二阶系统时域响应 PPT
- 格式:ppt
- 大小:3.91 MB
- 文档页数:57
第三章二阶系统响应与时域性能指标解析在控制系统中,二阶系统是指具有二阶传递函数的系统。
二阶系统在工程实践中非常常见,例如机械系统、电子电路系统等。
了解二阶系统的响应和时域性能指标对于设计和分析控制系统非常重要。
二阶系统的传递函数可以表示为$G(s)=\frac{\omega_n^2}{{s^2+2\zeta\omega_ns+\omega_n^2}}$,其中$\omega_n$是系统的自然频率,$\zeta$是系统的阻尼比。
首先我们从系统的阶跃响应来分析二阶系统的时域性能指标。
阶跃响应是系统对阶跃信号输入的响应。
通过对传递函数分母进行因式分解,我们可以将传递函数改写为$G(s)=\frac{\omega_n^2}{(s+s_1)(s+s_2)}$,其中$s_1 = (-\zeta+\sqrt{\zeta^2-1})\omega_n$,$s_2 = (-\zeta-\sqrt{\zeta^2-1})\omega_n$。
1. 峰值超调量(Percent Overshoot):峰值超调量是指系统过渡过程中输出信号的最大超调量与步变幅度之比。
通过阶跃响应曲线可以直观地看出系统的峰值超调量。
2. 调节时间(Settling Time):调节时间是指系统从初始状态到稳定状态所需的时间。
在阶跃响应曲线中,调节时间可以定义为系统的输出信号在峰值超调之后首次进入指定误差范围内所需的时间。
一般来说,稳定误差范围可以选择输出信号与目标信号之差小于目标值的一些百分比,例如5%。
3. 峰值时间(Peak Time):峰值时间是指系统输出信号首次达到峰值超调量的时间。
在阶跃响应曲线中,峰值时间可以直接读取。
4. 上升时间(Rise Time):上升时间是指系统输出信号从初始状态到达峰值的时间。
在阶跃响应曲线中,上升时间可以定义为系统输出信号从0.1倍峰值超调量到0.9倍峰值超调量之间所需的时间。
二阶系统的阶跃响应曲线具有不同的形态,取决于系统的阻尼比$\zeta$。
第三章二阶系统响应与时域性能指标第三章介绍了二阶系统的响应和时域性能指标。
二阶系统是指具有两个阶数的系统,常见的二阶系统包括二阶低通滤波器和二阶弹簧质量振动系统等。
了解二阶系统的响应和性能指标对于工程实践和控制系统设计非常重要。
首先,我们先介绍了二阶系统的自由响应和强迫响应。
自由响应是指系统在没有外部输入的情况下的响应,主要由系统的初始条件决定。
强迫响应是指系统在受到外部输入信号刺激后的响应,主要由刺激信号的频率和幅值决定。
在讨论自由响应时,我们介绍了二阶系统的特征方程和特征根。
特征方程是描述系统特征的方程,由系统的传递函数决定。
特征根是特征方程的根,决定了系统的稳定性和响应特性。
特征根可以分为实根和共轭复根两种,分别对应系统的欠阻尼和过阻尼响应。
接着,我们讨论了二阶系统的时域性能指标。
其中包括超调量、峰值时间、调节时间和稳态误差等。
超调量反映了系统响应的振荡程度,峰值时间是达到响应峰值所需要的时间,调节时间是达到稳态的时间。
稳态误差则表征了系统输出与目标值之间的差异。
最后,我们通过实例来说明了如何使用MATLAB来计算和绘制二阶系统的时域性能指标。
MATLAB是一种非常方便的工具,可以极大地简化计算和绘图的过程。
通过使用MATLAB,我们可以更加直观地了解二阶系统的响应特性和时域性能。
总之,了解二阶系统的响应和时域性能指标对于工程实践和控制系统设计非常重要。
通过本章的学习,我们可以更好地理解和分析二阶系统的响应特性,为系统设计和调试提供有力支持。
同时,通过使用MATLAB等工具,我们可以更加方便地进行计算和绘图,提高工作效率和准确性。
第三节二阶系统的时域响应⏹二阶系统的数学模型⏹二阶系统的单位阶跃响应⏹二阶系统单位阶跃信号的性能指标⏹二阶系统的动态校正第三节二阶系统的时域响应定义:由二阶微分方程描述的系统称为二阶系统。
