易拉罐的形状和尺寸的最优设计
- 格式:docx
- 大小:118.10 KB
- 文档页数:10
2006-全国数学建模C题易拉罐形状和尺寸的最优设计.易拉罐形状和尺寸的最优设计摘要本题在建立数学模型的基础上,用LINGO实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。
结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。
在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。
针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比:1:2R H=(H为圆柱的高,R为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高:1:6R H=时,表面积最小。
一般情况下,当顶盖、底部厚度是罐身的b倍时,最优设计方案为:2=。
R H b 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO软件对模型进行分析,得出当24+==(h为H h R r圆台的高,r为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO对其进行分析,得出 4.5r→时H h R+≈,0材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。
原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。
在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。
通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。
进一步对模型二、四进行比较,发现模型四的结论更优。
为此,将模型四结论中的底部也设计为圆锥。
此时,材料最省。
但是,两端都设计为圆锥时,无法使用。
因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。
易拉罐形状和尺寸的最优设计摘要易拉罐十分流行,对易拉罐的优化设计有重要的经济意义与实际意义。
对问题一,我们通过实际测量得出(355ml )易拉罐各部分的数据。
对问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)vs r rd r rππ=+,由微积分方法求最优解,结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型:2min (,)(,)0.00s r h g r h r h v s t r h π⎧=-=⎪>⎨⎪>⎩用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。
对问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计。
模型圆台面积2()(s r r R r ππ=++用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。
结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。
对问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。
对这种比例的正圆柱体易拉罐作了实际优化分析。
另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。
对问题五,写出了我们对数学建模的体会文章。
关键词:易拉罐 最优设计 数学建模一、问题的提出每年我国易拉罐的使用量是很大的,(近年我国每年用易拉罐6070亿只),如果每个易拉罐在形状和尺寸作优化设计,节约一点用料,则总的节约就很大了。
为此提出下述问题:1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各部分的直径、高度、厚度等,并把数据列表加以说明。
2.设易拉罐是一个正圆柱体。
