易拉罐形状和尺寸的最优设计
- 格式:doc
- 大小:383.85 KB
- 文档页数:13
易拉罐形状和尺寸的最优设计组员:邢登峰,张娜,刘梦云摘要研究易拉罐形状和尺寸的最优设计可以节约的资源是很可观的。
问题一,我们通过实际测量得出(355ml)易拉罐各部分的数据。
问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)vs r rd r rππ=+,由微积分方法求最优解,结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型:2min (,)(,)0.00s r h g r h r h v s t r h π⎧=-=⎪>⎨⎪>⎩用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。
问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计.模型圆台面积2()(s r r R r ππ=++用数学软件求得最优解r=1。
467, h=1.93时,s=45.07最小。
结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。
问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观.对这种比例的正圆柱体易拉罐作了实际优化分析。
另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。
最后写出了我们对数学建模的体会文章。
关键词:易拉罐 最优设计 数学建模问题重述在生活中我们会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。
看来,这并非偶然,这应该是某种意义下的最优设计。
当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。
现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。
易拉罐形状和尺寸的最优设计摘要本文以用于制造易拉罐的原料总体积最省为优化目标,通过构建多元函数和建立非线性规划模型,利用热力学,材料力学,立体几何相关方面的知识对容积为355 ml 的易拉罐的形状与尺寸进行了优化设计,并在综合考虑各方面因素的情况下,构想出了一个外形较美观,手感较好,制造成品所需材料体积又较省的易拉罐模型。
问题一中,结合问题的特殊性,我们首先对实物体各部分的尺寸进行了详细测量,并在多次试验的基础上求取平均值,以达到测量的平均误差最小。
通过测量,我们发现易拉罐一些部位的厚度是不一致的,从而确定了应该以原料总体积最小作为优化目标,而不仅仅在于原料面积最小。
问题二中,我们按照此优化目标,建立了有条件约束的非线性规划模型,并结合原问题将其转化为我们熟悉的一元函数极值问题。
通过适当的运算,其解析解为:半径与高之比1: (1λ+2λ),再利用实测数据中的厚度来计算其数值结果为1:4.4,并用实测半径与高之比1:4.3来验证,两者非常接近,得出该模型是合理有效的。
问题三中,我们在模型一的基础上,考虑到二氧化碳气体的易挥发性,利用盖-吕萨克定律和碳酸化原理合理地为易拉罐内饮料设计了一个满足最大膨胀体积的空间,从而优化设计出了比模型一更加合理的易拉罐。
问题四中,我们再在模型二基础上重新构思了多种新形状的易拉罐,利用圆周定理综合分析考虑选出一种各方面较优的形状(圆柱与球缺组成的)用同样原理的模型优化其尺寸,同样利用LINGO 软件解得其尺寸及大致所需材料,经比较分析可得出这种形状的易拉罐较优,所需材料比同容积的其它形状的易拉罐少,各部分比例也较适中。
本文最大的特色是对原问题作出了合理假设,将实物体转化为几何图形,并尽量避开物理化学对我们建立数学模型的影响,通过对其形状从简单的到复杂的都得出类似的结论。
我们研究易拉罐的结构是由简易到复杂,层层递进地考察易拉罐的形状和尺寸,但始终没离开实测数据,时时回归实测数据以验证模型,得出与实际相吻合的结论。
易拉罐形状和尺寸的最优设计摘要易拉罐十分流行,对易拉罐的优化设计有重要的经济意义与实际意义。
对问题一,我们通过实际测量得出(355ml )易拉罐各部分的数据。
对问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)vs r rd r rππ=+,由微积分方法求最优解,结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型:2min (,)(,)0.00s r h g r h r h v s t r h π⎧=-=⎪>⎨⎪>⎩用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。
对问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计。
模型圆台面积2()(s r r R r ππ=++用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。
结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。
对问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。
对这种比例的正圆柱体易拉罐作了实际优化分析。
另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。
对问题五,写出了我们对数学建模的体会文章。
关键词:易拉罐 最优设计 数学建模一、问题的提出每年我国易拉罐的使用量是很大的,(近年我国每年用易拉罐6070亿只),如果每个易拉罐在形状和尺寸作优化设计,节约一点用料,则总的节约就很大了。
为此提出下述问题:1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各部分的直径、高度、厚度等,并把数据列表加以说明。
2.设易拉罐是一个正圆柱体。
什么是它的最优设计?其结果是否可以合理地说明所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。
摘要本文针对常见的易拉罐(355毫升可口可乐)进行测量,在合理的假设下通过不断的优化建立最优易拉罐尺寸和外形的设计模型,并进行了相当程度的创新设计。
