一阶系统的时间响应
- 格式:ppt
- 大小:1.03 MB
- 文档页数:11
实验二 一阶系统的时域响应及参数测定实验指导说明书一、实验目的1.了解双闭环不可逆直流调速系统的原理、组成及主要单元部件的作用。
2.掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的测定。
3.研究调节器参数对系统动态性能的影响二、实验内容1.理论设计:根据所学的理论知识和实践技能,了解带转速微分负反馈的双闭环V-M 调速系统的基本原理,解决积分调节器的饱和非线性问题;采用工程设计方法设计一个带转速微分负反馈的双闭环直流调速系统(含主电路和控制电路,选择的元器件,系统的电气原理图)。
2.仿真实践:根据所设计系统,利用MATLAB/Simulink 建立各个组成部分相应的数学模型,并对系统仿真模型进行综合调试,分析系统的动态性能,并进行校正,得出正确的仿真实验波形和合适控制器参数,为搭建实际系统提供参考。
三、实验步骤四、附录1001()101000.1110.1s s s sφ==⨯++ 参数:惯性环节的时间常数T=0.1S 域响应:C(S)=R(S)⨯()s φR(S) 反拉普拉斯变换t 域响应:()c t =1L -(C(S))()-10()()()(1)101r t =,()0,<0100110011()10100101010.1(t)=10(1-e )t C S R S S R S t S S C S S S S S S Sc φ=≥⎧=⎨⎩⎛⎫=⋅==- ⎪++⎝⎭+输入信号是单位阶跃函数,t ()一阶系统的时域响应:任务:(1)在单位阶跃信号作用下,求取一阶系统的输出响应;设置不同的参数,分析系统输出响应。
(2)在单位斜坡信号作用下,求取一阶系统的输出响应;设置不同的参数,分析系统输出响应。
技巧:建立自控系统的模型,首先必须掌握控制系统的工作原理,并根据工作原理建立系统的动态结构方框图,依此建立系统的控制模型。
在单位阶跃作用下,R(S)=1/S,C(S)=101101010()()()0.1()0.110.10.1110110100.1110()101()10()100101(1)1011010tC S R S S S S S S s s s s c t t e t c t c φ-===-++=-=-++=-→∝∝=-===⨯-⨯=。
一阶系统的时域响应实验报告实验目的:通过实验观察一阶系统的时域响应情况,掌握一阶系统的传递函数及其参数对响应的影响。
实验器材:示波器、信号发生器、直流电源、一阶滤波器。
实验原理:一阶系统的传递函数为H(s)=K/(Ts+1),其中K为系统的增益,T为系统的时间常数。
系统的单位阶跃响应为h(t)=K(1-e^(-t/T))。
实验步骤:1、按照实验电路连接图连接电路。
2、将示波器接在电路输出端,用信号发生器产生一个频率为1kHz的正弦波作为输入信号,调节直流电源,使得输入信号幅值为1V。
3、测量电路输出波形,记录幅值、峰值、频率等数据。
4、将输入信号改为单位阶跃信号,在示波器上观察并记录输出信号的响应过程,测量电路的时间常数T。
实验结果及分析:1、在实验中,我们按照传统的RC低通滤波器的电路连接方式,将滤波器动态系统搭建起来。
2、对于一个RC电路,可以证明其传递函数为H(s)=1/(RCs+1)。
因此在实验中,我们可以通过改变RC电路的$RC$值来改变系统的时间常数,并观察其对系统响应的影响。
3、实验中我们观察到,当输入信号为正弦波时,系统能够对信号进行较好的滤波,输出信号幅值与频率的比例关系为a1=f^-1。
4、当输入信号为单位阶跃信号时,我们能够观察到系统的单位阶跃响应。
在实验中,我们通过观察输出信号的时间常数,可以得到系统的时间常数T。
5、实验中,我们还观察到了系统的过渡过程。
在输入信号发生变化后,系统的输出信号不会立即改变,而是经过一段时间才能够达到稳态。
在实验中,我们通过调节系统的时间常数来观察过渡过程的变化,从而获得了对一阶系统的更深刻的认识。
实验结论:通过本实验,我们详细地了解了一阶系统的时间常数、单位阶跃响应等数学概念,同时还深入掌握了一阶系统的响应机理。
此外,我们还利用实验数据验证了一阶系统的传递函数的正确性,并进一步掌握了如何通过调节时间常数来改变系统响应的技巧。
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
573.2 一阶系统的时间响应及动态性能3.2.1 一阶系统传递函数标准形式及单位阶跃响应一阶系统的典型结构如图3-2所示,K 是开环增益。
系统传递函数的标准形式(尾1型)为11)(+=+=ΦTs K s K s (3-2) 式中K T 1=称为一阶系统的时间常数,系统特征根T 1-=λ。
系统单位阶跃响应的拉氏变换为s s s Ts s R s s C 111111)()()(+-=+=⋅=Φ单位阶跃响应[]Ttes C L t h ---==1)()(1(3-3)3.2.2 一阶系统动态性能指标计算一阶系统的单位阶跃响应如图3-3所示,响应 是单调的指数上升曲线。
依调节时间s t 的定义有Tt s se t h --=1)(=0.95解得T t s 3= (3-4)时间常数T 是一阶系统的重要特征参数。
T 越小,系统极点越远离虚轴,过渡过程越快。
图3-4给出一阶系统阶跃响应随时间常数T 变化的趋势。
图3-3 一阶系统的单位阶跃响应3.2.3 典型输入下一阶系统的响应用同样方法讨论一阶系统的脉冲响应和斜坡响应,可将系统典型输入响应列成表3-2。
从表3-2中容易看出,系统对某一输入信号的微分/积分的响应,等于系统对该输入信号的响应的微分/积分。
这是线性定常系统的重要性质,对任意阶线性定常系统均适用。
表3-2 一阶系统典型输入响应例3-1某温度计插入温度恒定的热水后,其显示温度随时间变化的规律为5859t Tet h 11)(--=实验测得当60=t s 时温度计读数达到实际水温的95%,试确定该温度计的传递函数。
解 依题意,温度计的调节时间为 T t s 360== 故得 20=T t t Teet h 201111)(---=-=由线性系统性质 te t h t k 201201)()(-='=由传递函数性质 []1201)()(+==Φs t k L s例3-2 原系统传递函数为 12.010)(+=s s G现采用如图3-5所示的负反馈方式,欲将反馈系统的调节时间减小为原来的0.1倍,并且保证原放大倍数不变,试确定参数0K 和1K 的取值。