什么是它的最优设计?其结果是否可以合理地说明所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。
易拉罐的形状和尺寸的最优设计摘要本文讨论了以假设易拉罐的上、下底面及侧面所用材料相同为前提,在相同体积情况下,哪种形状的易拉罐所用材料最少。
将易拉罐设计成正圆柱体,分析并建立了非线性规划模型,用连续函数求极值的方法,获得结果;探讨了易拉罐形状为由上面圆台和下面正圆柱体组成的最优化设计,建立了非线性规划模型,分别用隐函数求导数和拉格朗日乘子两种方法求解;最后采用相同体积时球体表面积最小这一数学结论,以及便于运输和放置的实际状况,我们把易拉罐形状设计为用两个平面截去顶部后的圆台,建立非线性规划模型。
也尝试用旋转曲线建立球体最优设计。
通过计算对比结果,第二种形状(目前使用易拉罐形状)是最优的。
本文还对模型进行了推广。
关键词: 非线性规划拉格朗日定理隐函数一.问题重述日常生活中,我们稍加留意就会发现很多的饮料罐(即易拉罐)形状和尺寸几乎都一样。
看来,这并非偶然,这应该是某种意义下的最优设计。
当然,单个易拉罐的生产,对资源充分利用,节约生产成本并不明显。
但如果生产的数量非常多的话,那么节约的钱就很可观了。
为什么不同工厂的易拉罐采用统一规格?从数学的角度怎样给予合理的解释?易拉罐的圆柱底面圆的直径与圆柱的高的比是多少才为最优?和现实中的实际情况有什么差异,为什么?假设易拉罐的上、下底面及侧面所用的材料相同,则在相同的体积情况下,哪种形状和尺寸的饮料罐所用的材料最少则成本就越低,也就最合理。
需要研究的内容:(1) 对现实生活中易拉罐(可口可乐罐为例)的准确测量,包括罐体形状,尺寸等。
(2) 当易拉罐为一正圆柱体时,讨论它的最优设计方案,通过对半径和高的比值来说明和验证所测量的相关数据。
(3)当易拉罐有上面圆台和下面正圆柱体组成,如下图:讨论这种形状的最优方案,并与实际测量数据相分析比较。
(4) 查阅资料,发挥想象力,设计出易拉罐形状和尺寸最优的方案。
进行拉罐设计成本最小问题的数学建模及求解过程。
最后,总结做本题以及以前学习和实践数学建模的亲身体验,写一篇短文,阐述什么是数学建模、它的关键步骤,以及难点。
摘要本文针对常见的易拉罐(355毫升可口可乐)进行测量,在合理的假设下通过不断的优化建立最优易拉罐尺寸和外形的设计模型,并进行了相当程度的创新设计。
针对问题一,我们分别通过合理的方法测量计算得易拉罐的顶部,中间,和底部的直径,高度,顶部高度,以及罐侧,罐底,罐顶的厚度,并提供相应的测量方法。
针对问题二,我们本着由简单到复杂的演绎过程,逐步放宽条件和假设,依次得到相应的最优化模型。
首先考虑了最简单情况下的最优化问题(即假设易拉罐为正圆柱,罐顶罐底侧面材料相同且厚度一致,制作过程中没有材料的浪费)其次我们考虑了制作易拉罐铁皮切料过程中的问题,并在两种切料方法进行讨论。
再次,我们加入了制作费用,即各部分接缝的损失。
最后我们加入了罐底,罐顶,侧面,厚度不一致的考虑,得到了较为接近现实情况的优化模型。
针对问题三,即易拉罐是一个圆台加圆柱的组合情况,这与我们测得的实际情况较为相似,我进行了罐体抗压力, 罐内气体压强, 人体嘴形舒适度等方面考虑,肯定了圆台存在的意义.在体积不变的约束下建立了规划模型. 并通过MATLAB求解.针对问题四,我们综合了前面的优化过程,并在传统易拉罐模型的基础上对新型模型进行了进一步的优化创新, 虽然在体积一样的情况下圆柱是表面积最小的(证明见附录1),但从外形美观,原材料的节省,运输成本的节约方面看平面的柱体占有一定的优势,结合了以上两面的综合考虑,我们设计出了带弧度的底部上凸的正三棱体,并分别从形状和尺寸的确立、设计过程依据、总体成本估算、特殊形状成因、广告效应、材质选择以及运输成方面分别阐述了该模型超越传统模型的优势,以及新型模型本身的合理性与科学性。
通过运用弧形设计、弯曲表面效应、线性规划等的原理,对模型进行了的优化。
同时,针对新型模型本身我们不仅仅立足于科学的规划,而且着重考虑了人们的偏好以及舒适度,以使得易拉罐的新型更具有现实意义。
最后我们提出的一种有待进一步验证的蛋状易拉罐的方案,将易拉罐的设计意义和目的赋予了更加鲜明的民族色彩和文化内涵。
易拉罐形状和尺寸的最优设计生活中像可口可乐、青岛啤酒这类饮料量约355毫升的易拉罐拥有相同的形状和尺寸,考虑到其销量可能大至几亿,甚至几十亿,那么我们认为指定形状后的最优设计就是最省料的设计。
