沪科版3.2一元一次方程的应用(1)
- 格式:doc
- 大小:60.00 KB
- 文档页数:6
3.2一元一次方程的应用教学目标 1.能用一元一次方程解决某些实际问题.2.通过列方程解决实际问题,培养学生应用数学的意识和能力,体会数学与实际生活的联系.教学重点用一元一次方程解决某些实际问题教学难点分析问题中的数量关系,并根据等量关系列出方程教学过程问题与情境师生活动设计意图情境引入活动一玩橡皮泥,将圆柱形橡皮泥捏成长方体。
教师拿出橡皮泥,找一名学生将它捏成长方体。
教师问:什么变了?什么没变?生:形状变了,体积没变。
用游戏的方式引入,容易提升学生的兴趣,吸引学生的注意力。
也为下面的例题理解作了铺垫,同时体会数学源于生活。
探究新知活动二如图,用直径为200mm的圆柱体钢,锻造一个长、宽、高分别为314mm、300mm和90mm的长方体毛坯,至少应截取多少毫米的圆柱体钢(计算时π取3.14)?(投影展示问题)学生齐读题.然后选一名学生解释题意.教师关注学生对题意的理解,是否确定题中的已知量和未知量,以及它们的关系(即等量关系式),并引导学生设未知数,将等量关系式转化成方程,最后板演完整过程.读题是为了学生养成审题的好习惯.引导学生分析问题,获得列方程解应用题的体验.教师板书示范,规范过程交流总结活动三列方程解应用题有哪些步骤?关键是什么?(投影展示问题)学生先独立思考,再交流.教师在学生们回答的基础上总结归纳,写出一般步骤.养成善于总结学习方法经验的好习惯.经历独立思考和交流活动,加深对知识经验的理解.结。
作业布置1.习题3.2第1、2题;2.调查活动:了解利率、国债、教育储蓄、商品打折、商品利润等含义(可以通过上网查找、查阅资料等方法)。
(投影展示问题)教师布置作业,学生课后完成一方面巩固所学知识,另一方面,调查活动为下节课的学习做准备。
板书设计3.2一元一次方程的应用解:设应截取的圆柱体钢长为x mm. 一般步骤:根据题意,得 (1)审(2)设(3)列(4)解(5)检(6)答90300314220014.32⨯⨯=⎪⎭⎫⎝⎛⨯x关键步骤:寻找问题中的相等关系解方程,得270=x答:应截取270mm长的圆柱体钢。
专题四一元一次方程应用题(1)和差倍分、形积变化、储蓄问题、工程问题、配套问题【知识清单】〈一元一次方程应用题〉解题步骤:审—设—列-解-答审:审清题意,分清题中的已知量和未知量,找出题中的数量关系;设:设未知数,用未知数表示有关的量;列:根据题中的相等关系,列出一元一次方程;解:解所列出的一元一次方程;答:写出答案(包括单位)<和差倍分问题>1。
等量关系:增长量=原有量×增长率,现有量=原有量+增长量2。
找等量关系的方法:抓住关键词语,如共、多、少、倍、几分之几,以原有量、现有量等之间的关系,推导出等量关系。
<形积变化>1。
常用体积公式:(1)圆柱体积=底面积×高(2)圆锥体积=1×底面积×高3(3)长方体体积=长×宽×高(4)正方形体积=棱长×棱长×棱长2. 形状发生了变化,而体积没有变化,此时等量关系为变化前后体积相等;3. 形状、面积发生了变化,而周长没有变,此时等量关系为变化前后周长相等;4。
形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为等量关系。
<储蓄问题〉1。
本金:储户存进银行的钱;利息:银行付给储户的酬金;本息和:本金和利息合在一起;利率:利息与本金的比2。
等量关系:本金×利率×期数=利息本金+利息=本息和月(年)利息=月(年)利率本金〈配套问题>1. 等量关系:加工(或生产)的各种零配件的总数量比等于一套组合件中各种零配件的数量比.2。
配套关系的特点:出现“几个A配几个B”或“某个部件由几个A和几个B组成"3。
审题时,要注意对题目中“恰好"“最多”等关键词的理解〈工程问题>1。
公式:工作量=工作效率×工作时间合作的效率=各单独做的效率和2。
工程问题中,当工作总量未给出具体数量时,常把总工作量看作“1"3. 等量关系:各部分的工作量之和等于总工作量题型一:和差倍分问题例1 儿子今年13岁,父亲今年40岁,请问哪一年父亲的年龄是儿子的4倍?例2 一个两位数,个位上的数是十位上的数的 3 倍,如果把十位与个位上的数对调,那么所得的两位数比原来的两位数大 36,求原来的两位数。
