人教版选修22反证法
- 格式:ppt
- 大小:331.00 KB
- 文档页数:17
2.2.2反证法1.认识反法是接明的一种基本方法.2.理解反法的思虑程,会用反法明数学.基梳理1.定:一般地,由明 p? q 向明:綈 q? r ? ⋯ ? t, t 与假矛盾,或与某个真命矛盾.进而判断┐q 假,推出 q 真的方法,叫做反法.2.反法常的矛盾型:反法的关是在正确的推理下得出矛盾.个矛盾能够是与假矛盾或与数学公义、定理、公式、定或与公的事矛盾等.想想: (1) 反法的是什么?(2)反法属于直接明是接明?其明程属合情推理是演推理?(1)分析:反法的就能否认,推出矛盾,进而明原是正确的.(2)分析:反法是接明中的一种方法,其明程是特别密的演推理.自自1.用反法明命“三角形的内角中起码有一个大于60°” ,反正确的选项是(A)A .假三内角都不大于60°B.假三内角都大于60°C.假三内角至多有一个大于60°D.假三内角至多有两个大于60°分析:“起码有一个”的否认是“一个都没有”,反“三个内角都不大于60°”.2.有以下:①已知 p3+ q3= 2,求 p+ q≤2,用反法明,可假p+ q≥2;②已知a, b∈R,2|a|+ |b|<1,求方程x + ax+ b= 0 的两根的都小于1,用反法明可假方程有一根x1的大于或等于1,即假|x1|≥ 1.以下法中正确的选项是(D)A .①与②的假都B.①与②的假都正确C.①的假定正确;②的假定错误D.①的假定错误;②的假定正确分析:用反证法证明问题时,其假定是原命题的否认,故①的假定应为“的假定为“两根的绝对值不都小于1”,故①假定错误.②假定正确.3.“实数 a, b, c 不全大于0”等价于 (D)A . a, b, c 均不大于0B.a, b, c 中起码有一个大于0C.a, b, c 中至多有一个大于0p+ q>2”;②D. a, b, c 中起码有一个不大于0分析:“不全大于零”即“起码有一个不大于0”,它包含“全不大于0”.应选 D.基础巩固1. (2014 微·山一中高二期中)用反证法证明命题“假如 a>b>0,那么 a2>b2”时,假定的内容应是 (C)A . a2= b2B. a2<b222222= b 2C.a ≤ b D. a <b,且 a2.否认“至多有两个解”的说法中,正确的选项是(D)A .有一个解B.有两个解C.起码有两个解D.起码有三个解3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD 也是异面直线”的过程概括为以下三个步骤:①则A、B、C、D四点共面,因此AB、 CD共面,这与AB、 CD是异面直线矛盾;②因此假定错误,即直线AC、 BD也是异面直线;③假定直线AC、 BD是共面直线.则正确的序号次序为(B)A .①②③B .③①②C.①③② D .②③①分析:联合反证法的证明步骤可知,其正确步骤为③①②.4.命题“a,b∈R,若 |a- 1|+ |b- 1|= 0,则 a= b= 1”用反证法证明时应假定为________.分析:“a= b= 1”的反面是“a≠1或 b≠1”,因此设为a≠1或 b≠1.答案: a≠1或 b≠1能力提升5.以下命题不适适用反证法证明的是(C)A.同一平面内,分别与两条订交直线垂直的两条直线必订交B.两个不相等的角不是对顶角C.平行四边形的对角线相互均分D.已知 x, y∈ R,且 x+ y> 2,求证: x,y 中起码有一个大于 1.分析:选项 A 中命题条件较少,不足以正面证明;选项 B 中命题能否认性命题,能够反证法证明;选项 D 中命题是起码性命题,能够反证法证明.选项 C 不适适用反证法证明.故选 C.6.设 a、b、c∈R+,P= a+ b- c,Q= b+ c-a, R= c+ a-b,则“PQR>0”是“P、Q、R同时大于零”的 (C)A .充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件分析:第一若 P、Q、R 同时大于零,则必有PQR>0 建立.其次,若 PQR>0,且 P、Q、R 不都大于 0,则必有两个为负,不如设P<0,Q<0,即 a+b- c<0,b+ c- a<0,∴ b<0 与b∈ R+矛盾,故 P、Q、R 都大于 0.应选 C.7.已知数列 { a n} ,{ b n} 的通项公式分别为a n= an+ 2,b n= bn+ 1(a,b 是常数,且 a>b),那么这两个数列中序号与数值均对应同样的项有________个.分析:假定存在序号和数值均相等的项,即存在n 使得 a n=b n,由题意 a>b, n∈N *,则恒有 an> bn,进而 an+ 2>bn+ 1 恒建立,因此不存在n 使 a n= b n.答案: 08.有以下表达:①“ a>b”的反面是“a<b”;② “x= y”的反面是“ x>y 或 x<y”;③ “三角形的外心在三角形外”的反面是“三角形的外心在三角形内” ;④“三角形最多有一个钝角”的反面是“三角形没有钝角” .此中正确的表达有__________( 填序号 ) .分析:“x=y”的反面是“x≠y”,即是“x>y 或 x<y”,因此②正确;“a>b”的反面是“a≤b”;“三角形的外心在三角形外”的反面是“三角形的外心不在三角形外”;“三角形最多有一个钝角” 的反面是“三角形起码有两个钝角”.因此这三个都错.答案:②9.假如非零实数 a , b ,c 两两不相等,且2=1+1不建立.2b = a + c.证明: b a c证明:假定 2=1+ 1建立,则2= a + c =2b ,∴ b 2= ac.b acb ac ac又∵ b = a + c ,∴ a + c 2 2 2 22 2=ac ,即 a + c = 2ac ,即 (a - c) = 0,∴ a = c ,这与 a ,b , c 两两不相等矛盾,∴2b =1a + 1c 不建立.x x - 2 10.已知函数f(x)= a +x + 1(a>1).(1)证明:函数 f(x)在 (- 1,+ ∞)上为增函数; (2)用反证法证明方程f(x)= 0 没有负实根.证明: (1)任取 x 1, x 2∈ (- 1,+ ∞),不如设 x 1<x 2,则 x 2- x 1>0 , ax 2- x 1>1,且 ax 1>0.因此 ax 2 -ax 1= ax 1 (ax 2- x 1- 1)>0. 又由于 x 1+1>0 , x 2+ 1>0,因此 x 2- 2- x 1- 2x 2+ 1x 1+ 1( x 2- 2)( x 1+ 1)-( x 1- 2)( x 2+ 1)=( x 1+ 1)( x 2+ 1)3( x 2- x 1)=( x 1+ 1)( x 2+ 1)>0.x 2- 2 x 1- 2于是 f(x 2)- f(x 1)=ax 2- ax 1+ x 2+ 1-x 1+1>0,故函数 f(x)在 (- 1,+ ∞)上为增函数. (2)设存在 x 0<0(x 0≠- 1)知足 f(x 0)= 0,则 ax 0=-x 0 -2x 0 .+1又 0<ax 0<1,因此 0<-x 0- 21+ 1<1,即 2<x 0<2.x 0与假定 x 0<0 矛盾,故 f(x)= 0 没有负实根.。