本文建立模型解决圆柱形及圆柱圆台组合形易拉罐的最优设计问题,并在节省材料和人性化的基础之上设计出一种新的易拉罐.1 对实际易拉罐的测量与统计取一个生活中常见的355毫升的易拉罐,采用15次测量求平均值的方法对真值进行估计,并根据样本数据取置信度为0.85,得到均值和置信区间如表1所示.表1 所测易拉罐的尺寸大小 /mm总高H 圆柱高h 圆柱外 直径D 圆台内 直径d 圆台 高l 壁厚b 下底 厚度c 上盖 厚度a 均值和置信区间123.38 ±0.034102.54 ±0.02966.00 ±0.03756.36 ±0.03512.80 ±0.0360.13 ±0.0130.13 ±0.0150.30 ±0.0142 圆柱形易拉罐的最优设计——模型一2.1模型建立:此时易拉罐的形状见图1,易拉罐的体积是一定的,现将易拉罐分成侧面、上底面和下底面三部分(下底面与侧壁同厚、上顶面厚度记为b β),分别计算三部分的用料体积并得出总体积为(注意到:b R b h ,,由此可得到用料的近似值): 222222322(,)()[(1)]22(1)(1)(1)2(1)V R h V V V R b R h b b R b R R h b R bh bbR bR h b R bππβπππππππππ⎡⎤=++= +-+++β⎣⎦+ =++β+++β++β≈++β顶柱侧底又因为易拉罐的容积V 一定,即2R h V π=,所以建立以下条件极值优化模型[1]: 目0, 0m in (,)R h V R h >>约束条件: 2R h V π=图1 圆柱形易拉罐 2.2 模型求解:将2Vh Rπ=代入(,)V R h 得()22()2(1)VV R h R Rb R bRπππ=++β,,令32222[(1)](1)0dVVbb R R V dR R Rππ⎡⎤=+β-=+β-=⎣⎦,解R =因此,2(1(1)Vh Rπ==+β=+β,由于220d V dR>,故所得唯一驻点使目标函数取得最小值[2].综上所述,当355毫升易拉罐简化为圆柱体时,从用料最省的角度进行易拉罐尺寸的最优化设计,其设计方案为:32.48R m m =,107.18h m m =,此时使用的原材料最少,为34262.83mm .对比实测数据易知,将易拉罐简化为圆柱形进行最优设计所得尺寸与实测数据有一定的差异.3 圆台与圆柱组合形易拉罐的最优设计——模型二及模型三3.1模型二的建立:此时易拉罐的中心纵面图见图2,现将易拉罐分成圆柱部分的侧面、圆台部分的侧面、上底面和下底面四部分,分别计算三部分的用料体积并得出总体积为(注意到:b R b h ,,由此可得到用料的近似值): 222222222223222(,,,)[()][(1)]11()()()()()3322()2V R r h l V V V V R b R h b b r b R l R b r b R b r b l R r R r R b r b b h b R bh R b bl R r b R b r b R bh lR b lrbππββππππππβπππππππβπππ=+++=+-++++⎡⎤+++++++-++⎣⎦=++++++++≈++++顶柱侧底台又因为易拉罐的容积V 一定,即()22213R h lRR r rV ππ+++=目标函数:0, 0,0,0min (,,,)R h r l V R r h l >>>> 约束条件:2221()3R h l R R r r V ππ+++=图2 圆台形纵面图3.2模型二求解:将()22213V l R r Rr h Rππ-++=代入(,,,)V R r h l 得到:()()222222(),,,,,()3bV bl RrR r VR r l h R r l Rb r b lb R r RRπππβπ++=++-++对l 求偏导,得:222()()()(2)33V b R r Rr b b R r R r R r lRRπππ∂++=-++=-+∂,因为()()203bR r R r Rπ-+>,所以函数()(,,,,,)V R r l h R r l 是关于l 的增函数,那么,l 越大,所用的材料就越多,因此0l =时,即为圆柱形易拉罐时用料最省.3.3模型二的改进及其求解-模型三结合实际生活中常见的易拉罐,它们的顶部确实加上一个圆台,然而通过这一问的解答, 圆台与圆柱相结合是达不到用材料最少的,我们便考虑到这样的设计涉及到易拉罐的坚固性、可使用性及美观性.