北师大版九年级上学期第一章《特殊的平行四边形》证明题集锦
- 格式:docx
- 大小:529.71 KB
- 文档页数:14
单元练习题:《特殊的平行四边形》一.选择题1.下列说法中错误的是()A.平行四边形的对边相等B.菱形的对角线平分一组对角C.对角线互相垂直的四边形是菱形D.矩形的对角线互相平分2.如图,已知四边形ABCD是平行四边形,下列说法正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为()A.5cm B.10cm C.4.8cm D.9.6cm4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.6km,则M,C两点间的距离为()A.0.8km B.1.2km C.1.3km D.5.2km5.已知平行四边形ABCD,下列条件中,能判定这个平行四边形为菱形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AC⊥BD6.如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=AC C.AC⊥BE D.AE=AF7.已知矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为()A.50 B.48 C.24 D.128.如图,矩形ABCD的对角线AC,BD相交于点O,AD=3,∠AOD=60°,则AB的长为()A.3 B.2C.3D.69.如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°10.如图,在正方形ABCD中,E为对角线BD上一点,且BE=BC,则∠ACE=()A.20.5°B.30.5°C.21.5°D.22.5°11.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2 B.4.5 C.5.2 D.5.512.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.2二.填空题13.如果菱形的边长为17,一条对角线长为30,那么另一条对角线长为.14.如图,正方形ABCD的边长为5,点E在CD上,DE=2,∠BAE的平分线交BC于点F,则CF的长为.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P 分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD的面积为.16.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD 于点E,则BE的长为.17.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三.解答题18.如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.19.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.22.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D作DE ⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF 与EG的数量关系,并说明理由.23.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一.选择题1.解:A.平行四边形的对边相等,正确,不符合题意;B.菱形的对角线平分一组对角,正确,不符合题意;C.对角线互相垂直的四边形是菱形,错误,符合题意;D.矩形的对角线互相平分,正确,不符合题意.故选:C.2.解:A、错误,有一个角为90°的平行四边形是矩形B、错误,对角线互相垂直的平行四边形是菱形;C、正确,对角线相等的平行四边形是矩形;D、错误,一组邻边相等的平行四边形是菱形;故选:C.3.解:∵四边形ABCD是菱形,∴AC⊥BD,AC=2OA=2×4cm=8cm,BD=2BO=2×3cm=6cm,在Rt△AOB中,由勾股定理得:AB===5(cm),菱形ABCD的面积=AC•BD=AB•DE,即×8×6=5DE,解得:DE=4.8(cm),故选:C.4.解:在Rt△ACB中,点M是AB的中点,∴CM=AB=×2.6=1.3(km),故选:C.5.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形;故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴∠A=∠C;故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD1矩形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.6.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.7.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的两邻边长分别为:6,8;∴矩形的面积为:6×8=48.故选:B.8.解:∵四边形AABCD是矩形,∴∠DAB=90°,OA=OD=OB,∵∠AOD=60°,∴△AOD是等边三角形,∴OA=OD=AD=3,∴BD=2OD=6,∴AB==3.故选:C.9.解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.10.解:设AC与BD交于点O,在四边形ABCD中,∠EOC=90°,∠1=∠2=45°.∵BE=BC,∴∠3=∠ECB=67.5°.∴∠ACE=OCE=90°﹣∠3=90°﹣67.5°=22.5°.故选:D.11.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.12.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P 1P 2∥CE 且P 1P 2=CE .当点F 在EC 上除点C 、E 的位置处时,有DP =FP .由中位线定理可知:P 1P ∥CE 且P 1P =CF .∴点P 的运动轨迹是线段P 1P 2,∴当BP ⊥P 1P 2时,PB 取得最小值.∵矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,∴△CBE 、△ADE 、△BCP 1为等腰直角三角形,CP 1=1.∴∠ADE =∠CDE =∠CP 1B =45°,∠DEC =90°.∴∠DP 2P 1=90°.∴∠DP 1P 2=45°.∴∠P 2P 1B =90°,即BP 1⊥P 1P 2,∴BP 的最小值为BP 1的长.在等腰直角BCP 1中,CP 1=BC =1.∴BP 1=.∴PB 的最小值是. 故选:C .二.填空题(共5小题)13.解:在菱形ABCD 中,AB =17,BD =30,∵对角线互相垂直平分,∴∠AOB =90°,BO =15,在Rt △AOB 中,AO ===8,∴AC =2AO =16.即另一条对角线长为16,故答案为:16.14.解:延长CD 到N ,使DN =BF ,连接AN ,如图所示:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABF=∠ADN=90°,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴∠BAF=∠DAN,∴∠NAF=90°,∴∠EAN=90°﹣∠FAE,∠N=90°﹣∠DAN=90°﹣∠BAF,∵∠BAF=∠FAE,∴∠EAN=∠N,∴AE=EN,∵,∴,∴,∴,故答案为:7﹣.15.解:∵在正方形ABCD中,对角线AC与BD相交于点O,∴AC⊥BD,AO=CO=BO=DO,∠EAP=45°,∵PE⊥AC,∴△AEP是等腰直角三角形,∴PE=AE,∵PF⊥BD,∴四边形OEPF是矩形,∴PF=OE,∴PE+PF=AE+OE=OA=5,=,∴S△AOD=4×=50.∴S正方形ABCD故答案为:50.16.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.17.解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③错误,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②④.故答案为①②④.三.解答题(共6小题)18.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.19.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,即AF∥EC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:如图所示:∵四边形ABCD为菱形,四边形AECF为矩形,且BE=3,AD=5 ∴OA=OC,AB=BC=AD=5 DF=EB=3,∠AEC=90°,∴AE===4,CE=BC+BE=8,∴AC===4,∵OA=OC,∠AEC=90°,∴OE=OC=AC=×4=2.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH(SAS),∴∠DAH=∠DCH.∵∠ECG=∠DAH,∴∠ECG=∠DCH.∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH⊥CG;②∵在Rt△ADF中,∠DFA+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DFA=∠FCG,又∵∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形;(2))①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=6,在Rt△DCE中,CE===2,∴BE=BC+CE=4+2.②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE===2,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为 4+或4﹣.22.(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=,∴=,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴=,∴FC=GE.23.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能在CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在DE上,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.。
第一章 特殊的平行四边形(1)答题时间:90分钟 满分:120分1.下列说法中,正确的个数有( ) ○1对顶角相等;○2两直线平行,同旁内角相等;○3对角线互相垂直的四边形为菱形;○4对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个2.如图,在菱形ABCD 中,E 是AC 的中点,EF//CB,交AB 于点F,如果EF=3,那么菱形ABCD 的周长为( ) A.24B.18C.12D.9第2题图 第3题图 第4题图 第5题图3.如图,菱形ABCD 中,对角线AC,BD 相交于点O,若AB=5,AC=6,则BD 的长是( ) A.8B.7C.4D.34.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF//BC ,分别交AB ,CD 于E 、F ,连接PB 、PD.若AE=2,PF=8.则图中阴影部分的面积为( ) A.10B.12C.16D.185.矩形ABCD 与CEFG 如图放置,点B,C,E 共线,点C,D,G 共线,连接AF,取AF 的中点H,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( ) A.1B.32C. 22D. 25 6.矩形具有而菱形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.邻边相等7.如图,在正方形ABCD 外侧,作等边三角形ADE,AC ,BE 相交于点F,则∠BFC 为( ) A.75°B.60°C.55°D.45°第7题图 第8题图 第10题图 第11题图 第12题图 8.如图,菱形ABCD 的周长为24cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE,线段OE 的长等于( ) A.3cmB.4cmC.2.5cmD.2cm9.一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )cm 2 A.12B.96C.48D.2410.如图,矩形ABCD 的对角线AC,BD 相交于点O,CE//BD,DE//AC,若AC=6cm ,则四边形CODE 的周长为( ) A.6B.8C.10D.12A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC,那么四边形AEDF是菱形12.如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:○1△ODC是等边三角形;○2BC=2AB;○3∠AOE=135°;○4S△AOE=S△COE,其中正确结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)13.如图,在平行四边形ABCD中,添加一个条件____________使平行四边形ABCD是菱形14.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为_________________第13题图第14题图第15题图第16题图15.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是__________16. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是______________17.如图,正方形ABCD的周长为28cm,则矩形MNGC的周长是_________cm第17题图第18题图第20题图18.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为___________19.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为_____________20.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是___________度三、解答题(本题6分)21.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°,求证:矩形ABCD是正方形22.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ//DB,且CQ=DP,连接AP、BQ、PQ (1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形23.在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD24.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示(1)求证△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由25.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形(2)若CE=1,DE=2,则菱形ABCD的面积是___________26.如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.(1)求证:四边形PBQD是平行四边形(2)若AD=6cm,AB=4cm,点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为ts,请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形,并求出此时菱形的周长参考答案一、选择题1.B2.A3.A4.C5.C6.B7.B8.A9.D 10.D 11.D 12.C 二、填空题13.答案不唯一(如:AC ⊥BD ,AB=BC ) 14.3 15.(-5,4) 16.1813 17.14 18.1+ 2 19.2或2 3 20.67.5三、解答题21.证明:∵四边形ABCD 是矩形 ∴∠B=∠D=∠C=90° ∵∠CEF=45°∴∠CFE=∠CEF=45° ∵△AEF 是等边三角形∴AE=AF ,∠AEF=∠AFE=60° ∴∠AEB=∠AFD=75° ∴△ABE ≌△ADF ∴AB=AD∴矩形ABCD 是正方形 四、解答题22.(1)证明:∵CQ//DB ,CQ=DP ∴四边形PDQC 是平行四边形 ∴CD//PQ,CD=PQ∵四边形ABCD 是平行四边形 ∴CD//AB,CD=AB,AD=BC ∴PQ//AB,PQ=AB∴四边形ABQP 是平行四边形 ∴AP=BQ△APD ≌△BQC;(2)由(1)得:△APD ≌△BQC ∴∠APD=∠BQC∵∠ABP+∠BQC=180°,∠APB+∠APD=180° ∴∠ABP=∠APB ∴AB=AP∴平行四边形ABQP 为菱形 23. 证明:(1)∵四边形ABCD 是矩形 ∴AD ∥BC ,∠B=90° ∴∠AEB=∠DAF 又∵DF ⊥AE∴∠DFA=90°=∠B 又∵AD=EA∴△ADF ≌△EAB ∴DF=AB .(2)由(1)得:△ADF ≌△EAB ∴DF=AB=4 ∵∠FDC=30° ∴∠ADF=60° ∴∠DAF=30°24. 证明:(1)∵四边形ABCD 是正方形 ∴AB=AD ,∠ABD=∠ADB=45° ∴∠ABE=∠ADF=135° ∵BE=DF∴△ABE ≌△ADF (SAS );(2)四边形AECF 是菱形,理由如下: 连接AC ∵四边形ABCD 是正方形 ∴OA=OC ,OB=OD ,AC ⊥EF ∴OE=OF∴四边形AECF 是平行四边形 ∵AC ⊥EF∴平行四边形AECF 是菱形.五、解答题25.(1)证明:∵CE ∥OD ,DE ∥OC ∴四边形OCED 是平行四边形 ∵四边形ABCD 是菱形 ∴AC ⊥BD ∴∠COD=90∴平行四边形OCED 是矩形; (2)4 理由如下:由(1)得:四边形OCED 是矩形 ∴CE=OD=1,DE=OC=2 ∵四边形ABCD 是菱形 ∴AC=2OC=4,BD=2OD=2∴菱形ABCD 的面积为:12 AC •BD=12 ×4×2=4.26.(1)∵证明:(1)∵四边形ABCD 是矩形∴AD ∥BC∴∠PDO=∠QBO ,∠DPO=∠BQO ∵O 为BD 中点 ∴OB=OD∴△PDO ≌△QBO ∴OP=OQ∴四边形PBQD 是平行四边形;(2)依题意得:AP=tcm ,则PD=(6-t ) cm ∵四边形PBQD 是菱形 ∴PB=PD=(6-t ) cm ∵四边形ABCD 是矩形 ∴∠A=90°在Rt △ABP 中,AP 2+AB 2=BP 2解得t = 53 ,此时菱形的周长为(6−53 ) ×4=523cm。
