中的最大者是 (A) (ln2)2(B) ln(ln2) (C) ln2(D) ln2 5.不等式>0的解集是(A)(-3,2)(B)(2,+∞)(C) (-∞,-3)∪(2,+∞)(D) (-∞,-2)∪(3,+∞)6.在∆ABC 中,已知D 是AB 边上一点,若=2D ,=CB CA λ+31,则λ= 2112球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径7.已知正三棱锥的侧棱长与底面边长的2倍,则侧棱与底面所成角的余弦值等于(A) (B)(C)2(D)8.已知曲线24x y =的一条切线的斜率为,则切点的横坐标为 (A)1(B) 2(C) 3(D) 4 9.把函数y =e x 的图象按向量a =(2,0)平移,得到y =f (x )的图象,则f (x )= (A) e x +2 (B) e x -2(C) e x -2 (D) e x +210.5位同学报名参加两上课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有(A)10种(B) 20种(C) 25种(D) 32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为(A) 13(B) (C) (D)12.设F 1,F 2分别是双曲线x 2-=1的左右焦点,若点P 在双曲线上,且12PF PF ⋅ =0,则12||PF PF + =(A)(B)2(C)(D) 2第II 卷(非选择题)本卷共10题,共90分。
2007年普通高等学校招生全国统一考试(全国卷I)数学(文科)试卷参考答案一、选择题1.D2.B3.A4.A5.C6.C7.D8.D9.B 10.D11.A12.C二、填空题13.0.2514.3()x x∈R15.4π316.1 3三、解答题17.解:(Ⅰ)由a=2b sinA,根据正弦定理得sinA=2sinBsinA,所以1 sin2B=,由△ABC为锐角三角形得π6B=。
(Ⅱ)根据余弦定理,得b2=a2+c2-2ac cosB=27+25-45=7所以,b=18.解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则A表示事件:“3位顾客中无人采用一次性付款”。
()P A=(1-0.6)2=0.064,P(A)=1-()P A=1-0.064=0.936。
(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”。
B0表示事件:“购买该商品的3位顾客中无人采用分期付款”。
B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”。
则B= B 0+ B 1。
P (B 0)=0.63=0.216,1213()0.60.40.432P B C =⨯⨯=。
P (B )=P (B 0+ B 1) =P (B 0)+P (B 1) =0.216+0.432 =0.64819.解法一:(1)作SO ⊥BC ,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD 。
因为SA=SB ,所以AO=BO ,又∠ABC=45°,故AOB △为等腰直角三角形,AO ⊥BO , 由三垂线定理,得SA ⊥BC 。
(Ⅱ)由(Ⅰ)知SA ⊥BC , 依题设AD BC ∥, 故SA ⊥AD , 由,SA =SD =又AO=ABsin45°,作DE ⊥BC ,垂足为E ,则DE ⊥平面SBC ,连结SE 。
∠ESD 为直线SD 与平面SBC 所成的角。
2007年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)在等比数列{a n }中,a 2=8,a 1=64,,则公比q 为 (A )2 (B )3 (C )4 (D )8(2)设全集U =|a 、b 、c 、d |,A =|a 、c |,B =|b |,则A ∩(CuB )= (A )∅ (B ){a } (C ){c } (D ){a ,c } (3)垂直于同一平面的两条直线 (A )平行 (B )垂直 (C )相交 (D )异面 (4)(2x -1)2展开式中x 2的系数为 (A )15 (B )60 (C )120 (D )240(5)“-1<x <1”是“x 2<1”的 (A )充分必要条件 (B )充分但不必要条件 (C )必要但不充分条件 (D )既不充分也不必要条件(6)下列各式中,值为23的是 (A )︒-︒15cos 15sin 2 (B )︒-︒15sin 15cos 22 (C )115sin 22-︒(D )︒+︒15cos 15sin 22(7)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A )41 (B )12079 (C )43 (D )2423 (8)若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为(A )⎪⎭⎫ ⎝⎛-72,73(B )⎪⎭⎫ ⎝⎛-214,72 (C )⎪⎭⎫ ⎝⎛-72,73(D )⎪⎭⎫ ⎝⎛-214,72(10)设P (3,1)为二次函数)1(2)(2≥+--x b ax ax x f 的图象与其反函数)(1x f f -=的图象的一个交点,则(A )25,21==b a (B )25,21-==b a(C )25,21=-=b a(D )25,21-=-=b a(11)设a a b +-113和是的等比中项,则a +3b 的最大值为 (A )1(B )2(C )3(D )4(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A )23(B )62(C )72(D )24二、填空题:本题共4小题,每小题4分,共16分,把答案填写在答题卡相应位置上。