利用物理知识可以知道,圆柱上加上一定斜率的圆台后能使罐顶达到一定的机械强度;可使用性指罐顶的半径必须达到一定长才能使人易于扳开拉环;美观程度可以用直径与高的比与黄金比例间的差距来衡量.根据这三个条件将该模型归结为一个有约束条件的非线性最优化问题.根据实际测量值,现假设圆台的夹角余切在0.3到0.4之间 ,[]0.56,0.70∈直径高(黄金比例为0.618),圆台的顶盖半径大于24m m .则建立非线性规划模型为:目标函数:0, 0,0,0min (,,,)R h r l V R r h l >>>>约束条件:2221()30.30.420.560.70,,,0R h l R Rr r V R r lRh l R r h l ππ+++=⎧⎪⎪-⎪≤≤⎪⎨⎪≤≤⎪+⎪⎪>⎩ 利用MATLAB7.1最优化工具箱中的fmincon 函数求解[3],求解时要对模型做进一步的约束, 结合模型一的结果,我们取:32R ≥,24r ≥,R r >,107h ≥,12.1l ≥,规定步长为0.01m m ,经过搜索得到一个最优解:33.55,28.71,R mm r mm = = 107.00,h mm =12.10l m m =,此时上部是一个正圆台,下部是一个正圆柱体,用料为34471.60mm .对比于实际数据和模型一的结果,显然更加接近实际值,这说明我们对模型二的改进是合理的.4 基于若干设计原则的新易拉罐的最优设计-模型四4.1模型的建立:在对两种简化后的易拉罐进行最优设计的分析后,我们综合考虑了易拉罐的形状、手感和观感方面对易拉罐进行重新设计.从形状来看,罐内装有大量液体,在运输过程中会对罐体壁产生很大的冲力,为了使罐体受力均匀,故将罐体壁设计成旋转体.同时为了降低罐底受到的较大压力,将下底面设计成凸起的形状.再结合球形用材少容积大的好处,我们将圆台设计为半球,即上盖变成了半球.从手感方面考虑,在成年人中,女性手掌的尺寸一般小于男性,这里我们以女性手掌尺寸为参考.当大拇指和中指这两个部位的距离达不到易拉罐横切面周长的一半时,则手感不佳且不易握牢.因此,当成年女性正常握持易拉罐时,其大拇指指尖到中指指尖间的圆弧长度应不小于罐身半周长.从观感来看,将易拉罐底面直径与高的比设置在黄金分割比的附近为佳,此处规定其值在0.56到0.70考虑以上各种因素,新设计的易拉罐形状见图3图3 新易拉罐形状图 图4 新易拉罐纵面图为减小冲力,罐内需留出少量空间,同时考虑底部有凸起的部分,因此将罐体容积设计成390毫升。
⾼中数学建模论⽂-易拉罐形状和尺⼨的最优设计⽅案易拉罐形状和尺⼨的最优设计⽅案摘要:本⽂讨论的是兼顾圆台状易拉罐的不同壁厚,建⽴以易拉罐材料体积为⽬标函数,容积⼀定为约束条件的⾮线性规划模型。
通过⾮线性规划与条件极值求得结果。
在此基础上,引⼊了黄⾦分割点,环保以及材料最省,设计了⼀种兼顾各种优点的新型易拉罐,具有较强的实⽤性和推⼴性。
关键词:⾮线性规划条件极值正⽂⽣活中稍加留意就会发现销量很⼤的饮料的饮料罐的形状和尺⼨⼏乎相同。
看来,这并⾮偶然,⽽应该是某种意义下的最优设计。
当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是⽣产⼏亿,甚⾄⼏⼗亿个易拉罐的话,可以节约的钱就很可观了。
⼀、提出问题1、问题为什么不同⼯⼚的易拉罐采⽤统⼀规格?2、易拉罐的圆柱底⾯圆的直径与圆柱的⾼的⽐是多少才为最优?从数学的⾓度怎样给予合理的解释?3、和现实中的实际情况有什么差异,为什么?⼆、模型假设与符号约定2.1模型假设1、易拉罐的容积是⼀定的;2、易拉罐所有材料的密度都相同,材料的价格与其体积成正⽐;3、各种易拉罐的上⾯的拉环⽣产成本固定,不受易拉罐形状和尺⼨的影响;4、⽹上查的数据真实可靠2.2符号约定三、问题分析与模型建⽴对于问题1:可以借助物理仪器,如游标卡尺、螺旋测微仪测量易拉罐的⾼度、直径、顶⾯、底⾯、圆台侧⾯、圆柱侧⾯的厚度等相关数据.对于问题2:将易拉罐看成正圆柱体,考虑到易拉罐的侧壁、顶盖、底⾯的厚度均不相同且为常数,以圆柱体材料的体积作为⽬标函数,其容积等于定值作为约束条件,构建⾮线性规划模型并通过模型简化,得到解析的最优解,以此来探讨最优形状的设计。
此为模型1。