3.2 一元一次方程的应用1.列一元一次方程解应用题列方程解应用题,就是把生活实践中的实际问题,抽象成数学问题,通过列方程来解答,使实际问题得以解决.列一元一次方程解应用题的步骤是:(1)审题设元:弄清题意和题目中的数量关系,用字母(如x,y)表示问题中的未知数;(2)找等量关系:分析题意,找出相等关系(可借助于示意图、表格等);(3)列方程:根据相等关系,列出需要的代数式,并列出方程;(4)解方程:解这个方程,求出未知数的值;(5)检验作答:检查所得的值是否正确和符合实际情形,并写出答案(包括单位名称).解技巧利用一元一次方程巧解应用题读懂题目,搜集整理相关信息,弄清题目中的已知数和未知数,是用一元一次方程正确解决相关应用问题的前提.根据不同的实际问题,确定恰当的等量关系是解决较复杂问题的关键.对比较贴近生活实际的应用问题,其数量关系不仅多,而且比较隐蔽,因此,对这类应用问题要善于挖掘多种数量关系之间的内在联系.设未知数一般是问什么就直接设什么.如果直接设未知数有困难,就间接设未知数;设未知数时,必须写清楚未知数的单位,并且要保证前后单位统一.【例1】甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?分析:抽调后甲队人数=甲队原有人数+调入人数,抽调后乙队人数=乙队原有人数-调出人数.在本题中抓住“2倍”便可发现相等关系:抽调后甲队人数=抽调后乙队人数×2.解:设需从乙队抽调x人到甲队.根据题意列方程,得32+x=2(28-x).解这个方程,得x=8.答:需从乙队抽调8人到甲队.2.形积问题(1)常用的体积公式长方体的体积=长×宽×高;正方体的体积=棱长×棱长×棱长;圆柱体的体积=底面积×高=πr 2h ;圆锥体的体积=13×底面积×高=13πr 2h. (2)常用的面积、周长公式长方形的面积=长×宽;长方形的周长=2×(长+宽);正方形的面积=边长×边长;正方形的周长=边长×4;三角形的面积=12×底×高; 平行四边形的面积=底×高;梯形的面积=12×(上底+下底)×高; 圆的面积=πr 2,圆的周长=2πr.(3)形积变化中的等量关系形积变化问题中,图形的形状和体积会发生变化,但应用题中一定有相等关系.分以下几种情况:①形状发生了变化,体积不变.其相等关系是:变化前图形的体积=变化后图形的体积. ②形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.③形状、体积不同,面积相同.根据题意找出面积之间的关系,即为相等关系.(4)应用题中相等关系的找法①认真分析题意,找出已知数和未知数;②抓住题目中反映相等关系的关键词.如:相等、等于、多、少……;③掌握基本问题的常用关系式.如路程=速度×时间,总价=单价×数量……;④通过画图、列表等方法找相等关系.【例2-1】 墙上钉着一根彩绳围成的梯形形状的饰物,如图中实线所示.小明将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图中虚线所示.小明所钉长方形的长、宽各为多少厘米?分析:饰物形状变化前后有两个不变的量,一个是周长,另一个是变化前梯形的上底和变化后长方形的宽.根据题意可设长方形的长为x ,则长方形的周长为2x +2×10,梯形的周长为10+10+10+6+10+6=52.则2x +20=52,从而解得x =16.解:设小明所钉长方形的长为x ,根据题意,得2x +2×10=10+10+6+10+6+10,整理得2x +20=52,解得x =16.由于饰物变化前后长度为10的边没有变化,所以长方形的一边长为10厘米.答:长方形的长为16厘米,宽为10厘米.【例2-2】 用一个底面半径是40毫米,高为120毫米的圆柱形玻璃杯向一个底面半径为100毫米的大圆柱形玻璃杯中倒水,倒了满满10杯水后,则大玻璃杯的液面离杯口还有10毫米,则大玻璃杯的高度是多少?分析:根据“小圆柱体的体积×10=大圆柱形玻璃杯中水的体积”列方程求解. 解:设大玻璃杯的高度是x 毫米,根据题意,得π·1002(x -10)=π·402×120×10.解这个方程,得x =202.