2007年普通高等学校招生全国统一考试文科数学参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513 B.513- C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种C.96种D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02), B.(20)-, C.(02)-, D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A.15 B.25 C.35 D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )B.2C. D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( )A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭, D.ππ2⎛⎫⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13 D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.8二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .1A1D1C1BD BCA(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.(20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.(21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.S CDAB2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+ 01()()P B P B =+0.2160.432=+ 0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =11SD ==又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin11ED AO ESD SD SD ====∠ 所以,直线SD 与平面SBC 所成的角为arcsin 11.解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD . 因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO ==,又BC =0)A ,, (0B ,(0C -,. (001)S ,,,(21)SA =-,,, (0220)CB =,,,0SA CB =(Ⅱ)(2SD SA AD SA CB =+=-=(2OA =,OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC 的法向量,所以α与β互余. 22cos 11OA SD OA SDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为arcsin 11. 20.解:D Ay DBCASOE(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++,①3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯-- 12362n n -+=-.。
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)文科数学(必修+选修Ⅰ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.cos330=( )A .12B .12-CD .2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( )A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,, 6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )A B C D 8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( )A .e 2x+B .e 2x-C .2ex -D .2ex +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B C .12D 12.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF = ,则12PF PF +=( )AB .CD .第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式. 18.(本小题满分12分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,, 分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.22.(本小题满分12分) 已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
专题二十一课外文言文阅读【答案19.C(2分)20.B(2分)21.你敢和我在县尉的马前决一死战吗?(2分,意思符合即给分)22.弓箭手运用智谋,找到突破口,抓住机会,战胜小偷。
(2分,意思符合即给分)2.(2011·浙江省宁波市)【答案】19.⑴ C ⑵ D(2分,每小题1分)20.B(2分)21.大将军与钱凤商议叛逆的事情,忘记了王右军在帐中睡觉,担心他们商量的计谋被右军听到了,为此感到大惊。