2015年新北师大九年级数学上册《特殊的平行四边形》经典题一.选择题(共14小题,满分44分)1.(3分)(2015春•龙口市期中)下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线相等的菱形是正方形D.对角线互相垂直的四边形是菱形2.(3分)(2015•漳州一模)正方形具有而菱形不一定具有的性质是()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.(3分)(2015春•句容市校级期中)下列条件中,不能判定四边形ABCD为矩形的是()A.AB∥CD,AB=CD,AC=BD B.∠A=∠B=∠D=90°C.AB=BC,AD=CD,且∠C=90°D.AB=CD,AD=BC,∠A=90°4.(3分)(2015•桂林)如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18 B.18C.36 D.365.(3分)(2015•龙岩)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4 B.4 C.2D.26.(3分)(2015春•泗阳县期末)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.12 B.14 C.16 D.187.(3分)(2015•兰州)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.4 B.3C.2D.8.(3分)(2015春•罗田县期中)如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5 B.5 C.2.4 D.不确定9.(3分)(2015•临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE10.(3分)(2015•黔东南州)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2411.(3分)(2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A.6.5 B.6 C.5.5 D.512.(4分)(2015•安徽)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3C.5 D.613.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.14.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是()A.6 B.﹣6C.12D.﹣12二.填空题(共16小题,满分56分)15.(3分)(2015春•江阴市期中)菱形的对角线长分别为6和8,则此菱形的周长为,面积为.16.(3分)(2015春•邵阳县期末)如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是.17.(3分)(2015•齐齐哈尔)菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.18.(3分)(2015•黔西南州)如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.19.(3分)(2015•南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.20.(3分)(2015•长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.21.(3分)(2015春•通辽期末)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.22.(3分)(2015•吉林)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.23.(4分)(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.24.(4分)(2015•凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.25.(4分)(2015•潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.26.(4分)(2015•义马市模拟)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为.27.(4分)(2015•房山区二模)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.28.(4分)(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为.29.(4分)(2015•徐州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.30.(4分)(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.1.C2.D3.C4.B5.A6.A7.B8.C 9.B 10.A 11.C 12.C 13.A 14.D15. 20 2416. 417. 5cm 或cm18. AB=BC等19. 45°20. 521. 822. (4,4)23. 6524. ()25. (,﹣)26. 3227.28. 1429. ()n﹣1.30. (,0)。
第一章特殊的平行四边形1.菱形的性质和判断1.1第一课时知识点1:菱形的定义例1(2019年毕节)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1分析:菱形的判定有如下方法:1.一组邻边相等的平行四边形是菱形;2.四边相等的四边形是菱形;3.对角线互相垂直的平行四边形是菱形;4.对角线互相平分且垂直的四边形是菱形.这里已知四边形的基础是平行四边形,因此解答时以1和3为判断主要依据.解:根据菱形的判定方法,知道①,③是成立的,所以推出平行四边形ABCD是菱形的概率为:=,所以选B.点拨与提升:遇到菱形的判定问题,要从两个大方面去分析求解,一是基础图形是平行四边形,二是基础图形是一般四边形,这是解题的基本思路;找到方法后,接下来判断条件的完备性便成为了解题的关键.针对性练习:1.(2019•江西)如图1,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种答案:.D解析:共有如下6种拼接方法:2.(2019•浙江湖州)如图2,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.答案:解:(1)证明:因为D,E,F分别是AB,BC,AC的中点,所以DF∥BC,EF∥AB,所以DF∥BE,EF∥BD,所以四边形BEFD是平行四边形;(2)解:因为∠AFB=90°,D是AB的中点,AB=6,所以DF=DB=DA=AB=3,所以四边形BEFD是菱形,所以四边形BEFD的周长为12.其他教材试题:如图3,AE∥BF,AC平分∠BAD,交BF于C,BD平分∠ABC,交AE于D,连接CD.求证:四边形ABCD是菱形.(人教版八年级数学下册P102页第6题)图3B F答案:证明:因为AE∥BF,AC 平分∠BAD,所以∠BAC=∠DAC=∠ACB,所以AB=BC,因为AE∥BF,BD 平分∠ABC,所以∠ABD=∠CBD=∠ADB,所以AB=AD,所以AD=BC,因为AD∥BC,所以四边形ABCD 是平行四边形,因为AB=BC,所以四边形ABCD 是菱形.2.如图4,四边形ABCD 是菱形,点M,N 分别在AB,AD 上,且BM=DN,MG∥AD,NF∥AB,点F,G 分别在BC,CD 上,MG 与NF 交于点E.求证:四边形AMEN,EFCG 都是菱形.(人教版八年级数学下册P103页第10题)图4F CB 答案:因为四边形ABCD 是菱形,所以AB=AD,因为BM=DN,所以AM=AN,因为ME∥AN,NE∥AM,所以四边形AMEN 是平行四边形,所以四边形AMEN 是菱形.同理可证,四边形EFCG 是菱形.知识点2:菱形的轴对称性例2(2019•河北•3分)如图5,菱形ABCD 中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°分析:菱形是以对角线所在直线为对称轴的轴对称图形,利用轴对称的全等性解题是解题时常用数学思想解:根据菱形的对称性,知道∠B=∠D,∠DAC=∠1,所以∠1=15°,所以选D.点拨与提升:菱形是一个轴对称图形,有两条对称轴,分别是对角线所在的直线.针对性练习:1.(2019•天津改编)如图6,四边形ABCD为菱形,A、B两点的坐标分别是(2,0),(0,1),点C、D在坐标轴上,则C,D的坐标分别为.答案:根据菱形的对称性,可得点C 坐标为(-2,0),点D 的坐标为(0,-1).2.(2019年岳阳)如图7,在菱形ABCD 中,点E、F 分别为AD、CD 边上的点,DE=DF,求证:∠1=∠2.答案:证明:根据题意,得点A,C 关于直线BD 对称,点E,F 关于直线BD 对称,因此△DAF 和△DEC 关于直线BD 对称,所以△DAF≌△DEC,所以∠1=∠2.其他教材试题:如图8,将菱形ABCD 沿AC 方向平移到D C B A '''',D A ''交CD 于E,B A ''交BC 于F.判断四边形FCE A '是不是菱形.请说明理由.(新浙教版八年级数学下册P124页课内练习1)解:四边形FCE A '是菱形.理由如下:因为菱形是关于对角线所在直线为对称轴的轴对称图形,且两个图形是平移得到,所以点E,F 关于直线C A '对称,所以CF CE F A E A ='=',,易证CE E A =',所以CF CE F A E A =='=',所以四边形FCE A '是菱形.知识点3:菱形的特殊性质例3(2019•贵阳)如图9,菱形ABCD 的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC 的长是()A.1cm B.2cm C.3cm D.4cm分析:根据菱形四边相等求得边长,连接BD,根据对角线互相垂直,确定∠ABO=30°,从而确定AO,根据AC=2AO 即可得解.解:因为菱形ABCD 的周长是4cm,所以AB=BC=1cm.连接BD,则AC⊥BD,所以∠ABO=30°,所以AB=2AO,因为AC=2AO,所以AC=AB=1,所以选A.针对性练习:1.(2019•铜仁)如图10,四边形ABCD 为菱形,AB=2,∠DAB=60°,点E、F 分别在边DC、BC 上,且CE=CD,CF=CB,则S △CEF =()A.B.C.D.答案:D解析:因为四边形ABCD 为菱形,所以AB=BC=CD=2,∠DCB=60°,所以CE=CF=23,所以△CEF 为等边三角形,所以S △CEF =√34×(23)2=√39.2.(2019•天津)如图11,四边形ABCD为菱形,A、B两点的坐标分别是(2,0),(0,1),点C、D在坐标轴上,则菱形ABCD的周长等于()A.5 B.34 C.54 D.20答案:C 解析:由勾股定理可得:AB=AO 2+BO 2=5,根据菱形四边相等,所以周长等于45,所以选C.其他教材试题:如图12,四边形ABCD 是菱形,∠ACD=30°,BD=6cm.求:(1)∠BAD,∠ABC 的度数;(2)边AB 及对角线AC 的长(精确到0.01cm).(人教版数学八年级下册P102页第5题)解:(1)因为四边形ABCD 是菱形,所以AB=BC=CD=DA,∠ACD=∠ACB=30°,所以∠DCB=60°,所以△BCD 是等边三角形,根据菱形的性质,得∠BAD=60°,∠ABC=120°;(2)因为△BCD 是等边三角形,所以AB=BD=6cm,设对角线的交点为O,在直角三角形DOC 中,OC=222236-=-OD DC =33,所以AC=2OC=63≈10.39(cm).课时练:一、选择题1.(2018•十堰)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形答案:B解析:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.2.(2018•淮安)如图13,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长()A.20B.24C.40D.48答案:A解析:由菱形对角线性质知,AO=12AC=3,BO==12BD=4,且AO⊥BO,则AB=5,故这个菱形的周长L=4AB=20.故选:A.二、填空题3.(2018•黑龙江)如图14,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.答案:AB=BC或AC⊥BD.解析:当AB=BC或AC⊥BD时,四边形ABCD是菱形.4.(2018•广州)如图15,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.答案:(﹣5,4).解析:根据题意,得AB=5,所以AD=5,由勾股定理知:OD=4,所以点C的坐标是:(﹣5,4).故答案为:(﹣5,4).备选题:1.(2018•贵阳)如图16,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.9答案:A解析:EF是△ABC的中位线,所以BC=6,所以菱形ABCD的周长是4×6=24.故选:A.2.(2018•随州)如图17,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.答案:(6,﹣6).解析:作B′H⊥x轴于H点,连结OB,OB′,如图,则∠AOC=180°﹣∠C=60°,OB平分∠AOC,所以∠AOB=30°,∠BOB′=75°,OB′=OB=23,△OBH为等腰直角三角形,所以OB′=6,所以点B′的坐标为(6,﹣6).故答案为:(6,﹣6).1.1第二课时知识点1:菱形的判定定理1例4已知:如图18所示,AD是三角形ABC的角平分线,DE∥AC,交AB于点E,DF∥AB,交AC 于点F.求证:四边形AEDF是菱形.分析:根据平行条件,易证四边形AEDF是平行四边形.后利用线段垂直平分线的性质的逆定理可证明EF⊥AD,从而得证.证明:因为DE∥AC,DF∥AB,所以四边形AEDF是是平行四边形.因为DE∥AC,所以∠EDA=∠DAC,因为AD是三角形ABC的角平分线,所以∠EAD=∠DAC;所以∠EAD=∠EDA,所以AE=ED,所以点E在线段AD的垂直平分线上,同理可证点F在线段AD的垂直平分线上,所以EF⊥AD,所以四边形AEDF是菱形.点拨与提升:用这个定理时,一定清楚两个核心条件,一是基础条件:四边形是平行四边形;二是升级条件:对角线互相垂直.证明时,平行四边形是基础,要灵活运用平行四边形的判定,证垂直是关键,证明的方法很多,常见的有如下几种:1.等腰三角形三线合一性质法;2.两角互余法;3.垂直—平行—垂直法.4.线段垂直平分线性质定理的逆定理.针对性练习:(2018•扬州)如图19,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.求证:四边形AEBD是菱形;证明:易证四边形AEBD是平行四边形,因为DB=DA,点F是AB的中点,所以AB⊥DE,所以四边形AEBD是菱形.其他教材试题:已知:如图20所示,在矩形ABCD中,对角线AC的垂直平分线与AD,BC分别交于点E,F.求证:四边形AFCE是菱形.(浙教版数学八年级下册P159页例2)证明:易证△AOE≌△COF,所以AE=CF.因为FC∥AE,所以四边形AFCE是平行四边形,因为AC⊥EF,所以四边形AFCE是菱形.知识点2:菱形的判定定理2例5(2018•乌鲁木齐)如图21,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.分析:(1)利用已知条件设法证明四边形AECD的四边相等即可.(2)根据菱形的面积公式和三角形的面积公式解答即可.证明:(1)因为AD∥BC,AE∥DC,所以四边形AECD是平行四边形,所以AD=EC,AE=CD.因为∠BAC=90°,E是BC的中点,所以AE=CE=12BC,所以AE=EC=CD=DA,所以四边形AECD是菱形;(2)如图21,过A作AH⊥BC于点H,因为∠BAC=90°,AB=6,BC=10,所以AC=8,因为 ∆ =12BC×AH=12AB×AC,所以AH=245,因为点E是BC的中点,BC=10,四边形AECD是菱形,所以CD=CE=5,因为菱形的面积相等,所以CE•AH=CD•EF,所以EF=AH==245.点拨与提升:证明四边形相等是解题的关键,这种方法的最大特点是不以四边形的形状为主线,二是以证明四边相等为主线解决.其次,要把握好同一个图形面积的不同的表示方式,为解题提供新的有效解题方法.针对性练习:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图22-1;再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图22-2,证明:四边形AEDF是菱形.证明:由第一次折叠可知:AD为∠CAB的平分线,所以∠1=∠2,由第二次折叠可知:∠CAB=∠EDF,从而,∠3=∠4,因为AD是△AED和△AFD的公共边,所以△AED≌△AFD(ASA),所以AE=AF,DE=DF,又由第二次折叠可知:AE=ED,AF=DF,所以AE=ED=DF=AF,所以四边形AEDF 是菱形.其他教材的试题:如图23,在四边形ABCD 中,AC=BD,E,F,G,H 依次是AB,BC,CD,DA 的中点.求证:四边形EFGH 是菱形.(浙教版数学八年级下册P160页A 组第3题)证明:因为E,F,G,H 依次是AB,BC,CD,DA 的中点,所以EF,FG,GH,HE 分别是△ABC,△BCD,△CDA,△DAB 的中位线,所以EF=GH=21AC,FG=EH=21BD,因为AC=BD,所以EF=FG=GH=HE,所以四边形EFGH 是菱形.课时练:1.(2018•内江)如图24,已知四边形ABCD 是平行四边形,点E,F 分别是AB,BC 上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD 是菱形.答案:(1)证明:因为四边形ABCD 是平行四边形,所以∠A=∠C.所以△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.因为四边形ABCD 是平行四边形,所以AD=BC,AB=CD,所以AD=BC=AB=CD,所以四边形ABCD 是菱形.2.(2018•遂宁)如图25,在平行四边形ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC ⊥EF.求证:四边形AECF是菱形.证明:因为四边形ABCD是平行四边形,所以AD=BC,AD∥BC,因为DE=BF,所以AE=CF,因为AE∥CF,所以四边形AECF是平行四边形,因为AC⊥EF,所以四边形AECF是菱形.3.(2018•郴州)如图26,在平行四边形ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.