答:大玻璃杯的高为202毫米.【例2-3】 内直径为20 cm 的圆柱形水桶中的全部水倒入一个长、宽、高分别为30 cm,20 cm,80 cm 的长方形铁盒中,正好倒满,求圆柱形水桶的高.(π取3.14)分析:由于水的体积不变,可知两个容器的容积相同.所以本题的相等关系是:圆柱的体积=长方体的体积.解:设圆柱形水桶高x cm.根据题意,得π⎝ ⎛⎭⎪⎫2022·x =30×20×80.解得x =480π≈152.87. 答:圆柱形水桶高约为152.87 cm.3.行程问题(1)相遇问题相遇问题是比较重要的行程问题,其特点是相向而行.相遇问题中的相等关系:①甲、乙的速度和×相遇时间=总路程;②甲行的路程+乙行的路程=总路程,即s甲+s乙=s总.(2)追及问题追及问题的特点是同向而行.追及问题有两类:①同时不同地,如下图:等量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距离,即s乙-s甲=s差.②同地不同时,如下图:等量关系:甲的行程=乙的行程,即s甲=s乙.解技巧巧解追及问题追及问题常从以下几个方面寻找等量关系列方程:①从时间考虑,若同时出发,追上时两人所用时间相等;②从路程考虑,直线运动,两人所走距离之差等于需要赶上的距离;③从速度考虑,两人的相对速度等于他们的速度的差.(3)环形跑道问题一般情况下,在环形跑道上,两人同时出发,第n次相遇有两种情况:相向而行,路程和等于n圈长;同向而行,路程差等于n圈长.(4)航行问题航行问题主要包括轮船航行和飞机航行,对于航行问题,需注意以下几点:a.顺水(风)速度=静水(风)速度+水流(风)速度;b.逆水(风)速度=静水(风)速度-水流(风)速度;c.顺水(风)速度-逆水(风)速度=2倍水(风)速度;d.基本关系式:往路程=返路程.【例3-1】 A,B两地相距112千米,甲、乙两人驾车同时从A,B两地相向而行,甲比乙每小时多行4千米,经过两小时后两人相遇,求甲、乙两人每小时各行多少千米?分析:本题属于相遇问题,其中的等量关系有:甲速度=乙速度+4,甲行程+乙行程=A,B两地距离(112千米).解:设乙每小时行x千米,则甲每小时行(x+4)千米.根据题意,得2(x+4)+2x=112.解这个方程,得x=26.当x=26时,x+4=30.答:甲每小时行30千米,乙每小时行26千米.【例3-2】 李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7.5米,同时起跑,问王亮跑多少米可以追上李成?分析:本题是追及问题,属于同时不同地的类型,可根据“王亮跑的路程-李成跑的路程=10”,列方程求解.解:设x 秒时王亮追上李成,根据题意,得7.5x -7x =10,解得x =20.所以7.5×20=150(米).答:王亮跑150米可追上李成.【例3-3】 甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?分析:本题是追及问题中同地不同时类型.其相等关系:甲行程=乙行程.解:设x 小时后乙车追上甲车,根据题意,得48⎝ ⎛⎭⎪⎫x +2560=72x . 解这个方程,得x =56. 答:56小时后,乙车追上甲车. 【例3-4】 甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400米,乙每秒跑6米,甲每秒跑8米.(1)如果甲、乙两人在跑道上相距8米处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8米处同时同向出发,那么经过多少秒两人首次相遇?分析:(1)属于相遇问题,相等关系:甲的行程+乙的行程=环形跑道一圈的长-8米;(2)属于追及问题,相等关系:乙走的路程=甲走的路程+两地间的距离.解:(1)设经过x 秒,甲、乙两人首次相遇.根据题意得8x +6x =400-8,解这个方程,得x =28.答:经过28秒两人首次相遇.(2)设经过x 秒,甲、乙两人首次相遇,根据题意得8x =6x +400-8,解这个方程,得x =196.答:经过196秒两个人首次相遇.4.