(2分,意思符合即可)22. 机智(聪明)、沉着(冷静、镇定)(2分)3.(2011·浙江省湖州市)阅读下面文占文,完成20~22题。
(8分)【答案】20. (共2分)B2l. (共3分)既然已经处分过了,现在仍旧把他们看成强盗,这是断绝他们悔过自新的道路啊! 22(共3分)品行端正、拾金不昧、勤学苦读、宽容大度、执法公正、不畏强暴等【答案】23.⑴吃⑵出征24.每次煮饭,(陈遗)就把焦饭收存起来,带回家给母亲吃。
25.示例一:焦饭有情,孝心无价。
示例二:至孝的故事就像故乡的小河永远流淌在我的心中。
5.(2011·浙江省温州市)【答案】21.(4分)(1)善于、擅长 (2)停止 (3)完成、结束 (4)曾经22.(3分)有时遇到皇上特别生气,魏征神色一点不改变,皇上也就息怒了。
23.(3分)魏征看到皇上玩鹞,奏事时故意久久不停止,借此劝诫皇上不能玩物丧志(不要忘记国家大事)。
6.(2011·浙江省舟山、嘉兴市)【答案】21.(1)惊异(认为……奇异)(2)穿(3)估计22.C23.等到王晏被杀,内外亲属都因此很害怕。
24.不爱财(不慕富贵);有远见;孝顺。
7.(2011·四川省乐山市)阅读下面的文言文,完成6-8题。
【答案】6.C 7.A 8.C9.(1)译文:(我们)做子孙的,难道能这样做吗?恐怕是鬼魅作怪,求你再去试试看。
(译出“宁”、“更”得1分,整个句子通畅2分)(2)译文:这是我用来报答先帝并忠于陛下职责和分内的事情。
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )1A1D1C 1BDC A。
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔2007年普通高等学校招生全国统一考试(重庆卷)数学(文科)试卷参考答案一、选择题:每小题5分,满分60分。
1.A2.D3.A4.B5.A6.B7.C8.A9.D10.C11.B12.C二、填空题:每小题4分,满分16分。
13.314.915.28816.1+22三、解答题:满分74分 17.(本小题13分)解:(Ⅰ)设A 表示甲命中目标,B 表示乙命中目标,则A 、B 相互独立,且P (A )=54)(,43=B P ,从而甲命中但乙未命中目标的概率为 .20354143)()()(=⎪⎭⎫ ⎝⎛-⨯==B P A P AB P (Ⅱ)设A 1表示甲在两次射击中恰好命中k 次,B 1表示乙有两次射击中恰好命中1次。
依题意有.2,1,0,5154)(.2,1,0,4143)(221221=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛=--l C B P k C A P lll kk k由独立性知两人命中次数相等的概率为001122001122222212222322()()()()()()()()()11314134········4544554511349161930.4825.16254251625400P A B P A B P A B P A P B P A P B P A P B C C C C ++=+++⎛⎫⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯+⨯+⨯===18.(本小题13分)解:(Ⅰ)由Z),(2,202sin ∈-≠≠-≠⎪⎭⎫ ⎝⎛+k k x k x x πππππ即得故f (x )的定义域为.Z ,2|R ⎭⎬⎫⎩⎨⎧∈-≠∈k k x x ππ(Ⅱ)由已知条件得.54531cos 1sin 22-⎪⎭⎫⎝⎛-=-=a a从而)2sin()42cos(21)(ππ+-+=a a a f=aa a cos 4sin 2sin 4cos cos 21⎪⎭⎫ ⎝⎛++ππ =aaa a a a a cos cos sin 2cos 2cos sin 2cos 12+=++=.514)sin (cos 2=+a a19.(本小题12分)解法一:(Ⅰ)由直三棱柱的定义知B 1C 1⊥B 1D ,又因为∠ABC =90°,因此B 1C 1⊥A 1B 1,从而B 1C 1⊥平面A 1B 1D ,得B 1C 1⊥B 1E 。
又B 1E ⊥A 1D ,故B 1E 是异面直线B 1C 1与A 1D 的公垂线 由131BB BD =知,341=D B 在Rt △A 1B 1D 中,A 2D =.35341221211=⎪⎭⎫⎝⎛+=+D B B A又因.·21·211111111E B D A D B B A S D B A ==△ 故B 1E=.543534·1·1111==D A D B B A(Ⅱ)由(Ⅰ)知B 1C 1⊥平面A 1B 1D ,又BC ∥B 1C 1,故BC ⊥平面ABDE ,即BC 为四棱锥C -ABDE 的高。
从而所求四棱锥的体积V 为V =V C -ABDE =,BC 31⨯其中S 为四边形ABDE 的面积。
如答(19)图1,过E 作EF ⊥BD ,垂足为F 。
答(19)图1在Rt △B 1ED 中,ED =,15165434222121=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-E B D B又因S △B 1ED =,·21·2111EF D B DE E B = 故EF =.2516E ·11=D B D E B 因△A 1AE 的边A 1A 上的高,2592516111=-=-=EF B A h 故 S △A 1AE =.259259·2·21·211==h A A 又因为S △A 1BD =,3234·2·21·21111==D B B A 从而 S =S △A 1AE -S △A 1AE -S △A 1B1D =2-.757332259=- 所以.1507323·7573·31··31===BC S V解法二:(Ⅱ)如答(19)图2,以B 点为坐标原点O 建立空间直角坐标系O -xyz ,则答(19)图2A (0,1,0),A 1(0,1,2),B (0,0,0) B 1(0,0,2),C 1(23,0,2),D (0,0,32) 因此).34,1,0(),0,0,32(),0,1,0(),2,0,0(1121--==-==D A C B AB AA设E (23,y 0,z 0),则)2,,(001-=z y E B , 因此.,0·111111E B C B C B E B ⊥=从而又由题设B 1E ⊥A 1D ,故B 1E 是异面直线B 1C 1与A 1D 的公垂线。