证明:因为在平行四边形ABCD中,O为对角线BD的中点,所以BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∠ =∠FBO=∠ =∠FOB,所以△DOE≌△BOF(ASA);所以OE=OF,因为OB=OD,所以四边形EBFD是平行四边形,因为EF⊥BD,所以四边形BFDE为菱形.备选题:(2018•泰安)如图27,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.解:(1)因为AF=FG,所以∠FAG=∠FGA,因为AG平分∠CAB,所以∠CAG=∠FGA,所以∠CAG=∠FGA,所以AC∥FG,因为DE⊥AC,所以FG⊥DE,因为FG⊥BC,所以DE∥BC,所以AC⊥BC,所以∠C=∠DHG=90°,∠CGE=∠GED,因为F是AD的中点,FG∥AE,所以H是ED的中点,所以FG是线段ED的垂直平分线,所以GE=GD,∠GDE=∠GED,所以∠CGE=∠GDE,所以△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,所以GC=GP,所以△CAG≌△PAG,所以AC=AP,由(1)可得EG=DG,所以Rt△ECG≌Rt△GPD,所以EC=PD,所以AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:因为∠B=30°,所以∠ADE=30°,所以AE=12AD,所以AE=AF=FG,由(1)得AE∥FG,所以四边形AECF是平行四边形,所以AE=AF=FG=EG,所以四边形AEGF是菱形.1.1第三课时知识点1:菱形的对角线计算例6(2018•柳州)如图28,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.分析:(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.解:(1)因为四边形ABCD是菱形,AB=2,所以菱形ABCD的周长=2×4=8;(2)因为四边形ABCD是菱形,AC=2,AB=2,所以AC⊥BD,AO=1,所以BO=AB2−AO2=22−12=3,所以BD=23.点拨与提升:菱形的计算有三大特点:一是计算周长,边长的4倍;二是对角线互相垂直且平分,为计算提供基础条件;三是充分利用勾股定理,确定计算结果.针对性练习:(2018•呼和浩特)如图29,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.解:(1)证明:因为AB∥DE,所以∠A=∠D,因为AF=CD,所以AF+FC=CD+FC,即AC=DF,因为AB=DE,所以△ABC≌△DEF.(2)如图,连接AB交AD于O.在Rt△EFD中,因为∠DEF=90°,EF=3,DE=4,所以DF=32+42=5,因为四边形EFBC 是菱形,所以BE⊥CF,所以EO=× =125,所以OF=OC=EF 2−EO 2=95,所以CF=185,所以AF=CD=DF﹣FC=5﹣185=75.其他教材试题:如图30,菱形花坛ABCD 的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC 和BD.求:两条小路的长(结果保留小数点后2位)和花坛的面积(结果保留小数点后1位).解:因为ABCD 是菱形,∠ABC=60°,所以AC ⊥BD ,∠ABD=30°,△ABC 是等边三角形,所以AC=AB=20m,在直角三角形AOB 中,BO=300102022=-,所以BD=2BO=2300≈34.64m,菱形ABCD 的面积为:64.34202121⨯⨯=⨯BD AC ≈346.42m .知识点2:菱形的面积计算例7如图31,已知四边形ABCD 是菱形,且菱形的周长为32,AE⊥BC,垂足为E,若△ABC 是等边三角形,求菱形的面积.分析:根据菱形的周长,确定菱形的边长;根据△ABC 是等边三角形,确定BE 的长,从而利用勾股定理,确定高AE,利用菱形的面积等于底乘高计算即可.解:因为菱形的周长为32,所以AB=BC=8,因为△ABC 是等边三角形,AE⊥BC,所以BE=21BC=4,所以AE=222248-=-BE AB =43,所求菱形的面积为:BC×AE=323.点拨与提升:菱形的面积计算方法有两种,一是底边乘以其上的高;二是菱形对角线积的一半,这是最常用的方法,计算时灵活运用勾股定理是解题的关键.要特别重视一般式的计算法即底乘高法,这是继承平行四边形的性质得来的,是最基本计算方法,也是通用的计算方法,必须熟练掌握.针对性练习:(2018•哈尔滨)如图32,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,3OB=4AO,则线段AB 的长为()A.7B.27C.5D.10答案:解:因为四边形ABCD 是菱形,所以AC⊥BD,AO=CO,OB=OD,所以∠AOB=90°,因为BD=8,所以OB=4,因为3OB=4AO,所以O=3,在Rt△AOB 中,由勾股定理得:AB=22BO AO +=5,所以选C.其他教材试题:如图33所示,四边形ABCD 是菱形,对角线AC=8cm,BD=6cm,DH⊥AB 于H,求DH 的长.解:根据题意,易得菱形的边长为5,菱形的面积为6821⨯⨯=24,因为菱形的面积等于底乘高,所以DH=524.知识点3:菱形的性质与判定综合应用例8(2018•广西)如图34,在平行四边形ABCD 中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:平行四边形ABCD 是菱形;(2)若AB=5,AC=6,求菱形ABCD 的面积.分析:(1)利用全等三角形的性质证明AB=AD 即可解决问题;(2)连接BD 交AC 于O,利用勾股定理求出对角线的长即可解决问题;解:(1)证明:因为四边形ABCD 是平行四边形,所以∠B=∠D,AB=CD,BC=AD,因为AE⊥BC,AF⊥CD,所以∠AEB=∠AFD=90°,因为BE=DF,所以△AEB≌△AFD所以AB=AD,所以AB=BC=CD=DA,所以四边形ABCD 是菱形.(2)连接BD 交AC 于O,因为四边形ABCD 是菱形,AC=6,所以AC⊥BD,AO=OC=12AC=12×6=3,因为AB=5,AO=3,所以BO=AB 2−AO 2=4,所以BD=2BO=8,所以 菱形ABCD =12×AC×BD=24.点拨与提升:先利用菱形的判定定理判定菱形,后运用菱形的性质进行相关计算.针对性练习:(2018•扬州)如图35,在平行四边形ABCD 中,DB=DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC=10,EF=3BF,求菱形AEBD 的面积.答案:解:(1)证明:因为四边形ABCD 是平行四边形,所以AD∥CE,所以∠DAF=∠EBF,所以△AFD≌△BFE,所以AD=EB,所以四边形AEBD 是平行四边形,所以AD=EB,DB=AE,因为BD=AD,所以AE=EB=BD=DA,所以四边形AEBD 是菱形.(2)解:因为四边形ABCD 是平行四边形,所以CD=AB=10,因为四边形AEBD 是菱形,所以2DE=310,所以 菱形AEBD =12×AB×DE=•310=15.其他教材试题:如图36,在平行四边形ABCD 中,E,F 分别是AB,CD 的中点,AF 与DE 相交于点H,CE 与BF 相交于点G.求证:(1)四边形EHFG 是平行四边形;(2)在什么条件下,四边形EHFG 是是菱形?请说出条件和理由.(浙教版数学八年级下册P161页D 组第6题)答案:解:(1)因为四边形ABCD 是平行四边形,所以AB=CE,AB∥CD,因为E,F 分别是AB,CD 的中点,所以BE=DF,BE∥DF,所以四边形BEFD 是平行四边形,所以EH∥FG;同理可证,FH∥EG;所以四边形EHFG 是平行四边形;(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.理由如下:因为BE=21AB,CF=21CD,所以BE=CF.因为BE∥CF,所以四边形BEFC 是平行四边形.因为四边形ABCD 是矩形,所以∠ABC=90°,所以四边形BEFC 是矩形.所以EH=21CE,FH=21BF,且CE=BF,所以EH=FH,所以四边形EHFG 是菱形.课时练:1.图37,在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为()A.20B.18C.16D.15答案:C解析:根据菱形的性质,得三角形ABC 是等边三角形,所以AB=4,所以菱形的周长为16.2.已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A.32cmB.42cm C.32cm D.232cm 答案:D.解析:设对角线的交点为O,所以OA=1,OB=22OA AB -=3,所以BD=23,所以菱形的面积等于:3222121⨯⨯=⨯⨯BD AC =23(2cm ).3.(2018•香坊区)已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上,设对角线的交点为点O,且OA=3OE,则BE 的长为.答案:3或5.解析:因为菱形ABCD 中,边长为5,对角线AC 长为6,所以AC⊥BD,BO=22OA AB -=4,因为OA=3OE,解得:OE=1,所以BE=BO﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:所以BE=BO+OE=4+1=5,所以答案为:3或5.4.一种千斤顶利用了四边形的不稳定性.如图39,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?2=1.414,3=1.732,结果保留整数)(.解:当∠ADC=60°时,根据菱形的性质,得三角形ADC是等边三角形,所以AC=40cm;当∠ADC=120°时,过点A作AF⊥CD于点F,如图所示,则AF=203,根据菱形的性质,得∠ACF=30°,所以AC=2AF=403,所以千斤顶升高的高度为:403-40=40(1.732-1)≈29.28cm≈29cm.5.如图39,已知等腰三角形ABC中,AB=AC,AD⊥BC,垂足为D,点E,F分别是AB,AC的中点,连接DE,DF.(1)求证:四边形AEDF是菱形;(2)若AB=10,BC=12,求菱形AEDF的面积.(1)证明:因为AB=AC,AD⊥BC,所以点D是BC的中,因为点E,F分别是AB,AC的中点,根据三角形中位线定理,得DE=AF=21AC,DF=AE=21AB,因为AB=AC,所以AE=ED=DF=AF,所以四边形AEDF 是菱形;(2)连接EF,则EF 是三角形ABC 的中位线,所以EF=21BC=6,因为AB=10,BC=12,所以AD=22BD AB -=8,所以菱形AEDF 的面积为:862121⨯⨯=⨯⨯EF AD =24.备选题:1.将等边三角形ABC 沿着边AB 对折,点C 的重合点为点D,则四边形ABCDD 的形状是.答案:菱形.解析:利用四边相等的四边形是菱形判断.2.如图40,在菱形ABCD 中,AB=2,∠B 是锐角,AE⊥BC 于点E,若DE=3,求菱形ABCD 的面积.解:根据勾股定理,得AE=22AD DE -=5,所以菱形的面积为25.2.矩形的性质和判断1.2第一课时知识点1:矩形的定义例1(2018•沈阳)如图1,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,四边形ABCD的面积是.分析:(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.解:(1)证明:因为四边形ABCD是菱形,所以AC⊥BD,所以∠COD=90°.因为CE∥OD,DE∥OC,所以四边形OCED是平行四边形,因为∠COD=90°,所以平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.因为四边形ABCD是菱形,所以AC=2OC=4,BD=2OD=2,所以菱形ABCD的面积为:AC•BD=×4×2=4.所以填4.点拨与提升:运用矩形的定义解题时,要抓牢两个核心要素:一是基础四边形是平行四边形,二是其中的一个角是直角.其次要熟练掌握直角的得出方式:垂直二线的交角是直角;互补且相等的两个角是直角;三角形中,两个角互余,则第三个角一定是直角等.针对性练习:(2018•上海改编)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B.∠A=∠C C.四个内角相等D.AB⊥BC答案:B解析:由∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;由∠A=∠C不能判定这个平行四边形为矩形,错误;由∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,所以∠A=∠B=∠C=∠D=90°,可以判定这个平行四边形为矩形,正确;由AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;所以选:B.其他教材试题:如图2,平行四边ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4cm,求:四边形ABCD的面积(精确到0.012cm)(人教版八年级数学P96页第2题)答案:解:因为△OAB是等边三角形,所以AO=BO=AB,因为四边形ABCD是平行四边形,所以OB=OD,所以OA=OD,因为△OAB是等边三角形,所以∠BAO=∠AOB=60°,所以∠AOD=120°,因为OA=OD,所以∠OAD=∠ODA=30°,所以∠BAD=90°,因为四边形ABCD是平行四边形,所以四边形ABCD是矩形,在直角三角形ABD中,AD=2248-=43,所以四边形ABCD的面积为:4⨯43=163≈27.71(2cm)知识点2:矩形的性质定理1例2(2019•广东省广州市)如图3,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD 于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8分析:连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.解:连接AE,如图43,因为EF是AC的垂直平分线,所以OA=OC,AE=CE,因为四边形ABCD是矩形,所以∠B=90°,AD∥BC,所以∠OAF=∠OCE,所以△AOF≌△COE,所以AF=CE=5,所以AE=CE=5,BC=BE+CE=8,所以AB===4,所以AC===4;所以选:A.点拨与提升:利用矩形的四个角都是直角生成直角三角形,为勾股定理的不断运用创造条件,也诶问题的破解提供基础.针对性练习:如图4,已知:四边形ABCD是矩形,AC与BD是对角线.求证:AC=BD.答案:证明:因为四边形ABCD是矩形,所以AB=DC,∠ABC=∠DCB=90°,因为BC=CB,所以△ABC≌△DCB,所以AC=BD.其他教材试题:已知:如图5,在矩形ABCD中,M是BC的中点.求证:AM=DM.(浙教版数学八年级下册P149页A组第3题)答案:证明:因为四边形ABCD是矩形,所以AB=CD,∠B=∠C=90°,因为BM=CM,所以△ABM≌△DCM,所以AM=DM.知识点3:矩形的性质定理2例3(2019•江苏无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直分析:根据矩形和菱形的性质可得出其对角线性质的不同,可得到答案.解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的性质为对角线相等,所以选:C.点拨与提升:矩形的性质识记,要从两个方面落实,一是平行四边形具有的性质,菱形具有点的性质,二是矩形特有的性质,只有分类识记才有效果,因此熟记两图形的性质是解题的关键.针对性练习:(2018•株洲)如图6,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为.答案:2.5解析:因为四边形ABCD是矩形,所以AC=BD=10,BO=DO=BD,所以OD=BD=5,因为点P、Q是AO,AD的中点,所以PQ是△AOD的中位线,所以PQ=DO=2.5.其他教材试题:1.如图7,矩形ABCD的对角线AC、BD相交于点O,则图中有个直角三角形,有个等腰三角形,有对全等三角形.(浙教版数学八年级下册P148页课内练习第2题)答案:4,4,4;解析:直角三角形ABD,直角三角形ABC,直角三角形ADC,直角三角形BCD;等腰三角形AOD,等腰三角形AOB,等腰三角形BOC,等腰三角形COD;△AOB≌△COD,△AOD≌△COB,△ABD≌△CBD,△ABC≌△ADC.2.如图7,矩形ABCD 的对角线AC,BD 相交于点O.(1)若∠AOD=120°,则△AOB 是三角形;△COD 是三角形.(2)若∠AOD=120°,CD=4,则对角线AC 的长,矩形ABCD 的周长,面积为.答案:(1)△AOB 是等边三角形;△COD 是等边三角形.(2)AC=8,矩形ABCD 的周长8+83,面积为163.解析:利用勾股定理计算即可.知识点4:直角三角形斜边上的中线的性质例4如图8,已知:在△ABC 中,BD、CE 分别是边AC、AB 上的高,M 是BC 的中点。