储蓄问题顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息,存入银行的时间叫期数,每个期数内的利息与本金的比叫利率,根据利率的定义,每个期数内,利息本金=利率,利息=本金×利率×期数,本金与利息的和叫本息和,本息和=本金+利息.月利率一般用千分之几表示.【例4】 王老师在银行里用定期一年整存整取的方式储蓄人民币6 000元,到期得到本息和6 120元,请你求出这笔储蓄的月利率(不计复利,即每月利息不重计息).分析:根据本息和与利息的关系,有:利息=本金×利率×期数,本息和=本金+利息. 解:设这笔储蓄的月利率是x ,那么存了一年是12个月,根据题意,得6 000+6 000×12×x =6 120,解得x ≈0.001 667=1.667‰.答:这笔储蓄的月利率是1.667‰.5.商品销售问题(1)与打折有关的概念①进价:也叫成本价,是指购进商品的价格.②标价:也称原价,是指在销售商品时标出的价格.③售价:消费者最终取得商品的价格,或说是商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词表示所得利润.⑤利润率:利润占进价的百分比.⑥打折:出售商品时,将标价乘以十分之几或百分之几十卖出,即为打几折卖出. 打几折,就是百分之几十或十分之几.如打8折就是以原价的80%卖出,即为原价×80%或原价×0.8.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 【例5-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%,解得x =7.答:售货员最低可以打7折出售此商品.【例5-2】某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180元,李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过部分应付款=实际付款.解:因为200×0.9=180>212,所以购书超过了200元.设应该付x元,根据题意,得200×0.9+(x-200)×0.8=212.解方程,得x=240.答:若没有任何优惠,则李明应该付240元.【例5-3】一件上衣,按成本加5成(即50%)作为售价,后因清仓处理,按售价的8折出售,降价后每件卖72元,问这批上衣每件成本是多少元?降价后每件是赔还是赚,赔或赚多少元?解:设一件上衣的成本为x元,根据题意,得(1+50%)x×80%=72,解得x=60.所以72-x=72-60=12.答:一件上衣的成本为50元,降价后每件仍可赚12元.6.几种复杂问题的应用含有两个或两个以上的等量关系的应用题主要有以下几种:(1)按比例分配问题按比例分配问题是指已知两个或几个未知量的比,分别求几个未知数的问题.比例分配问题中的相等关系是:不同成分的数量之和=全部数量.(2)工程问题工程问题中的相等关系是:工作量=工作效率×工作时间;甲的工作效率+乙的工作效率=合作的工作效率;甲完成的工作量+乙完成的工作量=完成的总工作量.(3)资源调配问题资源调配问题一般采取列表法分析数量关系,利用表格,可以清晰地表达出各个数量之间的关系.其中的相等关系要根据题目提供的等量关系确定.(4)配套问题配套问题是一种常见的应用题类型,在生活实践中有着广泛的应用,其量与量间的关系类似于工程问题,其特殊的等量关系是各种零件的数量比等于一套组合件中各种零配件的数量比,其解法一般分直接解法和间接解法两种.【例6-1】某会议厅主席台上方有一个长12.8 m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少.分析:根据比例关系,设边空、字宽、字距分别为9x,6x,2x,由等量关系“横框长度=边空长度+字宽长度+字距长度”列出一元一次方程即可求解.解:设边空、字宽、字距分别为9x cm,6x cm,2x cm,则9x×2+6x×18+(18-1)×2x=1 280,解得x=8.所以边空为72 cm,字宽为48 cm,字距为16 cm.【例6-2】学校派七年级一、二班去植树,一班40人,二班52人,现从三班调来43人支援一班和二班,使二班的人数是一班的2倍,问应调入一班和二班各多少人?分析:可设到一班x人,借助于表格分析题中的数量关系如下:解:-x)=(40+x)×2,解得x=5.所以43-x=38.答:应调到一班5人,调到二班38人.。
沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1一. 教材分析《3.2 一元一次方程的应用》是沪科版数学七年级上册的一个重要章节。
本章主要通过实际问题引导学生学习一元一次方程的解法和应用。
教材内容主要包括:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
本节课的重点是一元一次方程的应用,难点是如何将实际问题转化为方程。
二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。
但是,对于如何将实际问题转化为方程,以及如何运用方程解决实际问题,学生可能还比较陌生。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解方程在实际问题中的应用。
三. 教学目标1.理解一元一次方程的定义,掌握一元一次方程的解法。
2.能够将实际问题转化为方程,运用方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:一元一次方程的应用。
2.难点:如何将实际问题转化为方程。
五. 教学方法1.讲授法:教师通过讲解,引导学生理解一元一次方程的定义和解法。
2.案例分析法:教师通过具体的例子,引导学生将实际问题转化为方程。
3.练习法:学生通过做练习题,巩固所学知识。
六. 教学准备1.教材:沪科版数学七年级上册。
2.教案:详细的教学设计。
3.课件:用于辅助教学的课件。
4.练习题:用于巩固所学知识的练习题。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考如何将问题转化为方程。
例如:小明买了一本书,价格为x元,他给了售货员10元,找回的钱为5元,请计算这本书的价格。
2.呈现(10分钟)教师引导学生分析问题,将问题转化为方程。
例如:小明买书的问题可以转化为方程 x + 5 = 10。
3.操练(15分钟)教师给出几个类似的实际问题,让学生独立解决。
例如:小红买了一支笔,价格为y元,她给了售货员15元,找回的钱为10元,请计算这支笔的价格。
4.巩固(10分钟)教师引导学生总结解题规律,巩固所学知识。
§3.4一元一次方程的应用(第一课时)
合肥市永和学校蒋南迎
一、教材分析
本节通过几个现实情境,使学生学会用一元一次方程解决实际问题。
这样,一方面在列方程的过程中,强化了方程的模型思想,培养了用一元一次方程解决实际问题的意识和分析问题、解决问题的能力;另一方面,在解决实际问题的过程中,进一步提高解一元一次方程的技能,并为后面学习二元一次方程组及其应用奠定基础。
二、教学目标
1、能用一元一次方程解决某些简单的实际问题;
2、培养学生观察能力,提高他们分析问题和解决问题的意识;
3、通过列方程解决简单的实际问题,培养学生应用数学的能力,初步体会数学与实际生活的联系。
三、教学重难点
1、重点:用一元一次方程解决简单的实际问题;
2、难点:如何分析问题中的数量关系,并根据等量关系列出方程。
四、教学过程
(一)情境呈现
播放视频(王老吉广告),并展示王老吉三种不同的包装容器。
1、问题1: 王林同学周末和家人一起吃火锅,喝易拉罐装王老吉时发现上面标有310ml,他就想看看罐里是不是真的有310ml饮料,于是将一罐标有310ml的王老吉饮料全部倒入半径为5cm的圆柱体
玻璃杯中,请问玻璃杯中饮料的高度为多少时,易拉罐中确实有310ml 的饮料。
(计算时π取整数3.1 ,容器的厚度及倾倒时的洒落忽略不计)
2、问题2:把此饮料再倒进长6cm,宽4cm,高10cm的纸盒包装里,能装下吗?若不能,在纸盒包装的宽和高不变的情况下,纸盒包装的长为多少时正好装下?(容器的厚度及倾倒时的洒落忽略不计)
(引导学生分析问题中的已知量和未知量,根据体积不变,列一元一次方程解决问题)
利用一元一次方程能不能解决其他的实际问题呢?