下面求点E 的坐标。
因B 1E ⊥A 1D ,即从而,0·11=D A E B)1(,0)2(3400 =-+z y 又得∥且,D ),2,1,0(11001A E A z y E A --=)2(,3421100 -=-z y联立(1)、(2),解得25160=y ,25380=z ,即⎪⎭⎫ ⎝⎛=2538,2516,0E ,⎪⎭⎫ ⎝⎛-=2512,2516,01E B 。
所以5425122516||221=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=E B .(Ⅱ)由BC ⊥AB ,BC ⊥DB ,故BC ⊥面ABDE .即BC 为四棱锥C -ABDE 的高. 下面求四边形ABDE 的面积。
因为S ABCD =S ABE + S ADE ,32||,1||==BD AB 而S ABE =.25192538·1·21||210==z AB S BDE =.75162516·32·21||210==y BD 故S ABCD =.757375162519=+ 所以.1507323·7573·31||··31===BC S V ABDE CABCD20.(本小题12分)解:设长方体的宽为x (m ),则长为2x (m ),高为 ⎪⎭⎫ ⎝⎛-=-=230(m )35.441218<<x x xh .故长方体的体积为).230()(m 69)35.4(2)(3322<<x x x x x x V -=-=从而).1(18)35.4(1818)(2x x x x x x V -=--='令V ′(x )=0,解得x =0(舍去)或x =1,因此x =1. 当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值。
从而最大体积V =V ′(x )=9×12-6×13(m 3),此时长方体的长为2 m ,高为1.5 m. 答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3。
21.(本小题12分)(Ⅰ)解:设抛物线的标准方程为px y 22=,则82=p ,从而.4=p因此焦点)0,2(pF 的坐标为(2,0).又准线方程的一般式为2p x -=。
从而所求准线l 的方程为2-=x 。
答(21)图(Ⅱ)解法一:如图(21)图作AC ⊥l ,BD ⊥l ,垂足为C 、D ,则由抛物线的定义知 |F A |=|FC |,|FB |=|BD |记A 、B 的横坐标分别为x x x z ,则 |F A |=|AC |=4cos ||22cos ||2+=++=+a FA p p a FA p x x 解得aFA cos 14||-=, 类似地有a FB FB cos ||4||-=,解得aFB cos 14||+=。
记直线m 与AB 的交点为E ,则 aaa a FB FA FB FA FA AE FA FE 2sin cos 4cos 14cos 1421|)||(|212||||||||||||=⎪⎭⎫ ⎝⎛+--=-=+-=-= 所以aa FE FP 2sin 4cos ||||==。
故8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 。
解法二:设),(A A y x A ,),(B B y x B ,直线AB 的斜率为a k t an =,则直线方程为)2(-=x k y 。
将此式代入x y 82=,得04)2(42222=++=k x k x k ,故22)2(kk k x x B A +=+。
记直线m 与AB 的交点为),(E E y x E ,则22)2(22k k x x x B A E +=+=,4(2)E E y k x k=-=, 故直线m 的方程为⎪⎪⎭⎫⎝⎛+--=-224214k k x k k y 令y =0,得P 的横坐标44222++-kk x P 故ak k x FP P 222sin 4)1(42||=+=-=。
从而8sin sin 2·4)2cos 1(sin 42cos ||||222==-=-aa a aa FP FP 为定值。
22.(本小题12分) (I )解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2。
由假设a 1=S 1>1,因此a 1=2。
又由a n +1=S n +1- S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2) 得a n +1- a n -3=0或a n +1=-a n因a n >0,故a n +1=-a n 不成立,舍去。
因此a n +1- a n =3。
从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项为a n=3n -1。
(Ⅱ)证法一:由(21)1n bn a -=可解得2213log 1log 31n n nb a n ⎛⎫=+= ⎪-⎝⎭; 从而122363log 2531n n n T b b b n ⎛⎫=+++=⋅⋅⋅⎪-⎝⎭。
因此322363231log (3)log 25313n 2n n n T a n ⎛⎫+-+=⋅⋅⋅⋅ ⎪-+⎝⎭ 。