第1章特殊的平行四边形一.选择题(共15小题)1.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 2.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长约是()A.4cm B.1 cm C.cm D.2cm3.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.54.菱形的两条对角线分别为8和6,则菱形的周长和面积分别是()A.20,48 B.14,48 C.24,20 D.20,245.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠ABD的度数为()A.20°B.35°C.40°D.50°6.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6 B.12 C.18 D.247.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF的度数是()A.90°B.60°C.45°D.30°8.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=()A.50°B.40°C.30°D.15°9.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是()A.AC⊥BD B.AB=AD C.AC=BD D.AC平分∠BAD 10.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,﹣4),要使四边形AOBC是菱形,则满足条件的点C的坐标是()A.(﹣3,0)B.(3,0)C.(6,0)D.(5,0)11.如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A.①或②B.②或③C.③或④D.①或④12.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形13.如图,矩形ABCD的两条对角线相交于点O,AB=2,∠ACB=30°,则矩形的面积为()A.4B.2 C.4 D.214.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOD=120°,AC=4,则CD的长为()A.2 B.3 C.2D.215.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4二.填空题(共9小题)16.工人师博常常通过测量平行四边形零件的对角线是否相等来检验零件是否为矩形,请问工人师博此种检验方法依据的道理是.17.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.18.如图,平行四边形ABCD,添加一个条件使它成为一个矩形,你会加上.19.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=.20.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.21.已知正方形的对角线长为2,则它的面积.22.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.23.如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,请你添加一个条件,使四边形BECF是正方形.24.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).三.解答题(共5小题)25.如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.26.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,27.如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.28.如图,在正方形ABCD中,对角线AC和BD相交于O,点E、F、G、H分别是OA、OB、OC、OD上,且AE=BF=CG=DH,求证:四边形EFGH是正方形.29.如图,在正方形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点,且AE=BF=CG=DH,试判定四边形EFGH的形状,并证明你的结论.参考答案与试题解析一.选择题(共15小题)1.【解答】解:∵四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC⊥BD;故选:A.2.【解答】解:如图,设AC=2cm,∵四边形ABCD是菱形,∴AO=CO=1cm,BO=DO,AC⊥BD,∵BO===cm,∴BD=2cm,故选:D.3.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==故选:B.4.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故菱形的周长是20,面积是24,故选:D.5.【解答】解:∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD,∵∠1=50°,∠2=20°,∴∠BCD=180°﹣50°﹣20°=110°,∴∠A=110°,∵AB=AD,∴∠ABD=∠ADB==35°,故选:B.6.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.7.【解答】解:连接AC,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°﹣180°﹣120°=60°.故选:B.8.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:C.9.【解答】解:A、对角线互相垂直的平行四边形是菱形,此选项不符合题意;B、邻边相等的平行四边形是菱形,此选项不符合题意;C、由对角线相等不能证明平行四边形ABCD是菱形,此选项符合题意;D、对角线平分对角的平行四边形是菱形,此选项不符合题意;故选:C.10.【解答】解:如图,连接AB交OC于D,∵四边形AOBC是菱形,∴AD⊥OC,OD=CD,∵点A的坐标是(3,4),点B的坐标是(3,﹣4),∴OD=3,∴OC=6,∴C(6,0),故选:C.11.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB=BC,∴平行四边形ABCD是菱形;故①④能判定.故选:D.12.【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B.13.【解答】解:∵四边形ABCD是矩形∴∠ABC=90°,且∠ACB=30°∴BC=AB=2,∴矩形ABCD的面积=AB×BC=2×2=4故选:A.14.【解答】解:∵∠AOD=120°,∴∠COD=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO=DO=2,∴△COD是等边三角形,∴CD=DO=2,故选:A.15.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.二.填空题(共9小题)16.【解答】解:∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故答案为:对角线相等的平行四边形是矩形.17.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.18.【解答】解:答案不唯一,∵四边形ABCD是平行四边形,∴可添加:∠A=90°、AC=BD等.故答案为:∠A=90°.19.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA==75°.∴∠PAD=15°,故答案为:15°.20.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm 向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2021.【解答】解:∵正方形的一条对角线的长2,∴这个正方形的面积==4,故答案为422.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:323.【解答】解:添加条件:AC=BC.理由如下:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故答案为AC=BC.24.【解答】解:∵四边形ABCD为菱形,∴当∠BAD=90°时,四边形ABCD为正方形.故答案为∠BAD=90°.三.解答题(共5小题)25.【解答】解:(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵四边形AEBO是矩形∴EO=AB,在菱形ABCD中,AB=DC.∴EO=DC.26.【解答】解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE===4.27.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.28.【解答】证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,AC⊥BD,∵AE=BF=CG=DH,∴OE=OF=OG=OH,EG⊥FH,∴四边形EFGH是正方形.29.【解答】答:四边形EFGH的形状是正方形,证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AE=BF=CG=DH,∴BE=CF=DG=AH,∴△EBF≌△FCG≌△GDH≌△HAB,∴EF=FG=GH=HE,∠AEH=∠EFB,∵∠B=90°,∴∠EFB+∠FEB=90°,∴∠AEH+∠FEB=90°,∴∠HEF=90°,∵EF=FG=GH=HE,∴四边形EFGH的形状是正方形.。
-学年度第一学期北师大九年级数学上册第一章特殊平行四边形专题复习:解答题【精选】学校:__________ 班级:__________ 姓名:__________ 考号:__________1.如图,已知,四边形是菱形,,,求的长和菱形的面积.2.如图,在矩形中,对角线,相交于点,已知,,求矩形的面积.3.如图,在正方形,为的中点,为上一点,且.求证:;若的面积为,求正方形的边长.4.一个菱形的两条对角线,的长度分别为和,求这个菱形的面积和周长.5.如图,中,,是的角平分线,点为、的中点,连接并延长到点,使,连接,.求证:四边形是矩形;当满足什么条件时,矩形是正方形,并说明理由.6.如图,梯形中,,平分,交于点.求证:四边形是菱形.7.如图,点,,,分别是菱形的四条边的中点,连接、、、,求证:四边形是矩形.8.如图,在中,为边上的一动点(点不与、两点重合).交于点,交于点.试探索满足什么条件时,四边形为菱形,并说明理由;在的条件下满足什么条件时,四边形为正方形.为什么?在、的条件下当时,求证:.9.矩形的对角线相交于点,,,、交于点,证明:四边形是菱形.10.如图,是的角平分线,交于点,交于.试确定与的位置关系,并说明理由.11.如图,将直角的顶点放在正方形的对角线上,使角的一边交于点,另一边交或其延长线于点,求证:;11.如图,将直角顶点放在矩形的对角线交点,、分别交与于点、,且平分.若,,求、的长.12.如图,已知四边形是正方形,分别过、两点作,作于,于,直线、分别交于、.求证:四边形是正方形.13.如图,是矩形的对角线的交点,、、、分别是、、、上的点,且.求证:四边形是矩形;若、、、分别是、、、的中点,且,,求矩形的面积.14.请阅读下列材料:问题:如图,在正方形和平行四边形中,点,,在同一条直线上,是线段的中点,连接,.探究:当与的夹角为多少度时,平行四边形是正方形?小聪同学的思路是:首先可以说明四边形是矩形;然后延长交于点,构造全等三角形,经过推理可以探索出问题的答案.请你参考小聪同学的思路,探究并解决这个问题.(1)求证:四边形是矩形;(2)与的夹角为________度时,四边形是正方形.理由:15.如图,在中,,.是沿方向平移得到的,连接、和相交于点.判断四边形是怎样的四边形,说明理由;如图,是线段上一动点(图),(不与点、重合),连接并延长交线段于点,,垂足为点.四边形的面积是否随点的运动而发生变化?若变化,请说明理由;若不变,求出四边形的面积.答案1.解:∵四边形是菱形,∴、互相垂直平分,∴,.∴,.2.解:∵,∴,∵,,∴,∵,∴由勾股定理得,∴.3.证明::∵四边形是正方形,∴,∵是中点,∴,∵,∴,∴,∴,∵,∴,∴.∴;设,则,,,解之得,所以正方形的边长为.4.解:如图,∵菱形的两条对角线,的长度分别为和,∴这个菱形的面积为:;设菱形的两条对角线,相较于点,则,,∴,∴这个菱形的周长为:.5.证明:∵点为的中点,连接并延长到点,使,∴四边形是平行四边形,∵,是的角平分线,∴,∴,∴平行四边形是矩形;当时,理由:∵,,是的角平分线,∴,∵由得四边形是矩形,∴矩形是正方形.6.证明:∵,,∴四边形是平行四边形,∵平分,∴,又∵,∴,∴,∴,又∵四边形是平行四边形,∴四边形是菱形.7.证明:连接、,如图所示:∵四边形是菱形,∴,∵、分别是、上的中点,∴,,同理,,,则,,∴四边形是平行四边形,∵、分别是、的中点,∴,又∵,,∴,∴四边形是矩形.8.解:∵,,要使四边形为菱形,则只需一组邻边相等或对角线互相垂直即可,∴当为的平分线时,四边形为菱形.要使四边形为正方形,则只需在菱形的基础上,再加一角为直角即可,故为直角三角形即可满足条件.由、可得,四边形为正方形,即在直角三角形中,根据勾股定理得:,同理,又,又,,又三角形中,根据勾股定理得:,即,整理得:,即,∴,即.9.证明:∵,,∴四边形是平行四边形,又∵四边形是矩形,∴,,,∴,∴四边形是菱形(一组邻边相等的平行四边形是菱形).10.解:.∵,,∴四边形是平行四边形,,∵,∴.∴.∴四边形是菱形.∴.11.解:如图,过点作于,过点作于,∵四边形为正方形,∴平分,又∵,,∴,∴四边形是正方形,∴,∵,,∴,∴,∴;如图,过点作于,过点作于,垂足分别为、,过点作交的延长线于点,过点作垂足为,则四边形是矩形,四边形是矩形,∵平分,∴,∴矩形是正方形,∴,∴,∵,∴,在和中,∵,∴,∴,∵,.∴,,∴、,∴,即,∴,∵,,∴,∴,∵点放在矩形的对角线交点,∴和分别是和的中位线,∴,,,,∵四边形是矩形,∴,∴,∵,∴,∴,∵,∴,∴,即,设,则,,,∵,∴,解得:,∴,在中,由勾股定理得:,∵,∴.12.证明:,,,∴,∴四边形为矩形,∵,,,∴,又∵,∴,∴同理,∴,即.∴四边形是正方形.13.证明:∵四边形是矩形,∴,∵,∴,即:,∴四边形是矩形;解:∵是的中点,∴,∵,∴,又∵,∴,∴,∵是中点,,∴,∵四边形是矩形,∴,∴,,∴,∴矩形的面积.14.解:(1)∵正方形中,,∴,∴是矩形15.解:四边形是菱形,证明如下:∵是由沿平移得到的,∴,且,∴四边形是平行四边形,又∵,∴四边形是菱形.由菱形的对称性知,,∴∵是由平移得到的,∴,,又∵,∴,∴.。
5 EF 第 1 课时 菱形的判定1、能够判别一个四边形是菱形的条件是()A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形 ABCD 的两条对角线 AC 、BD 相交于点 O, AB= , AO=2, OB=1. 四边形 ABCD 是菱形吗? 为什么?3、 如左下图,AD 是△ABC 的角平分线。
DE ∥AC 交 AB 于 E ,DF ∥AB 交 AC 于 F.四边形 AEDF 是菱形吗?说明你的理由。
4、如右上图,□ABCD 的对角线 AC 的垂直平分线与 AD 、BC 分别交于 E 、F ,四边形 AFCE 是否是菱形?为什么?5、已知 DE∥AC、DF∥AB,添加下列条件后,不能判断四边形 DEAF 为菱形的是()A. AD 平分∠BAC AA B. AB =AC =且 BD =CD EBDC. AD 为中线 FD. EF⊥ADDC 6、 如右图,已知四边形 ABCD 为菱形, AE =CF. 求证:四边形 BEDF 为菱形。
第 6 题7、已知 ABCD 为平行四边形纸片,要想用它剪成一个菱形。
小刚说只要过 BD 中点作 BD 的垂线交 AD 、BC于 E 、F ,沿 BE 、DF 剪去两个角,所得的四边形 BFDE 为菱形。
你认为小刚的方法对吗?为什么?A ED8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部 O9BF C 分 ABCD 是菱形吗?为什么? 、如左下图,四边形 ABCD 中,对角线 AC 和 BD 相交于点O ,且 AC ⊥BD ,第 7 题点 M 、N 分别在 BD 、AC 上,且AO =ON =NC ,BM =MO =OD. 求证:BC =2 DN10、如右上图,已知四边形 ABCD 为矩形,AD =20㎝、AB =10㎝。
AMDM 点从 D 到 N QBPC第 10 题A ,P 点从B 到C ,两点的速度都为 2㎝/s ;N 点从 A 到B ,Q 点从 C 到D ,两点的速度都为 1㎝/s 。
第一章特殊平行四边形一、单选题1.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是( )A.AB=BC B.AC=BD C.∠ABC=90°D.AC与BD互相平分2.如图,矩形ABCD中,对角线AC,BD交于O点.若∠BOC=120°,AC=8,则AB的长为()A.6B.4C.43D.423.如图在Rt△ABC中,∠ACB=90°,AB=10cm,点D是AB的中点,则CD的长度是()A.7cm B.6cm C.5cm D.4cmCD的长为半径4.如图,矩形ABCD中,AB=10,BC=6,分别以C,D为圆心,以大于12作弧,两弧分别交于G,H两点,作直线GH交CD于点E,连接AE,点D关于AE的对称点为点M,作射线AM交BC于点N,则CN的长为()A .253B .4C .256D .55.如图,在长方形ABCD 中,AB=3,BC=4,若沿折痕EF 折叠,使点C 与点A 重合,则折痕EF 的长为( )A .158B .154C .152D .156.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,对角线AC 与BD 交于点O ,点E 是AD 的中点,连接OE ,△ABD 的周长为12cm ,则下列结论错误的是( )A .OE ∥ABB .四边形ABCD 是中心对称图形C .△EOD 的周长等于3cmD .若∠ABC =90°,则四边形ABCD 是轴对称图形7.如图,在△ABC 中,AB =5,AC =12,BC =13,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A.6013B.3013C.2413D.12138.如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,E是CD的中点,则PE+PD 的最小值为()A.35B.32C.6D.5二、填空题9.菱形的周长为12cm,它的一个内角为60°,则菱形的面积为.10.如图,在菱形ABCD中,对角线AC,BD相交于点O,H为BC中点,AC=3,BD=4,则线段OH的长为.11.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:;②如果要得到菱形AEDF,那么△ABC应具备条件:.12.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.13.如图,矩形ABCD内有一点P,连接AP,DP,CP,延长CP交AB于点E,若∠APD=90°,AD=8,CP=CD=6,则AE的长是.OA,把矩形OABC沿OB折叠,14.如图,四边形OABC是矩形,点A的坐标为(8,0),AB=12点C落在点D处,BD交OA于点E,则点E的坐标为.15.如图,已知点E在菱形ABCD的边AB上,以BE为边向菱形ABCD外部作菱形BEFG,连接DF,M,N分别是DC,DF的中点,连接MN.若AB=5,BE=2,∠ABC=120°,则MN=.16.如图,在边长为10的正方形ABCD中,E是BC的中点,连接AE,过点B作AE的垂线,交AE于点G,交CD于点H,F是BH上一点,连接EF,若BE=FE,则FH的长为.17.如图,矩形ABCD 中,AB =10,BC =24,点P 在BC 边上,PE ⊥BD ,PF ⊥AC ,则PE +PF = .18.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,BP =5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③S △APD +S △APB =12+62;④S 正方形ABCD =4+6.其中正确结论的序号是 .三、解答题19.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC=90°.(1)求证:四边形ABCD 是矩形.(2)若∠ACB=30°,AB=1,求①∠AOB 的度数;②四边形ABCD 的面积.20.如图,在菱形ABCD中,∠A=60∘,AB=4,O是对角线BD的中点,过O点作OE丄AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长;(3)求菱形ABCD的面积.21.如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.22.十一国庆节,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.