例一22()()()()c c c r d u t du t LC RC u t u t dt dt++=R-L-C 电路2()1()()1c r U s G s U s LCs RCs ==++例二:22()()()()c c c r d t d t J F K t K t dt dt θθθθ++=()()2c r s Ks Js FS Kθθ=++将传递函数转换为:2222/()2nn n K Js F K s s s s J JωζωωΦ==++++n KJω=——系统的无阻尼自然振荡角频率式中:112F KJζ=——系统的阻尼比。
一. 二阶系统数学模型1.二阶系统的微分方程一般式为:ζ-阻尼比n ω-无阻尼振荡频率2222()()2()()n n n d c t dc t c t r t dt dtζωωω++=(0)n ω>222()()()2nn nC s s R s s s ωζωω=Φ=++2()(2)nn G s s s ωζω=+3.二阶系统传递函数标准形式:开环:闭环:2. 二阶系统的标准形式结构图:)2(2n ns s ξωω+)(s R )(s C 2(2)n n s s ωξω+二阶系统的特征方程为2220n ns s ζωω++=解方程求得特征根:当输入为阶跃信号时,则微分方程解的形式为:12012()s t s tc t A A e A e=++式中为由r(t)和初始条件确定的待定的系数。
012,,A A A s 1,s 2完全取决于,ωn 两个参数。
ζ21,21n n s ζωωζ=-±-二、二阶系统的单位阶跃响应1.欠阻尼()的情况01ζ<<21(1)ns j ζζω=---22(1)ns j ζζω=-+-[]()()1222()()11sin1111sin , 01n n tn td c t LC s e t et t ξωξωζωβξωβξ---==--+-=-+≥-特征方程的根为:系统输出响应为:21arctanζβζ-=21 dnωζω=-式中称阻尼振荡角频率,或振荡角频率;二阶欠阻尼系统的单位阶跃响应由稳态分量和暂态分组成。
实验二 典型二阶系统的时域响应与性能分析一、实验目的1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。
2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
二、实验设备PC 机一台,TD-ACS 教学实验系统一套。
三、实验原理典型二阶系统开环传递函数为:)1()1()(101101+=+=s T s T K s T s T K s G ;其中,开环放大系数01T K K = 。
系统方块图与模拟电路如图2-1与图2-2所示。
图2-1典型二阶系统方块图图2-2模拟电路图先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性。
设R T K K s T T s T 200,2.0,10110=====,系统闭环传递函数为:2222221)()(n n n s s TK s T s T KK s Ts K s R s C ωζωω++=++=++= 其中,自然振荡频率:RT K n 1010==ω 阻尼比:4102521RTKTn===ωζ 典型二阶系统的瞬态性能指标:超调量:21%ζζπδ--=e峰值时间:21ζωπ-=n p t峰值时间的输出值:211)(ζζπ-=+=e t C p调节时间:1)欠阻尼10<<ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈5324,,t n n s ζωζω2)临界阻尼1=ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈575.4284.5,,t nns ωω3)过阻尼1>ζ,⎩⎨⎧=∆=∆≈532411,p ,p t s ,1p -与2p -为二阶系统两个互异的负实根122,1-±-=-ζωζωnn p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点1p -的一阶系统来近似表示。
四、实验内容与要求1、实验前预先计算出典型二阶系统性能指标的理论值并填入实验对照表2-1中。
2、按模拟电路图接线,将信号源单元的“ST”端插针与“S”端插针用“短路块”短接,使每个运放单元均设置锁零场效应管,此时运放具有锁零功能。