(二)探究新知
1、校园中的环行跑道长400米。
甲同学跑的平均速度为7米/秒,乙同学跑的平均速度为6米/秒。
若甲、乙两人同时同地相向而行出发,问多长时间后他们第一次相遇?
(路程=平均速度×时间)
2、2012年10月16日上午合肥至北京南高铁的首发列车G262在合肥站发车,1000km的行程约4h到达,真正实现了合肥至北京一天往返。
已知列车G262行驶的平均速度比普通火车快约150km/h,那么普通火车的平均速度是多少?
(根据以上几例,你能归纳出一元一次方程解应用题的一般步骤吗?)
(三)归纳总结
(教师引导学生归纳后,总结)
1、审题(要弄清问题中有哪些已知量,哪些未知量,各量之间的关系如何,其中有哪些等量关系)
2、设未知数;
3、列方程:(选择能包含已知条件和未知量之间关系的等量关系列出方程);
4、解方程;
5、检验并写出答案。
(四)灵活运用
1、用直径为4cm的圆柱体橡皮泥,捏一个长、宽、高分别为8cm、2cm、3.14cm的长方体,应截取多长的橡皮泥?(π取3.14)
2、校园中的环行跑道长400米。
甲同学跑的平均速度为7米/秒,乙同学跑的平均速度为6米/秒。
若甲、乙两人同时同地同向而行出发,问多长时间后他们第一次相遇?
(五)课后探究
一只小狗每小时跑5km,它同甲、乙一起出发,碰到乙时它就返身往甲这边跑,碰到甲时它就返身往乙这边跑,问小狗在甲、乙相遇时一共跑了多少千米?
3km/h 2km/h
(六)课堂小结
1、这节课我们学到了什么?
2、你是怎样用一元一次方程解决实际问题的?
学生总结后老师总结如下:
1、用一元一次方程解决实际问题:等积问题和行程问题(路程=平均速度×时间)
2、用一元一次方程解决实际问题的步骤:审、设、列、解、验(答)(七)作业布置
1、课本P94练习题T1、T
2、T3
2、课后探究
(八)板书设计
注:根据课堂实际情况添加此题
3、甲汽车以15m/s的速度去追它正前方100m的乙汽车。
经过20s 正好追上,求乙汽车的速度?
根据题意,列一元一次方程解决下列实际问题:
1、用直径为4cm的圆柱体橡皮泥,捏一个长、宽、高分别为8cm、2cm、3.14cm的长方体,应截取多长的橡皮泥?(π取3.14)
2、校园中的环行跑道长400米。
甲同学跑的平均速度为7米/秒,乙同学跑的平均速度为6米/秒。
若甲、乙两人同时同地同向而行出发,问多少分钟后他们第一次相遇?
1、一艘轮船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h。
已知水流的速度是3km/h,求轮船在静水中的平均速度以及两码头之间的距离?
顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度
2、先列方程解应用题,再根据所列方程,编一道行程问题的应用题:
甲、乙两人加工284个零件,甲做48个每小时,乙做70个每小时;甲先做1小时后,乙再与甲合作,问乙做了几个小时后完成任务?。