武玥同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD;②如图,将纸片沿着直线AE折叠,点D恰好落在BC边上的F处.请你根据①②步骤计算EC,FC的长.23.综合与实践:【问题情境】某数学兴趣小组在学完《平行四边形》之后,研究了新人教版数学教材第64页的数学活动1.其内容如下:如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图1);(1)对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时,得到了线段BN.【知识运用】请根据上述过程完成下列问题:(1)已知矩形纸片ABCD,AB=43,AM=4,求线段BM的长;(2)通过观察猜测∠NBC的度数是多少?并进行证明;【综合提升】(3)乐乐在探究活动的第(2)步基础上再次动手操作(如图2),将MN延长交BC于点G.将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请判断四边形BGHM的形状,并说明理由.参考答案:1.A2.B3.C4.C5.B6.C7.B8.Acm29.93210.5411.∠BAC=90∘AD平分∠BAC 12.22.513.8314.(5,0)15.67216.517.1201318.①③④19.解:(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC=90°,∴四边形ABCD是矩形;(2)∵∠ABC=90°,∠ACB=300,AB=1∴∠BAC=60°,AC=2,BC=3又∵矩形ABCD中,OA=OB∴∠AOB=180°-2∠BAC=60°S□ABCD=1×3=320.解:(1)在菱形ABCD中,∵AB=AD,∠A=60∘,∴△ABD为等边三角形,∴∠ABD=60∘;(2)∵O是对角线BD的中点,BD=2,∴OB=12∵∠ABD=60∘,=1;∴BE=OBcos60∘=2×12(3)过D作DF⊥AB于点F,由(2)可得:OE=OBsin60∘=3,∵OE⊥AB,点O为BD中点,∴DF=2OE=23,则S菱形ABCD=AB⋅DF=4×23=83.21.(1)证明:∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,∴∠FAC=∠ACE,∠AFE=∠CEF,∴△AOF≌△COE,∴AF=CE,∴四边形AECF为平行四边形,∵EF经过O且垂直于AC,∴EF是对角线AC的垂直平分线,∴AF=CF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠ADC=60°,∴∠HCD=30°,∴HD=12CD=1,∴CH=CD2−HD2=3,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2−x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2−x)2+(3)2,解得:x=74,∴AF=CF=74,∴菱形AECF的面积为:AF×CH=74×3=734.22.解:∵△ADE由△AFE关于AE对称,∴△ADE≌△AFE,∴DE=FE,AD=AF,∵四边形ABCD是矩形,∴BC=AD=AF=20cm,AB=CD=16cm,在Rt△ABF中,由勾股定理:BF=AF2−AB2=202−162=12cm,∴CF=BC-BF=20-12=8cm.∵四边形ABCD是矩形,∴∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理:EF2=CE2+CF2,代入数据:(16-x)2=x2+64,解得:x=6.∴EC=6cm.综上所述,线段EC=6cm,CF=8cm.23.解:(1)∵四边形ABCD为矩形,∴∠A=90°,∵AB=43,AM=4,∴BM=AB2+AM2=8;(2)猜测:∠NBC=30°,证明:连接AN:∵EF为折痕,∴EF垂直平分AB,∴AN=BN,∵△BMN由△BMA折叠所得,∴AB=BN,∴AN=BN=AB,∴△ABN为等边三角形,∴∠ABN=60°,∴∠NBC=90°−60°=30°;(3)四边形BGHM为菱形,理由:∵△BMN由△BMA折叠所得,∴∠ABM=∠NBM,∠BAM=∠MNB=90°,∵∠ABN=∠ABM+∠NBM=60°,∴∠ABM=∠NBM=30°,∵∠NBC=30°,∴∠NBM=∠NBC=30°,∴∠MBG=60°,∴△BMG是等边三角形,∴BM=BG,∵将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,∴△BMG≌△HGM,BH⊥MG,∴MH=BM,∴MH=BM=BG,∵MH∥BG,∴四边形BGHM是平行四边形,∵BM=BG,∴四边形BGHM是菱形.。
第一章特殊平行四边形第1题如图1-4-1,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )图1-4-1A.20B.15C.10D.5第2题如图1-4-2,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )图1-4-2A.AB=CDB.AD=BCC.AC=BDD.AB=BC第3题已知:如图1-4-3,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6 cm,则OE的长为( )图1-4-3A.6 cmB.4 cmC.3 cmD.2 cm第4题如图1-4-4,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )图1-4-4A.6.5B.6C.5.5D.5第5题如图1-4-5,将一个长为10 cm,宽为8 cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )图1-4-5A.10 cm2B.20 cm2C.40 cm2D.80 cm2第6题如图1-4-6,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )图1-4-6A.1个B.2个C.3个D.4个第7题如图1-4-7所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF 等于( )图1-4-7A.75°B.60°C.50°D.45°第8题如图1-4-8所示,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )图1-4-8A.cmB.cmC.cmD.8 cm第9题如图1-4-9所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )图1-4-9A.15°或30°B.30°或45°C.45°或60°D.30°或60°第10题如图1-4-10,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )图1-4-10A.4个B.3个C.2个D.1个第11题如图1-4-11,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件________,使四边形ABCD是正方形(填一个即可).图1-4-11第12题如图1-4-12,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为________.图1-4-12第13题如图1-4-13,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD=________.图1-4-13第14题如图1-4-14,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为__________.图1-4-14第15题如图1-4-15,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是________(写出一个即可).图1-4-15第16题如图1-4-16,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是________.图1-4-16第17题如图1-4-17,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为________cm.图1-4-17第18题如图1-4-18,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为________.图1-4-18第19题如图1-4-19,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.图1-4-19(8分)如图1-4-20,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.图1-4-20第21题如图1-4-21,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF 是否为菱形,并说明理由.图1-4-21如图1-4-22,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.图1-4-22(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.第23题已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1-4-23①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明) (2)如图1-4-23②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图1-4-23③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.图1-4-23。
第一学期北师大九年级数学上册第一章特殊平行四边形经典题型分析归纳考试总分: 160 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、解答题(共 16 小题,每小题 10 分,共 160 分)1.已知如图,在菱形中,对角线、相交于点,,.求证:四边形是矩形;若,,求四边形的面积.2.如图,已知、分别是的边、上的点,且.求证:四边形是平行四边形;若,,且四边形是菱形,求的长.3.准备一张矩形纸片,按如图操作:将沿翻折,使点落在对角线上的点,将沿翻折,使点落在对角线上的点.求证:四边形是平行四边形;若四边形是菱形,,求菱形的面积.4.如图,将矩形沿对角线剪开,再把沿方向平移得到.证明:;若,试问当点在线段上的什么位置时,四边形是菱形.(直接写出答案)5.如图,中,,、分别是、的中点,连接,在延长线上,且.求证:四边形是平行四边形;若四边形是菱形,求的度数.6.如图,在菱形中,对角线、相交于点,过点作一条直线分别交、的延长线于点、,连接、.求证:四边形是平行四边形;若,垂足为,,求的值.7.如图,点是菱形的对角线上一点,连接并延长,交于,交的延长线点.问:图中与哪个三角形全等?并说明理由;求证:;猜想:线段,,之间存在什么关系?并说明理由.8.已知:如图,在中,、分别为边、的中点,是对角线,交的延长线于.求证:;若四边形是菱形,则四边形是什么特殊四边形?并证明你的结论.9.如图,四边形为矩形,四边形为菱形.求证:;试探究:当矩形边长满足什么关系时,菱形为正方形?请说明理由.10.如图,点是菱形对角线的延长线上任意一点,以线段为边作一个菱形,且菱形菱形,连接,.求证:;若,,,求的长.11.如图,四边形是菱形,点是延长线上一点,连接,分别交、于点、,连接.求证:;当时,判断与有何等量关系?并证明你的结论.12.在菱形中,对角线与相交于点,,.过点作交的延长线于点.求的周长;点为线段上的点,连接并延长交于点.求证:.13.如图,在菱形中,,,,相交于点.求边的长;如图,将一个足够大的直角三角板角的顶点放在菱形的顶点处,绕点左右旋转,其中三角板角的两边分别与边,相交于点,,连接与相交于点.①判断是哪一种特殊三角形,并说明理由;②旋转过程中,当点为边的四等分点时,求的长.14.已知:在矩形中,,,四边形的三个顶点、、分别在矩形边、、上,.如图,当四边形为正方形时,求的面积;如图,当四边形为菱形,且时,求的面积(用含的代数式表示);在的条件下,的面积能否等于?请说明理由.15.在菱形中,,是对角线上一点,是线段延长线上一点,且,连接、.若是线段的中点,如图,易证:(不需证明);若是线段或延长线上的任意一点,其它条件不变,如图、图,线段、有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.16.如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒.过点作于点,连接、.求证:;四边形能够成为菱形吗?如果能,求出相应的值;如果不能,说明理由.答案1.证明:∵,,∴四边形是平行四边形,∵在菱形中,,∴平行四边形是菱形,故,四边形是矩形;解:∵,,∴,∵,∴是等边三角形,∴,,∵四边形是菱形,∴,∴四边形的面积.2.证明:∵四边形是平行四边形,∴,且,∴,∵,∴,∴四边形是平行四边形.解:∵四边形是菱形,∴,∴,∵,,∴,∴,∴.3.证明:∵四边形是矩形,∴,,,∴,∴,∴,∵,∴四边形为平行四边形.解:∵四边形为菱形,∴,,∵四边形是矩形,∴,,∴,∵,,∴,,故菱形的面积为:.4.解:得:;得;+得:解得;-得:;把代入,;代入,,;将,代入,.方程的为:,.5.证明:∵,是的中点,∴,∵,∴,在中,∵且是的中点,∴是等腰底边上的中线,∴也是等腰的顶角平分线,∴,∵,∴,∵,∴,∴,又∵,∴四边形是平行四边形;解:∵四边形是菱形,∴,由知,,∴,∴是等边三角形,∴,在中,.6.证明:在菱形中,,,,∴,在和中,,∴,∴,又∵,∴四边形是平行四边形;解:设,∵,,∴,又∵,∴,∴,∴,∴,∵,∴,∴.7.解:.理由:∵四边形是菱形,∴,.又∵,∴.证明:∵,∴,∵,∴,又∵,∴.猜想:.理由:∵,∴.∴.∵,∴.∴.8.证明:∵四边形是平行四边形,∴,,.∵点、分别是、的中点,∴,.∴.在和中,,∴.解:当四边形是菱形时,四边形是矩形.证明:∵四边形是平行四边形,∴.∵,∴四边形是平行四边形.∵四边形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四边形是矩形.9.证明:∵四边形为矩形,∴,,∵四边形为菱形,∴,在和中,,∴;解:当时,菱形为正方形.理由:∵,∴,,又∵,∴,∴,同理可得,,∵,∴,∴菱形是正方形.10.证明:∵菱形菱形,∴,∴,∴,∵,,∴,∴;解:连接交于点,则,∵,∴,∴,,,∴,∴,∴.11.证明:∵四边形是菱形,∴,;在和中,∴,∴.解:判断.∵四边形是菱形,∴,∴,由题意知:∴,则,∵,∴,∴,∵,∴,∵,∴,∴,∴.12.解:∵四边形是菱形,∴,,,∴,,∵,,∴四边形是平行四边形,∴,,∴的周长是:.证明:∵四边形是菱形,∴,∴,∵在和中,∴,∴.13.解:∵四边形是菱形,∴,∴为直角三角形,且,.在中,由勾股定理得:.①是等边三角形.理由如下:∵由知,菱形边长为,,∴与均为等边三角形,∴,又∵,∴.在与中,∵,∴,∴,∴是等腰三角形,又∵,∴是等边三角形.②,为四等分点,且,∴,.由①知,∴.∵(三角形内角和定理),(等边三角形内角),(对顶角)∴.在与中,∵,∴,∴,即,解得:.14.解:如图,过点作于.在正方形中,,,∴,∵,∴,又∵,∴,同理可证:,∴,∴,则,如图,过点作于.连接.∵,∴,∵,∴,∴.又∵,,∴.∴.∴的面积不能等于.∵若,则,∴.此时,在中,,在中,,∴,即点已经不在边上.故不可能有;解法二:的面积不能等于,∵点在上,∴菱形边长的最大值为,∴的最大值为,又因为函数的值随着的增大而减小,所以的最小值为.又∵,∴的面积不能等于.15.证明:∵四边形为菱形,∴,又∵,∴是等边三角形,∵是线段的中点,∴,,∵,∴,∴,∵,∴,∴,∴;图.…图.…图证明如下:过点作,交于点,∵四边形为菱形,∴,又∵,∴是等边三角形,∴,,…又∵,∴,又∵,∴是等边三角形,…∴,∴,…又∵,∴,又∵,∴,…∴;…图证明如下:过点作交延长线于点,∵四边形为菱形,∴,又∵,∴是等边三角形,∴,,…又∵,∴,又∵,∴是等边三角形,…∴,∴,…又∵,∴,又∵,∴,…∴.…16.证明:在中,,,,∴.又∵,∴;解:能,理由如下:∵,,∴.又∵,∴四边形为平行四边形,∵,∴.∴.若使为菱形,则需,即,.即当时,四边形为菱形.。