针对问题一,我们分别通过合理的方法测量计算得易拉罐的顶部,中间,和底部的直径,高度,顶部高度,以及罐侧,罐底,罐顶的厚度,并提供相应的测量方法。
针对问题二,我们本着由简单到复杂的演绎过程,逐步放宽条件和假设,依次得到相应的最优化模型。
首先考虑了最简单情况下的最优化问题(即假设易拉罐为正圆柱,罐顶罐底侧面材料相同且厚度一致,制作过程中没有材料的浪费)其次我们考虑了制作易拉罐铁皮切料过程中的问题,并在两种切料方法进行讨论。
再次,我们加入了制作费用,即各部分接缝的损失。
最后我们加入了罐底,罐顶,侧面,厚度不一致的考虑,得到了较为接近现实情况的优化模型。
针对问题三,即易拉罐是一个圆台加圆柱的组合情况,这与我们测得的实际情况较为相似,我进行了罐体抗压力, 罐内气体压强, 人体嘴形舒适度等方面考虑,肯定了圆台存在的意义.在体积不变的约束下建立了规划模型. 并通过MATLAB求解.针对问题四,我们综合了前面的优化过程,并在传统易拉罐模型的基础上对新型模型进行了进一步的优化创新, 虽然在体积一样的情况下圆柱是表面积最小的(证明见附录1),但从外形美观,原材料的节省,运输成本的节约方面看平面的柱体占有一定的优势,结合了以上两面的综合考虑,我们设计出了带弧度的底部上凸的正三棱体,并分别从形状和尺寸的确立、设计过程依据、总体成本估算、特殊形状成因、广告效应、材质选择以及运输成方面分别阐述了该模型超越传统模型的优势,以及新型模型本身的合理性与科学性。
通过运用弧形设计、弯曲表面效应、线性规划等的原理,对模型进行了的优化。
同时,针对新型模型本身我们不仅仅立足于科学的规划,而且着重考虑了人们的偏好以及舒适度,以使得易拉罐的新型更具有现实意义。
最后我们提出的一种有待进一步验证的蛋状易拉罐的方案,将易拉罐的设计意义和目的赋予了更加鲜明的民族色彩和文化内涵。
2006高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)C题: 易拉罐形状和尺寸的最优设计我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。
看来,这并非偶然,这应该是某种意义下的最优设计。
当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。
现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。
具体说,请你们完成以下的任务:1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。
2.设易拉罐是一个正圆柱体。
什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。
3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。
什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。
4.利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。
5.用你们做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,你们的论文中必须包括这篇短文),阐述什么是数学建模、它的关键步骤,以及难点。
易拉罐形状和尺寸的最优设计摘要本题在建立数学模型的基础上,用LINGO 实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。
结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。
在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。
针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比(为圆柱的高,为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高时,表面积最小。
一般情况下,当顶盖、底部厚度是罐身的倍b 时,最优设计方案为61::=H R 。
在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO 软件对模型进行分析,得出当(为圆台的高,为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO 对其进行分析,得出,时材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。
原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。
在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。
通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。
进一步对模型二、四进行比较,发现模型四的结论更优。
为此,将模型四结论中的底部也设计为圆锥。
此时,材料最省。
但是,两端都设计为圆锥时,无法使用。
因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。
此时,易拉罐形状和尺寸最优。
如果设计为旋转式拉环,86.693.3075.h 2.2r ====H R ,,,时,可以得到优于现实中易拉的设计方案。
关键词:最优设计 体积结构 材料最省 lingo一、问题的提出随着社会的变化,大量的瓶装灌装饮料应运而生,我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。
看来,这并非偶然,这应该是某种意义下的最优设计。
当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。
测量各个品牌间不同的易拉罐的高度、直径、厚度等,利用所得到的数据来验证易拉罐的最优设计。
需要使用什么样的方法才能验证易拉罐的最优设计呢?易拉罐的实际尺寸是否有要求、有什么样的要求呢?在已有的数据基础上我们能不能自己设计易拉罐的形状和尺寸的的最优化呢?二、分析问题对于问题一的分析:问题一测量易拉罐的具体数值,没有问题。
只需注意易拉罐的多样化就好。