在此基础上,将易拉罐看成是圆台与圆柱的组合体。
此时⽬标函数——材料体积由圆柱体和圆台两部分体积构成,因此⽬标函数表达式变得⽐较复杂。
此时形状由圆柱的⾼和半径及圆台的⾼和上表⾯半径决定,以此作为决策变量对模型⼀稍作修改建⽴模型2。
易拉罐形状和尺寸的最优设计方案摘要:本文讨论的是在体积一定的情况下,满足成本最低即用料最省的易拉罐形状和尺寸的最优设计方案。
问题一,我们对十种常见饮料的易拉罐的罐体直径、圆台直径、罐体高度等八项指标进行了实际测量,得到了比较精确的数据。
问题二,将易拉罐分为各处壁厚相同、壁厚不同以及兼顾不同壁厚与焊接长度三种情形;分别建立了以易拉罐表面积、材料体积以及材料体积和焊缝长度为目标函数,容积一定为约束条件的非线性规划模型。
通过理论推导(拉格朗日乘数法)求得与关系的解析解分别为、、,并用实测数据进行验证,实测数据与理论结果吻合效果较好。
问题三,类似于问题二,我们也分上述三种情形分别建立非线性规划模型,再用拉格朗日乘数法求得解析解之后,用Matlab 6.5编程求得结果,并用配对样本检验,说明实测数据与理论结果基本相符。
问题四,在问题三的基础上,我们引入黄金分割点,综合考虑压强、环保,同时兼顾材料最省,设计了一种兼顾各种优点的新型易拉罐,各项指标见正文表6。
问题五,根据数学建模的经历阐述了数学建模的含义、关键之处和难点。
本文对易拉罐形状和尺寸的最优设计综合考虑了多方面的影响因素,并巧妙应用拉格朗日乘数法求出了最优解析解,具有较强的实用性和推广性。
关键词:非线性规划、拉格朗日乘数法、配对样本检验一、问题重述我们只要稍加留意就会发现销量很大的饮料的饮料罐的形状和尺寸几乎相同。
看来,这并非偶然,而应该是某种意义下的最优设计。
当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。
1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,并把数据列表加以说明;解答以下各问。
2. 设易拉罐是一个正圆柱体。
什么是它的最优设计?其结果是否可以合理地说明所测量的易拉罐的形状和尺寸。
3.设易拉罐的中心纵断面的上面部分是一个正圆台,下面部分是一个正圆柱体。
易拉罐形状和尺寸的最优设计摘要本题在建立数学模型的基础上,用LINGO实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。
结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。
在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。
针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比:1:2R H=(H为圆柱的高,R为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高:1:6R H=时,表面积最小。
一般情况下,当顶盖、底部厚度是罐身的b倍时,最优设计方案为:2=。
R H b 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO软件对模型进行分析,得出当24+==(h为H h R r圆台的高,r为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO对其进行分析,得出 4.5r→时H h R+≈,0材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。
原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。
在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。
通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。
进一步对模型二、四进行比较,发现模型四的结论更优。
为此,将模型四结论中的底部也设计为圆锥。
此时,材料最省。
但是,两端都设计为圆锥时,无法使用。
因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。