第一章特殊的平行四边形1.菱形的性质和判断1.1第一课时知识点1:菱形的定义例1(2019年毕节)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A. B.C.D.1分析:菱形的判定有如下方法:1.一组邻边相等的平行四边形是菱形;2.四边相等的四边形是菱形;3. 对角线互相垂直的平行四边形是菱形;4. 对角线互相平分且垂直的四边形是菱形.这里已知四边形的基础是平行四边形,因此解答时以1和3为判断主要依据.解:根据菱形的判定方法,知道①,③是成立的,所以推出平行四边形ABCD是菱形的概率为:=,所以选B.点拨与提升:遇到菱形的判定问题,要从两个大方面去分析求解,一是基础图形是平行四边形,二是基础图形是一般四边形,这是解题的基本思路;找到方法后,接下来判断条件的完备性便成为了解题的关键.针对性练习:1.(2019•江西)如图1,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种答案:.D解析:共有如下6种拼接方法:2. (2019•浙江湖州)如图2,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.答案:解:(1)证明:因为D,E,F分别是AB,BC,AC的中点,所以DF∥BC,EF∥AB,所以DF∥BE,EF∥BD,所以四边形BEFD是平行四边形;(2)解:因为∠AFB=90°,D是AB的中点,AB=6,所以DF=DB=DA=AB=3,所以四边形BEFD是菱形,所以四边形BEFD的周长为12.其他教材试题:如图3,AE∥BF,AC平分∠BAD,交BF于C,BD平分∠ABC,交AE于D,连接CD.求证:四边形ABCD是菱形.(人教版八年级数学下册P102页第6题)答案:证明:因为AE ∥BF ,AC 平分∠BAD ,所以∠BAC=∠DAC=∠ACB,所以AB=BC ,因为AE ∥BF ,BD 平分∠ABC ,所以∠ABD=∠CBD=∠ADB,所以AB=AD ,所以AD=BC ,因为AD ∥BC,所以四边形ABCD 是平行四边形,因为AB=BC ,所以四边形ABCD 是菱形.2.如图4,四边形ABCD 是菱形,点M,N 分别在AB,AD 上,且BM=DN ,MG ∥AD,NF ∥AB ,点F,G 分别在BC,CD 上,MG 与NF 交于点E.求证:四边形AMEN ,EFCG 都是菱形.(人教版八年级数学下册P103页第10题)答案:因为四边形ABCD 是菱形,所以AB=AD,因为BM=DN ,所以AM=AN ,因为ME ∥AN,NE ∥AM ,所以四边形AMEN 是平行四边形,所以四边形AMEN 是菱形.同理可证,四边形EFCG 是菱形.知识点2:菱形的轴对称性例2 (2019•河北•3分)如图5,菱形ABCD 中,∠D=150°,则∠1=( )A .30°B .25°C .20°D .15°分析:菱形是以对角线所在直线为对称轴的轴对称图形,利用轴对称的全等性解题是解题时常用数学思想解:根据菱形的对称性,知道∠B=∠D ,∠DAC=∠1,所以∠1=15°,所以选D.点拨与提升:菱形是一个轴对称图形,有两条对称轴,分别是对角线所在的直线.针对性练习:1. (2019•天津改编)如图6,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则C,D 的坐标分别为 .图3 BFA E GEB A M答案:根据菱形的对称性,可得点C 坐标为(-2,0),点D 的坐标为(0,-1).2. (2019年岳阳)如图7,在菱形ABCD 中,点E 、F 分别为AD 、CD 边上的点,DE=DF ,求证:∠1=∠2.答案:证明:根据题意,得点A,C 关于直线BD 对称,点E,F 关于直线BD 对称,因此△DAF 和△DEC 关于直线BD 对称,所以△DAF ≌△DEC ,所以∠1=∠2.其他教材试题:如图8,将菱形ABCD 沿AC 方向平移到D C B A '''',D A ''交CD 于E ,B A ''交BC 于F.判断四边形FCE A '是不是菱形.请说明理由.(新浙教版八年级数学下册P124页课内练习1)解:四边形FCE A '是菱形.理由如下:因为菱形是关于对角线所在直线为对称轴的轴对称图形,且两个图形是平移得到,所以点E,F关于直线C A '对称,所以CF CE F A E A ='=',,易证CE E A =',所以CF CE F A E A =='=',所以四边形FCE A '是菱形.知识点3:菱形的特殊性质例3(2019•贵阳)如图9,菱形ABCD 的周长是4cm ,∠ABC =60°,那么这个菱形的对角线AC的长是( )A .1cmB .2 cmC .3cmD .4cm分析:根据菱形四边相等求得边长,连接BD ,根据对角线互相垂直,确定∠ABO=30°,从而确定AO ,根据AC=2AO 即可得解.解:因为菱形ABCD 的周长是4cm ,所以AB=BC=1cm .连接BD ,则AC ⊥BD ,所以∠ABO=30°,所以AB=2AO ,因为AC=2AO ,所以AC=AB=1,所以选A .针对性练习:1. (2019•铜仁)如图10,四边形ABCD 为菱形,AB=2,∠DAB=60°,点E 、F 分别在边DC 、BC上,且CE=CD ,CF=CB ,则S △CEF = ( )A .B .C .D .答案:D解析:因为四边形ABCD 为菱形,所以AB=BC=CD=2,∠DCB=60°,所以CE=CF=23,所以△CEF 为等边三角形,所以S △CEF =√34×(23)2=√39.2. (2019•天津)如图11,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于 ( ) A.5 B.34 C.54 D. 20答案:C解析:由勾股定理可得:AB=√AO 2+BO 2=√5,根据菱形四边相等,所以周长等于4√5,所以选C.其他教材试题:如图12,四边形ABCD 是菱形,∠ACD=30°,BD=6cm.求:(1)∠BAD,∠ABC 的度数;(2)边AB 及对角线AC 的长(精确到0.01cm ).(人教版数学八年级下册P102页第5题)解:(1)因为四边形ABCD 是菱形,所以AB=BC=CD=DA,∠ACD=∠ACB=30°,所以∠DCB=60°,所以△BCD 是等边三角形,根据菱形的性质,得∠BAD=60°,∠ABC=120°;(2)因为△BCD 是等边三角形,所以AB=BD=6cm ,设对角线的交点为O ,在直角三角形DOC中,OC=222236-=-OD DC =33,所以AC=2OC=63≈10.39(cm ).课时练:一、选择题1. (2018•十堰)菱形不具备的性质是 ( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形答案:B解析:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B .2. (2018•淮安)如图13,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长 ( )A .20B .24C .40D .48答案:A解析:由菱形对角线性质知,AO=12AC=3,BO==12BD=4,且AO ⊥BO ,则AB=5,故这个菱形的周长L=4AB=20.故选:A .二、填空题3. (2018•黑龙江)如图14,在平行四边形ABCD 中,添加一个条件 使平行四边形ABCD 是菱形.答案:AB=BC 或AC ⊥BD .解析:当AB=BC 或AC ⊥BD 时,四边形ABCD 是菱形.4. (2018•广州)如图15,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.答案:(﹣5,4).解析:根据题意,得AB=5,所以AD=5,由勾股定理知:OD=4,所以点C的坐标是:(﹣5,4).故答案为:(﹣5,4).备选题:1. (2018•贵阳)如图16,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9答案:A解析:EF是△ABC的中位线,所以BC=6,所以菱形ABCD的周长是4×6=24.故选:A.2. (2018•随州)如图17,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.答案:(√6,﹣√6).解析:作B′H⊥x轴于H点,连结OB,OB′,如图,则∠AOC=180°﹣∠C=60°,OB平分∠AOC,所以∠AOB=30°,∠BOB′=75°,OB′=OB=2√3,OB′=√6,△OBH为等腰直角三角形,所以OH=B′H=√22所以点B′的坐标为(√6,﹣√6).故答案为:(√6,﹣√6).1.1第二课时知识点1:菱形的判定定理1例4已知:如图18所示,AD是三角形ABC的角平分线,DE∥AC,交AB于点E,DF∥AB,交AC 于点F.求证:四边形AEDF是菱形.分析:根据平行条件,易证四边形AEDF是平行四边形.后利用线段垂直平分线的性质的逆定理可证明EF⊥AD,从而得证.证明:因为DE∥AC,DF∥AB,所以四边形AEDF是是平行四边形.因为DE∥AC,所以∠EDA=∠DAC,因为AD是三角形ABC的角平分线,所以∠EAD=∠DAC;所以∠EAD=∠EDA,所以AE=ED,所以点E在线段AD的垂直平分线上,同理可证点F在线段AD的垂直平分线上,所以EF⊥AD,所以四边形AEDF是菱形.点拨与提升:用这个定理时,一定清楚两个核心条件,一是基础条件:四边形是平行四边形;二是升级条件:对角线互相垂直.证明时,平行四边形是基础,要灵活运用平行四边形的判定,证垂直是关键,证明的方法很多,常见的有如下几种:1.等腰三角形三线合一性质法;2.两角互余法;3.垂直—平行—垂直法.4.线段垂直平分线性质定理的逆定理.针对性练习:(2018•扬州)如图19,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.求证:四边形AEBD是菱形;证明:易证四边形AEBD是平行四边形,因为DB=DA,点F是AB的中点,所以AB⊥DE,所以四边形AEBD是菱形.其他教材试题:已知:如图20所示,在矩形ABCD中,对角线AC的垂直平分线与AD,BC分别交于点E,F.求证:四边形AFCE是菱形.(浙教版数学八年级下册P159页例2)证明:易证△AOE≌△COF,所以AE=CF.因为FC∥AE,所以四边形AFCE是平行四边形,因为AC⊥EF,所以四边形AFCE是菱形.知识点2:菱形的判定定理2例5 (2018•乌鲁木齐)如图21,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD 是菱形;(2)若AB=6,BC=10,求EF 的长.分析:(1)利用已知条件设法证明四边形AECD 的四边相等即可.(2)根据菱形的面积公式和三角形的面积公式解答即可.证明:(1)因为AD ∥BC ,AE ∥DC ,所以四边形AECD 是平行四边形,所以AD=EC ,AE=CD.因为∠BAC=90°,E 是BC 的中点,所以AE=CE=12BC ,所以AE=EC=CD=DA ,所以四边形AECD 是菱形;(2)如图21,过A 作AH ⊥BC 于点H ,因为∠BAC=90°,AB=6,BC=10,所以AC=8,因为S ∆ABC =12BC ×AH=12AB ×AC ,所以AH=245,因为点E 是BC 的中点,BC=10,四边形AECD 是菱形,所以CD=CE=5,因为菱形的面积相等,所以CE •AH=CD •EF ,所以EF=AH==245. 点拨与提升:证明四边形相等是解题的关键,这种方法的最大特点是不以四边形的形状为主线,二是以证明四边相等为主线解决.其次,要把握好同一个图形面积的不同的表示方式,为解题提供新的有效解题方法.针对性练习:将三角形纸片ABC(AB >AC)沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展平 纸片,如图22-1;再次折叠该三角形纸片,使得点A 与点D 重合,折痕为EF ,再次展平后 连接DE 、DF ,如图22-2,证明:四边形AEDF 是菱形.证明:由第一次折叠可知:AD 为∠CAB 的平分线,所以∠1=∠2,由第二次折叠可知:∠CAB=∠EDF ,从而,∠3=∠4,因为AD 是△AED 和△AFD 的公共边,所以△AED ≌△AFD(ASA),所以AE=AF ,DE=DF ,又由第二次折叠可知:AE =ED ,AF =DF ,所以AE=ED=DF=AF ,所以四边形AEDF 是菱形.其他教材的试题:如图23,在四边形ABCD 中,AC=BD ,E,F,G,H 依次是AB,BC,CD,DA 的中点.求证:四边形EFGH 是菱形.(浙教版数学八年级下册P160页A 组第3题)证明:因为E,F,G,H 依次是AB,BC,CD,DA 的中点,所以EF,FG,GH,HE 分别是△ABC ,△BCD , △CDA ,△DAB 的中位线,所以EF=GH=21AC,FG=EH=21BD ,因为AC=BD , 所以EF=FG=GH=HE ,所以四边形EFGH 是菱形.课时练:1.(2018•内江)如图24,已知四边形ABCD 是平行四边形,点E ,F 分别是AB ,BC 上的点,AE=CF ,并且∠AED=∠CFD .求证:(1)△AED ≌△CFD ;(2)四边形ABCD 是菱形.答案:(1)证明:因为四边形ABCD 是平行四边形,所以∠A=∠C .所以△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .因为四边形ABCD 是平行四边形,所以AD=BC,AB=CD ,所以AD=BC=AB=CD ,所以四边形ABCD 是菱形.2. (2018•遂宁)如图25,在平行四边形ABCD 中,E ,F 分别是AD ,BC 上的点,且DE=BF ,AC ⊥EF .求证:四边形AECF 是菱形.证明:因为四边形ABCD 是平行四边形,所以AD=BC ,AD ∥BC ,因为DE=BF ,所以AE=CF ,因为AE ∥CF ,所以四边形AECF 是平行四边形,因为AC ⊥EF ,所以四边形AECF 是菱形.3. (2018•郴州)如图26,在平行四边形ABCD 中,作对角线BD 的垂直平分线EF ,垂足为O ,分别交AD ,BC 于E ,F ,连接BE ,DF .求证:四边形BFDE 是菱形.证明:因为在平行四边形ABCD 中,O 为对角线BD 的中点,所以BO=DO ,∠EDB=∠FBO ,在△EOD 和△FOB 中,{∠EDO =∠FBO OD =OB ∠EOD =∠FOB ,所以△DOE ≌△BOF (ASA ); 所以OE=OF ,因为OB=OD ,所以四边形EBFD 是平行四边形,因为EF ⊥BD ,所以四边形BFDE 为菱形.备选题:(2018•泰安)如图27,△ABC 中,D 是AB 上一点,DE ⊥AC 于点E ,F 是AD 的中点,FG ⊥BC 于点G ,与DE 交于点H ,若FG=AF ,AG 平分∠CAB ,连接GE ,CD .(1)求证:△ECG ≌△GHD ;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.解:(1)因为AF=FG,所以∠FAG=∠FGA,因为AG平分∠CAB,所以∠CAG=∠FGA,所以∠CAG=∠FGA,所以AC∥FG,因为DE⊥AC,所以FG⊥DE,因为FG⊥BC,所以DE∥BC,所以AC⊥BC,所以∠C=∠DHG=90°,∠CGE=∠GED,因为F是AD的中点,FG∥AE,所以H是ED的中点,所以FG是线段ED的垂直平分线,所以GE=GD,∠GDE=∠GED,所以∠CGE=∠GDE,所以△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,所以GC=GP,所以△CAG≌△PAG,所以AC=AP,由(1)可得EG=DG,所以Rt△ECG≌Rt△GPD,所以EC=PD,所以AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,AD,所以AE=AF=FG,由(1)得AE∥FG,所证明:因为∠B=30°,所以∠ADE=30°,所以AE=12以四边形AECF是平行四边形,所以AE=AF=FG=EG,所以四边形AEGF是菱形.1.1第三课时知识点1:菱形的对角线计算例6(2018•柳州)如图28,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.分析:(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.解:(1)因为四边形ABCD是菱形,AB=2,所以菱形ABCD的周长=2×4=8;(2)因为四边形ABCD是菱形,AC=2,AB=2,所以AC⊥BD,AO=1,所以BO=√AB2−AO2=√22−12=√3,所以BD=2√3.点拨与提升:菱形的计算有三大特点:一是计算周长,边长的4倍;二是对角线互相垂直且平分,为计算提供基础条件;三是充分利用勾股定理,确定计算结果.针对性练习:(2018•呼和浩特)如图29,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.解:(1)证明:因为AB∥DE,所以∠A=∠D,因为AF=CD,所以AF+FC=CD+FC,即AC=DF,因为AB=DE,所以△ABC≌△DEF.(2)如图,连接AB交AD于O.在Rt△EFD中,因为∠DEF=90°,EF=3,DE=4,所以DF=√32+42=5,因为四边形EFBC 是菱形,所以BE ⊥CF ,所以EO=DE×EF DF =125,所以OF=OC=√EF 2−EO 2=95,所以CF=185,所以AF=CD=DF ﹣FC=5﹣185=75.其他教材试题:如图30,菱形花坛ABCD 的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC 和BD.求:两条小路的长(结果保留小数点后2位)和花坛的面积(结果保留小数点后1位).解:因为ABCD 是菱形,∠ABC=60°,所以AC ⊥BD ,∠ABD=30°,△ABC 是等边三角形,所以AC=AB=20m ,在直角三角形AOB 中,BO=300102022=-,所以BD=2BO=2300≈34.64m,菱形ABCD 的面积为:64.34202121⨯⨯=⨯BD AC ≈346.42m .知识点2:菱形的面积计算例7 如图31,已知四边形ABCD 是菱形,且菱形的周长为32,AE ⊥BC ,垂足为E ,若△ABC 是等边三角形,求菱形的面积.分析:根据菱形的周长,确定菱形的边长;根据△ABC 是等边三角形,确定BE 的长,从而利用勾股定理,确定高AE ,利用菱形的面积等于底乘高计算即可.解:因为菱形的周长为32,所以AB=BC=8,因为△ABC 是等边三角形,AE ⊥BC ,所以BE=21BC=4,所以AE=222248-=-BE AB =43,所求菱形的面积为:BC ×AE=323.点拨与提升:菱形的面积计算方法有两种,一是底边乘以其上的高;二是菱形对角线积的一半,这是最常用的方法,计算时灵活运用勾股定理是解题的关键.要特别重视一般式的计算法即底乘高法,这是继承平行四边形的性质得来的,是最基本计算方法,也是通用的计算方法,必须熟练掌握.针对性练习:(2018•哈尔滨)如图32,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,3OB=4AO ,则线段AB 的长为 ( )A .7B .27C .5D .10答案:解:因为四边形ABCD 是菱形,所以AC ⊥BD ,AO=CO ,OB=OD ,所以∠AOB=90°,因为BD=8,所以OB=4,因为3OB=4AO ,所以O=3,在Rt △AOB 中,由勾股定理得:AB=22BO AO +=5,所以选C.其他教材试题: 如图33所示,四边形ABCD 是菱形,对角线AC=8cm ,BD=6cm,DH ⊥AB 于H ,求DH 的长.解:根据题意,易得菱形的边长为5,菱形的面积为6821⨯⨯=24,因为菱形的面积等于底乘高, 所以DH=524.知识点3:菱形的性质与判定综合应用例8 (2018•广西)如图34,在平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF .(1)求证:平行四边形ABCD 是菱形;(2)若AB=5,AC=6,求菱形ABCD 的面积.分析:(1)利用全等三角形的性质证明AB=AD 即可解决问题;(2)连接BD 交AC 于O ,利用勾股定理求出对角线的长即可解决问题;解:(1)证明:因为四边形ABCD 是平行四边形,所以∠B=∠D ,AB=CD,BC=AD ,因为AE ⊥BC ,AF ⊥CD ,所以∠AEB=∠AFD=90°,因为BE=DF ,所以△AEB ≌△AFD所以AB=AD ,所以AB=BC=CD=DA ,所以四边形ABCD 是菱形.(2)连接BD 交AC 于O ,因为四边形ABCD 是菱形,AC=6,所以AC ⊥BD ,AO=OC=12AC=12×6=3,因为AB=5,AO=3,所以BO=√AB 2−AO 2=4,所以BD=2BO=8,所以S 菱形ABCD =12×AC ×BD=24. 点拨与提升:先利用菱形的判定定理判定菱形,后运用菱形的性质进行相关计算.针对性练习:(2018•扬州)如图35,在平行四边形ABCD 中,DB=DA ,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .(1)求证:四边形AEBD 是菱形;(2)若DC=√10,EF=3BF ,求菱形AEBD 的面积.答案:解:(1)证明:因为四边形ABCD 是平行四边形,所以AD ∥CE ,所以∠DAF=∠EBF , 所以△AFD ≌△BFE ,所以AD=EB ,所以四边形AEBD 是平行四边形,所以AD=EB,DB=AE , 因为BD=AD ,所以AE=EB=BD=DA ,所以四边形AEBD 是菱形.(2)解:因为四边形ABCD 是平行四边形,所以CD=AB=√10,因为四边形AEBD 是菱形, 所以AB ⊥DE ,BF=√102,所以EF=3√102,所以DE=3√10,所以S 菱形AEBD =12×AB ×DE=12√10•3√10=15.其他教材试题:如图36,在平行四边形ABCD 中,E,F 分别是AB,CD 的中点,AF 与DE 相交于点H ,CE 与BF 相交于点G.求证:(1)四边形EHFG 是平行四边形;(2)在什么条件下,四边形EHFG 是是菱形?请说出条件和理由.(浙教版数学八年级下册P161页D 组第6题)答案:解:(1)因为四边形ABCD 是平行四边形,所以AB=CE,AB ∥CD ,因为E,F 分别是AB,CD 的中点,所以BE=DF,BE ∥DF ,所以四边形BEFD 是平行四边形,所以EH ∥FG ;同理可证,FH ∥EG ; 所以四边形EHFG 是平行四边形;(2) 当四边形ABCD 是矩形时,四边形EHFG 是菱形.