对于问题二:在假设最优化条件为保证容积的情况之下,使易拉罐所需材料最省,也就是所需材料的表面积最小。
在表面积最小时,设圆柱的体积V为常数,求半径r与高度h的比值,如果能求出一定比例,就能找到模型的最优设计。
在建立模型之前我们需要考虑易拉罐的材料和材料的受力情况。
对于问题三:本设计要在保证容积最优化的情况之下,使易拉罐所需的材料最省。
由于易拉罐的外形不是纯正的圆柱体,所以在建模之时要对模型作出假设。
假设易拉罐的上半部分是一个正圆台,下半部分是一个正圆柱体。
然后考虑易拉罐的厚度,在厚度一致时,利用lingo软件,计算出模型的最优解;通过观察发现易拉罐顶盖的厚度是罐身的3倍,所以,假设另一种模型当易拉罐顶盖、顶盖厚度为a,其余部分为b,且a:b=3:1,体积V=355ml时,同时利用lingo软件,计算出模型的最优解。
对于问题四:自己设计易拉罐的形状和尺寸,在节省材料的情况之下还需要易拉罐自身的承重、外观的美观、实用性等等。
易拉罐在设计为圆锥时是最省材料的,但不实用,所以需要将易拉罐设计为圆柱、圆台的结合体,考虑拉环等因素,顶端与顶端要有所侧重。
对于问题五:表达自己的直观感受以及对模型的理解即可。
三、 模型假设(1)、易拉罐顶盖、底盖厚度为a 3,其它部分厚度为a(2)、易拉罐是正圆柱体(3)、易拉罐整体厚度均相同(4)、易拉罐的上部分是一个圆台,下半部分是一个正圆柱体(5)、易拉罐整体厚度相同(6)、ml V 335五、 模型的建立与求解问题一的模型解:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。
数据测量如表一所示:数据来源:/p-0522616535013.html .问题二的模型:(一)、设易拉罐内半径为R ,高为H ,厚度为a, 体积V ,其中r 和h 是自变量,所用材料的面积S 是因变量,而V 是固定参数,则S 和V 分别为:223322222,2242*)(*)(2RV H H R V Ha HRa a R a aR HR H a R a a R S ππππππππππ==++++=-+++=设V H R H R H R g -==22),(ππ 模型的建立: 0),(0,0),(min =>>H R g H R h r S 其中S 是目标函数,0),(=H R g 是约束,V 是已知的,即要在体积一定的条件下求S 的最小值时,r 和h 的取值是多少模型求解因为按照实际测量数据可知a r ,所以带2a ,3a 的项可以忽略,且2R V H π=,则有R aV aR R H R S 22))(,(2+=π求))(,(r h r S 的最小值,令其导数为零,即0))(,('=R H R S ,解得临界点为32πVR =,则R V V V H 22*2)2(323===πππ因为344)("R aV a R S +=π,则012)2("3>=ππa V S ,所以当2:1:=H R 时,是S最优解模型结论在假设易拉罐是正圆柱体且厚度均相同的条件下,当体积为固定参数,而表面积求导,得到高是半径的两倍,2:1:=h r ,此时,模型最优。
(二)易拉罐顶盖、底盖厚度不同时的最优设计模型2、确定变量和参数:设;饮料内半径为R ,高为H ,体积为V ,易拉罐顶盖、底盖厚度为a ,其它部分厚度为b 。
其中r 和h 是自变量,所以材料的体积S 是因变量,而a ,b ,c 和V 是固定参数。
则S 和V 分别为:H R H a R a a R S 222*)(3*)(2πππ-+++= H a RaH a R a R a 232226126πππππ++++= H R V 2π=,2R VH π=设V H R H R g x x V -==22),()2()(ππ 模型建立:),(min H R S0,0>>H R0),(=H R g其中S 是目标函数,0),(=H R g 是约束条件,厚度比例与V 是已知的,即要在体积V 一定的条件下求r 和h 的取值是多少时体积S 最小 模型求解因为按照实际测量数据可知a R ,所以带32a a ,的项可以忽略,且2R V H π=,则 2226R aV R a S ππ+=,求))(,(r h r S 的最小值,令其导数为零,即0))(,('=R H R S ,解得临界点为:3,6πV R =则R V V V H 62*66323==⎪⎪⎭⎫ ⎝⎛=πππ 因为,412)(''3R aV a R S +=π则0486''3>=⎪⎪⎭⎫ ⎝⎛ππa V S ,因此当R H 6=时,S 为最优解。
观察模型(一)与模型(二),可见当厚度不同时,半径与高的比例不同,似乎有一定联系,因此我们假设顶与底盖的厚度为ab ,壁的厚度为a ,其中b 为比例系数,则23222222242*)(*)(2Ha HRa b a bR a abR HR H a R ba a R S ππππππππ++++=-+++= 因为按照实际测量数据所可知a R ,所以带2a ,3a 的项可以忽略,且2R V H π=,则有 R aV abR S 222+=π求))(,(r h r S 的最小值,令其导数为零,即0))(,('=R H R S ,解得临界点的值为2bR,S 为最优解。
对于问题三的模型有:(一) 第三种易拉罐形状和尺寸的最优设计模型确定变量和参数:设易拉罐顶盖、底部半径为R ,正圆柱体高为H ,正圆台高为h,体积为V ,其中R,r,H,h 是自变量,所以材料的体积S 是因变量,而V 是固定参数,则S 和V 分别为:2222)()(2)(r R h r R RH r R S -+++++=πππh r Rr R H R V )(31222+++=ππ 设:V h r Rr R H R h H r R g -+++=)(31),,,(222ππ 建立模型: 0),,,(0,0,0,0),,,(min =>>>>h H r R g h H r R h H r R S其中S 是目标目标函数,0),,,(=h H r R g 是,R 约束条件,V 是已知的,即要在体积一定的条件下求表面积最小时,R,r,H,h 的取值各是多少 模型求解:利用LINGO 求解,设R=x1,r=x3,H=x2,h=x4,则 2222))3()1(()4())3()1(()2)(1(2))3()1((x x x x x x x x x S -+++++=πππ)4)()3()3)(1()1((31)2()1(222x x x x x x x V +++=ππ 利用LINGO 计算结果,得r R h H 42==+时S 为最优解。