理由如下: 因为BE=21AB ,CF=21CD ,所以BE=CF .因为BE ∥CF ,所以四边形BEFC 是平行四边形.因为四边形ABCD 是矩形,所以∠ABC=90°,所以四边形BEFC 是矩形.所以EH=21CE ,FH=21BF ,且CE=BF ,所以EH=FH , 所以四边形EHFG 是菱形.课时练:1.图37,在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为 ( )A .20B .18C .16D .15答案:C解析:根据菱形的性质,得三角形ABC 是等边三角形,所以AB=4,所以菱形的周长为16.2.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为 ( ) A. 32cmB.42cm C.32cm D.232cm答案:D. 解析:设对角线的交点为O ,所以OA=1,OB=22OA AB -=3,所以BD=23,所以菱形的面积等于:3222121⨯⨯=⨯⨯BD AC =23(2cm ).3.(2018•香坊区)已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上,设对角线的交点为点O ,且OA=3OE ,则BE 的长为 .答案:3或5.解析:因为菱形ABCD 中,边长为5,对角线AC 长为6,所以AC ⊥BD ,BO=22OA AB -=4, 因为OA=3OE,解得:OE=1,所以BE=BO ﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:所以BE=BO+OE=4+1=5,所以答案为:3或5.4.一种千斤顶利用了四边形的不稳定性. 如图39,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?(2=1.414,3=1.732,结果保留整数).解:当∠ADC=60°时,根据菱形的性质,得三角形ADC是等边三角形,所以AC=40cm;当∠ADC=120°时,过点A作AF⊥CD于点F,如图所示,则AF=203,根据菱形的性质,得∠ACF=30°,所以AC=2AF=403,所以千斤顶升高的高度为:403-40=40(1.732-1)≈29.28cm≈29cm.5.如图39,已知等腰三角形ABC中,AB=AC,AD⊥BC,垂足为D,点E,F分别是AB,AC的中点,连接DE,DF.(1)求证:四边形AEDF是菱形;(2)若AB=10,BC=12,求菱形AEDF的面积.(1)证明:因为AB=AC,AD⊥BC,所以点D是BC的中,因为点E,F分别是AB,AC的中点,根据三角形中位线定理,得DE=AF=21AC ,DF=AE=21AB ,因为AB=AC ,所以AE=ED=DF=AF ,所以四边形AEDF 是菱形; (2)连接EF ,则EF 是三角形ABC 的中位线,所以EF=21BC=6,因为AB=10,BC=12, 所以AD=22BD AB -=8,所以菱形AEDF 的面积为:862121⨯⨯=⨯⨯EF AD =24.备选题:1.将等边三角形ABC 沿着边AB 对折,点C 的重合点为点D ,则四边形ABCDD 的形状是 . 答案:菱形.解析:利用四边相等的四边形是菱形判断.2.如图40,在菱形ABCD 中,AB=2,∠B 是锐角,AE ⊥BC 于点E ,若DE=3,求菱形ABCD 的面积.解:根据勾股定理,得AE=22AD DE -=5,所以菱形的面积为25.2.矩形的性质和判断1.2第一课时知识点1:矩形的定义例1 (2018•沈阳)如图1,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,四边形ABCD的面积是.分析:(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.解:(1)证明:因为四边形ABCD是菱形,所以AC⊥BD,所以∠COD=90°.因为CE∥OD,DE∥OC,所以四边形OCED是平行四边形,因为∠COD=90°,所以平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.因为四边形ABCD是菱形,所以AC=2OC=4,BD=2OD=2,所以菱形ABCD的面积为: AC•BD=×4×2=4.所以填4.点拨与提升:运用矩形的定义解题时,要抓牢两个核心要素:一是基础四边形是平行四边形,二是其中的一个角是直角.其次要熟练掌握直角的得出方式:垂直二线的交角是直角;互补且相等的两个角是直角;三角形中,两个角互余,则第三个角一定是直角等.针对性练习:(2018•上海改编)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B.∠A=∠C C.四个内角相等D.AB⊥BC答案:B解析:由∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;由∠A=∠C不能判定这个平行四边形为矩形,错误;由∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,所以∠A=∠B=∠C=∠D=90°,可以判定这个平行四边形为矩形,正确;由AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;所以选:B.其他教材试题:如图2,平行四边ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4cm,求:四边形ABCD的面积(精确到0.012cm)(人教版八年级数学P96页第2题)答案:解:因为△OAB是等边三角形,所以AO=BO=AB,因为四边形ABCD是平行四边形,所以OB=OD,所以OA=OD,因为△OAB是等边三角形,所以∠BAO=∠AOB=60°,所以∠AOD=120°,因为OA=OD,所以∠OAD=∠ODA=30°,所以∠BAD=90°,因为四边形ABCD是平行四边形,所以四边形ABCD是矩形,在直角三角形ABD中,AD=2248-=43,所以四边形ABCD的面积为:4⨯43=163≈27.71(2cm)知识点2:矩形的性质定理1例2(2019•广东省广州市)如图3,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD 于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.8分析:连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.解:连接AE,如图43,因为EF是AC的垂直平分线,所以OA=OC,AE=CE,因为四边形ABCD是矩形,所以∠B=90°,AD∥BC,所以∠OAF=∠OCE,所以△AOF≌△COE,所以AF=CE=5,所以AE=CE=5,BC=BE+CE=8,所以AB===4,所以AC===4;所以选:A.点拨与提升:利用矩形的四个角都是直角生成直角三角形,为勾股定理的不断运用创造条件,也诶问题的破解提供基础.针对性练习:如图4,已知:四边形ABCD是矩形, AC与BD是对角线 .求证:AC=BD .答案:证明:因为四边形ABCD是矩形,所以AB=DC,∠ABC=∠DCB=90°,因为BC=CB ,所以△ABC≌△DCB ,所以AC=BD.其他教材试题:已知:如图5,在矩形ABCD中,M是BC的中点.求证:AM=DM.(浙教版数学八年级下册P149页A组第3题)答案:证明:因为四边形ABCD是矩形,所以AB=CD,∠B=∠C=90°,因为BM=CM,所以△ABM≌△DCM,所以AM=DM.知识点3:矩形的性质定理2例3(2019•江苏无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直分析:根据矩形和菱形的性质可得出其对角线性质的不同,可得到答案.解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的性质为对角线相等,所以选:C.点拨与提升:矩形的性质识记,要从两个方面落实,一是平行四边形具有的性质,菱形具有点的性质,二是矩形特有的性质,只有分类识记才有效果,因此熟记两图形的性质是解题的关键.针对性练习:(2018•株洲)如图6,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为.答案:2.5解析:因为四边形ABCD是矩形,所以AC=BD=10,BO=DO=BD,所以OD=BD=5,因为点P、Q是AO,AD的中点,所以PQ是△AOD的中位线,所以PQ=DO=2.5.其他教材试题:1.如图7,矩形ABCD的对角线AC、BD相交于点O,则图中有个直角三角形,有个等腰三角形,有对全等三角形.(浙教版数学八年级下册P148页课内练习第2题)答案:4,4,4;解析:直角三角形ABD,直角三角形ABC,直角三角形ADC,直角三角形BCD;等腰三角形AOD,等腰三角形AOB,等腰三角形BOC,等腰三角形COD;△AOB≌△COD,△AOD≌△COB,△ABD≌△CBD,△ABC≌△ADC.2. 如图7,矩形ABCD 的对角线AC ,BD 相交于点O.(1)若∠AOD=120°,则△AOB 是 三角形;△COD 是 三角形.(2)若∠AOD=120°,CD=4,则对角线AC 的长 ,矩形ABCD 的周长 ,面积为 . 答案:(1)△AOB 是等边三角形;△COD 是等边三角形.(2)AC=8,矩形ABCD 的周长8+83,面积为163.解析:利用勾股定理计算即可.知识点4:直角三角形斜边上的中线的性质例4 如图8,已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高, M 是BC 的中点。
北师大版九年级上期数学第一章特殊平行四边形证明题专题训练1(巩固提升)一、菱形1.在菱形ABCD和等边△BGF中,∠ABC=60°,P是DF的中点.(1)如图1,点G在BC边上时,①判断△BDF的形状,并证明;②请连接PB,若AB=10,BG=4,求PB的长;(2)如图2,当点F在AB的延长线上时,连接PG、PC.试判断PC、PG有怎样的关系,并给予证明.2.在▱ABCD中,点E、F分别在AB、CD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;时,求证:∠AFE=90°;(2)当n=12(3)当CE=CF,DF=6,BE=3时,直接写出线段EF的长为_______.3.如图,菱形ABCD中,AB=4,∠BAD=120°,△AEF是等边三角形,E、F在边BC,CD上.(1)证明BE=CF(2)当点E、F在边BC,CD上运动(△AEF保持等边三角形),请研究四边形AECF的面积是否发生变化,若不变,求这个定值;若改变求其最大值.(3)在(2)的前提下,研究△CEF的面积是否发生变化,若不变,求这个定值;若改变求其最大值.4.已知四边形ABCD是菱形,AB=4,∠ABC=60∘,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60∘.(1)如图 ①,当E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图 ②,当E是线段CB上任意一点时(点E不与点B,C重合),求证:BE=CF;(3)如图 ③,当点E在线段CB的延长线上,且∠EAB=15∘时,求CF的长.5.如图,菱形ABCD中,∠ABC=120∘,E是BC延长线上一点,连接DE,以DE为边向外作等边ΔDEF,连接AF,交菱形对角线BD的延长线于点P.(1)若AB=4,CF=6,求CE;(2)求证:BC=CF−2DP.6.如图,在菱形ABCD中,∠B=60°,M、N分别为线段AB、BC上的两点,且BM=CN,AN、CM相交于点E,求∠AED的度数.二、矩形形7.如图,在矩形ABCD中,AB=8,BC=6,点P、点E分别是边AB、BC上的动点,连接DP、PE.将ΔADP与ΔBPE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处.(1)当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于K,求CK的长;(2)当点P运动到某一时刻,若P,A′,B′三点恰好在同一直线上,且A′B′=4,试求此时AP的长.8.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.9.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90∘,求AG的长.10.如图1,在矩形ABCD中,E是CB延长线上的一个动点,F,G分别为AE,BC的中点,FG与ED相交于点H(1)求证:HE= HG.(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PE−PA的值.PB11.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.12.已知:如图,在矩形ABCD中,CE平分∠BCD,交AD于点E,BF⊥CE于F,连接DF并延长交AB于G.(1)求证:GF=FD.(2)若AE=2,DE=3,求DG的长.三、正方形13.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD于点E.(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.14.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE=EN,连接CN、CE.(1)求证:△CAN为直角三角形.(2)若AN=4√5,正方形的边长为6,求BE的长.15.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若正方形的边长为4,且PC=3AP,求线段PQ的长.16.如图,O是正方形ABCD对角线AC,BD的交点,AF平分∠BAC,交BD于点M,DE⊥AF于点H,分别交AB,AC于点E,G.(1)证明△AED≌△BFA;(2)△ADM是等腰三角形吗?请说明理由;(3)若OG的长为1,求BE的长度.17.正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD.连接EO,AE,EC.于E,连接ED,AE,EC.(1)当∠DAE=25°时,求∠AEC的度数;(2)当∠PBC=15°时,DP=4,求正方形的边长;(3)当AE=√10时,求BP的长.18.(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.。
全章热门考点整合应用名师点金:本章内容是中考的必考内容,主要考查与特殊平行四边形中菱形、矩形、正方形有关的计算和证明等问题.近几年又出现了许多与特殊平行四边形有关的开放探索题、操作题以及与全等、相似、函数知识相结合的综合题.其主要考点可概括为:一个定理、三个图形、三个判定与性质、四个技巧、两种思想.一个定理——直角三角形斜边上的中线定理1.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.求证:(1)四边形ADEF是平行四边形;(2)∠DHF=∠DEF.(第1题)三个图形图形1菱形2.如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形.(2)当△ABC满足什么条件时,四边形DBFE是菱形?并说明理由.(第2题)图形2矩形3.如图,在▱ABCD中,点O是AC与BD的交点,过点O的直线与BA的延长线,DC的延长线分别交于点E,F.(1)求证:△AOE≌△COF.(2)连接EC,AF,则EF与AC满足什么数量关系时,四边形AECF是矩形?请说明理由.(第3题)图形3正方形4.如图,在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°后得△DBE,再把△ABC沿射线AB平移至△FEG,DE,FG相交于点H.(1)判断线段DE,FG的位置关系,并说明理由;(2)连接CG,求证:四边形CBEG是正方形.(第4题)三个判定与性质判定与性质1菱形5.如图,在△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC 交AD于点F.求证:四边形CDEF是菱形.(第5题)判定与性质2矩形6.【2015·湘西州】如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:(1)△ADE≌△CBF;(2)四边形DEBF为矩形.(第6题)判定与性质3正方形7.如图,E为正方形ABCD的边AB的延长线上一点,DE交AC于点F,交BC于点G,H 为GE的中点.求证:FB⊥BH.(第7题)四个技巧技巧1解与四边形有关的折叠问题的技巧(轴对称变换法】8.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD 沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,求阴影部分图形的周长.(第8题)技巧2解与四边形有关的旋转问题的技巧(特殊位置法】9.如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,如果两个正方形的边长都等于1,那么正方形A′B′C′O绕顶点O转动,两个正方形重叠部分的面积大小有什么规律?请说明理由.(第9题)技巧3解与四边形有关的动点问题的技巧(固定位置法】10.如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.技巧4解中点四边形的技巧11.如图,在△ABC中,AB=AC,点O在△ABC的内部,∠BOC=90°,OB=OC,D,E,F,G分别是AB,OB,OC,AC的中点.(1)求证:四边形DEFG是矩形;(2)若DE=2,EF=3,求△ABC的面积.(第11题)思想1转化思想12.如图,在四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F.求证:PA =EF.(第12题)思想2 数形结合思想 13.[阅读]在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22. [运用](1)如图,矩形ONEF 的对角线相交于点M ,ON ,OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为________.(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.(第13题)答案1.证明:(1)∵点D ,E 分别是AB ,BC 的中点, ∴DE ∥AC.同理可得EF ∥AB. ∴四边形ADEF 是平行四边形. (2)由(1)知四边形ADEF 是平行四边形, ∴∠DAF =∠DEF.在Rt △AHB 中,∵D 是AB 的中点, ∴DH =12AB =AD.∴∠DAH =∠DHA. 同理可得HF =12AC =AF ,∴∠FAH =∠FHA.∴∠DAH +∠FAH =∠DHA +∠FHA. ∴∠DAF =∠DHF. ∴∠DHF =∠DEF.2.(1)证明:∵D ,E 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线. ∴DE ∥BC. 又∵EF ∥AB ,∴四边形DBFE 是平行四边形. (2)解:答案不唯一,下列解法供参考. 当AB =BC 时,四边形DBFE 是菱形. 理由:∵D 是AB 的中点, ∴BD =12AB.∵DE 是△ABC 的中位线, ∴DE =12BC.又∵AB =BC ,∴BD =DE. 又∵四边形DBFE 是平行四边形, ∴四边形DBFE 是菱形.3.(1)证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,AB ∥CD. ∴∠AEO =∠CFO. 又∵∠AOE =∠COF , ∴△AOE ≌△COF(AAS).(2)解:当AC =EF 时,四边形AECF 是矩形.理由如下:由(1)知△AOE≌△COF,∴OE=OF.又∵AO=CO,∴四边形AECF是平行四边形.又∵AC=EF,∴四边形AECF是矩形.4.(1)解:DE⊥FG.理由如下:由题意,得∠A=∠BDE=∠GFE,∠ABC=∠DBE=90°,∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°,即DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠GEF=∠ABC=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.(第5题)5.证明:如图,连接CE,交AD于点O.∵AC=AE,∴△ACE为等腰三角形.∵AO平分∠CAE,∴AO⊥CE,且OC=OE.∵EF∥CD,∴∠2=∠1.又∵∠DOC=∠FOE,∴△DOC≌△FOE(ASA).∴OD=OF.即CE与DF互相垂直且平分.∴四边形CDEF是菱形.6.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∵DE⊥AB,BF⊥CD,∴∠DEA=∠BFC=90°.∴△ADE≌△CBF.(2)∵△ADE≌△CBF,∴AE=CF.∵CD=AB,∴DF=BE.又∵CD∥AB,∴四边形DEBF为平行四边形.又∵∠DEB=90°,∴四边形DEBF为矩形.7.证明:∵四边形ABCD是正方形,∴CD=CB,∠DCF=∠BCF=45°,DC∥AE,∠CBE=90°,∴∠CDF=∠E.又∵CF=CF,∴△DCF≌△BCF.∴∠CDF=∠CBF.∴∠CBF=∠E.∵H为GE的中点,∴HB=HG=12GE.∴∠HGB=∠HBG.∵∠CDG+∠CGD=90°,∠CGD=∠HGB=∠HBG,∴∠FBG+∠HBG=90°.即∠FBH=90°,∴FB⊥BH.8.解:∵在矩形ABCD中,AB=10,BC=5,∴CD=AB=10,AD=BC=5.又∵将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,∴根据轴对称的性质可得A1E=AE,A1D1=AD,D1F=DF.设线段D1F与线段AB交于点M,则阴影部分的周长为(A1E+EM+MD1+A1D1)+(MB+MF+FC+CB)=AE+EM+MD1+AD+MB+MF+FC+CB=(AE+EM+MB)+(MD1+MF+FC)+AD+CB=AB+(FD1+FC)+10=AB+(FD+FC)+10=10+10+10=30.9.解:两个正方形重叠部分的面积保持不变,始终是1 4 .理由如下:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°. ∵四边形A′B′C′O是正方形,∴∠EOF=90°.∴∠EOF=∠BOC.∴∠EOF-∠BOF=∠BOC-∠BOF.即∠BOE =∠COF.∴△BOE ≌△COF.∴S △BOE =S △COF .∴两个正方形重叠部分的面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴S △BOC =14S 正方形ABCD =14. ∴两个正方形重叠部分的面积保持不变,始终是14. 10.解:(1)在菱形ABCD 中,AG =CG ,AC ⊥BD ,BG =12BD =12×16=8, 由勾股定理得AG =AB 2-BG 2=102-82=6,所以AC =2AG =2×6=12.所以菱形ABCD 的面积=12AC ·BD =12×12×16=96. (2)不发生变化.理由如下:如图①,连接AO ,则S △ABD =S △ABO +S △AOD ,所以12BD ·AG =12AB ·OE +12AD ·OF. 即12×16×6=12×10·OE +12×10·OF. 解得OE +OF =9.6,是定值,不变.(3)发生变化.如图②,连接AO ,则S △ABD =S △ABO -S △AOD ,所以12BD ·AG =12AB ·OE -12AD ·OF. 即12×16×6=12×10·OE -12×10·OF. 解得OE -OF =9.6,是定值,不变.所以OE +OF 的值发生变化,OE ,OF 之间的数量关系为OE -OF =9.6.(第10题)11.(1)证明:如图,连接AO 并延长交BC 于H ,∵AB =AC ,OB =OC ,∴AH 是BC 的中垂线,即AH ⊥BC 于H.∵D ,E ,F ,G 分别是AB ,OB ,OC ,AC 的中点,(第11题)∴DG ∥EF ∥BC ,DE ∥AH ∥GF.∴四边形DEFG 是平行四边形.∵EF ∥BC ,AH ⊥BC ,∴AH ⊥EF.又∵DE ∥AH ,∴EF ⊥DE ,∴四边形DEFG 是矩形.(2)解:∵D ,E ,F 分别是AB ,OB ,OC 的中点.∴AO =2DE =4,BC =2EF =6.∵△BOC 是等腰直角三角形,∴OH =12BC =3. ∴AH =OA +OH =4+3=7.∴S △ABC =12×6×7=21.(第12题)12.证明:如图,连接PC.∵PE ⊥BC ,PF ⊥CD ,∠ECF =90°.∴∠PEC =∠PFC =∠ECF =90°.∴四边形PECF 是矩形.∴PC =EF.在△ABP 和△CBP 中,⎩⎪⎨⎪⎧AB =CB ,∠ABP =∠CBP ,BP =BP ,∴△ABP ≌△CBP(SAS).∴PA =PC.∴PA =EF.点拨:本题运用了转化思想将四边形中的边转化到三角形中,通过用等式的传递性证明两条线段相等.13.解:(1)(2,1.5)(2)设点D 的坐标为(x ,y).若以点A ,B ,C ,D 为顶点构成的四边形是平行四边形,①当AB 为对角线时,∵A(-1,2),B(3,1),C(1,4),∴-1+32=1+x 2,2+12=4+y 2. ∴x =1,y =-1.∴点D 的坐标为(1,-1).②当BC 为对角线时,∵A(-1,2),B(3,1),C(1,4),∴3+12=-1+x 2,1+42=2+y 2. ∴x =5,y =3.∴点D 的坐标为(5,3).③当AC 为对角线时,∵A(-1,2),B(3,1),C(1,4),∴-1+12=3+x 2,2+42=1+y 2. ∴x =-3,y =5.∴点D 的坐标为(-3,5).综上所述,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
第一章特殊的平行四边形一.选择题(共10小题)1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20 B.24 C.40 D.482.如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.5B.2C.D.3.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.284.如图,在四边形ABCD中,AC与BD相交于点O,∠OAB=∠OAD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的为()A.OA=OC B.BC=DC C.AD=BC D.AD=DC5.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④6.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN,CN⊥AN,MN为垂足若AB=a,则DM+CN的值为()A.a B.a C.D.7.如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E.已知AB=2,△DOE的面积为,则AE的长为()A.B.2 C.1.5 D.8.在平行四边形ABCD中添加下列条件,不能判定四边形ABCD是矩形的是()A.∠ABC=90°B.AC⊥BD C.AC=BD D.∠ACD=∠CDB 9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32 C.64 D.12810.在正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF二.填空题(共10小题)11.已知,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=23°.则∠FEC=度.12.在菱形ABCD中,AD=10,AC=12,则菱形ABCD的面积是.13.如图在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=时,平行四边形CDEB为菱形.14.如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为(写出一个即可)15.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.16.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=.17.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).18.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.20.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.三.解答题(共7小题)21.如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.22.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE ∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.23.已知:AC,BD为菱形ABCD的对角线,∠BAD=60°,点EF分别在AD,CD边上,且∠EBF=60°.(1)求证:△BEF是等边三角形;(2)当∠ABE=15°时,AB=1+,求BE.24.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.25.(1)如图1,已知正方形ABCD,点E在BC上,点F在DC上,且∠EAF=45°,则有BE+DF =.若AB=4,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.26.在正方形ABCD的外侧作等腰△ABE,已知∠EAB=a,连接ED交等腰△ABE底边上的高AF所在的直线于点G.(1)如图1,若a=30°,求∠AGD的度数;(2)如图2,若90°<a<180°,BE=8,DE=14,则此时AE的长为.27.如图,在矩形ABCD中,AB=4cm,AD=12cm;P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,两点同时出发,待P点到达D点为止,求经过多长时间四边形ABQP为矩形?参考答案与试题解析一.选择题(共10小题)1.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,∴BC==5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.3.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA,∵菱形ABCD的周长为24,∴AD=AB=6,∵AC+BD=16,∴AO+BO=8,∴AO2+BO2+2AO•BO=64,∵AO2+BO2=AB2,∴AO•BO=14,∴菱形的面积=4×三角形AOD的面积=4××14=28,故选:D.4.【解答】解:A、若AO=OC,且BO=DO,∴四边形ABCD是平行四边形,∴AB∥CD∴∠BAO=∠OCD,且∠OAB=∠OAD∴∠OAD=∠OCD∴AD=CD,∴四边形ABCD是菱形故A选项不符合题意B、若BC=DC,BO=DO∴AC是BD的垂直平分线∴AB=AD则不能判断四边形ABCD是菱形故B选项符合题意,C、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=BC∴AB=AD=BC=CD∴四边形ABCD是菱形故C选项不符合题意D、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=CD∴AB=AD=BC=CD∴四边形ABCD是菱形故D选项不符合题意故选:B.5.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.6.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,CD=AB=a,∴AN平分∠DAB,∴∠DAM=45°,∴∠CEN=∠DEM=45°,∵DM⊥AN,CN⊥AN,∴△DME和△CNE是等腰直角三角形,∴DM=DE,CN=CE,∴DM+CN=(DE+CE)=CD=a;故选:C.7.【解答】解:连接BE,如图所示:由题意可得,OE为对角线BD的垂直平分线,∴BE=DE,S△BOE=S△DOE=,∴S△BDE=2S△BOE=.∴DE•AB=,又∵AB=2,∴DE=,∴BE=在Rt△ABE中,由勾股定理得:AE===1.5.故选:C.8.【解答】解:A、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵∠ACD=∠CDB,∴OD=OC,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.9.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×8×8=32,故选:B.10.【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF(SAS),∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选:B.二.填空题(共10小题)11.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=∠EAF=60°,∴△ABC是等边三角形,∠BCD=120°,∴AB=AC,∠B=∠ACF=60°,∵∠BAE+∠EAC=∠FAC+∠EAC,∴∠BAE=∠FAC,且AB=AC,∠B=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,又∵∠EAF=∠D=60°,∴△AEF是等边三角形,∴∠AEF=60°,又∠AEC=∠B+∠BAE=83°,∴∠CEF=83°﹣60°=23°.故答案为:2312.【解答】解:如图,连接AC,BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=6,∴∠AOD=90°,∴OD==8,∴BD=2OD=16,∴S菱形ABCD=×AC×BD=×12×16=96,故答案为96.13.【解答】解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==10若平行四边形CDEB为菱形时,CE⊥BD,OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴OB==∴AD=AB﹣2OB=故答案为:14.【解答】解:根据一组邻边相等的平行四边形是菱形,则可添加条件为:AB=AD(AD=CD,BC=CD,AB=BC)也可添加∠1=∠2,根据平行四边形的性质,可求AD=CD.根据对角线互相垂直的平行四边形是菱形,则可添加条件为:AC⊥BD.故答案为:AB=AD(答案不唯一)15.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.16.【解答】解:如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:a•a=a2,∴菱形形变前的面积与形变后的面积之比:a2:a2=2:,∵这个菱形的“形变度”为2:.∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,S△AEF=×2×2+×2×2=4,∵若这个菱形的“形变度”k=,∴=,即=,∴S△A′E′F′=.故答案为:.17.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.18.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2019.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.20.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:8三.解答题(共7小题)21.【解答】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=9,∴a+b=3,∴=.22.【解答】(1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:连接EF交BC于O,如图所示:∵AD=7,AB=DC=2.5,∴BC=AD﹣AB﹣DC=2,∵四边形BFCE是菱形,∠EBD=60°,EF⊥BC,OB=BC=1,OE=OF,∴△CBE是等边三角形,∠BEO=30°,∴BC=EC=2,∴OE=OB=,∴EF=2,∴菱形BFCE的面积=BC×EF=×2×2=2;故答案为:2.23.【解答】证明:(1)∵四边形ABCD是菱形∴AB=AD=BC=CD,且∠BAD=60°∴△ABD是等边三角形,∠ADC=120°∴AB=AD=BD,∠ABD=∠ADB=60°∴∠ABD=∠EBF=60°=∠BDC,∴∠ABE=∠DBF,∠BAD=∠BDF=60°,且AB=BD∴△ABE≌△DBF(ASA)∴BE=BF,且∠EBF=60°.∴△BEF是等边三角形(2)如图,过点E作EH⊥AB于H,作∠GEB=∠ABE=15°,∴∠EGH=30°,GE=GB,设HE=x,在Rt△GHE中,∠EGH=30°∴GE=2x=BG,HG=x,在Rt△AHE中,∠BAD=60°∴AH=x,∵AB=AH+HG+BG=1+∴x+x+2x=1+∴x=∴HE=∴BH=∵BE2=HE2+BH2,∴BE2=()2+()2,∴BE=24.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=156cm2.25.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=8.故答案为:EF;8.(2)EF=BE+DF,理由如下:延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.26.【解答】解:(1)∵AE=AB,AF⊥BE,∠EAB=30°∴∠FAE=15°∵∠EAB=30°,∠BAD=90°∴∠EAD=120°,且AE=AD∴∠AED=∠ADE=30°∴∠AGD=∠AED+∠EAF=45°(2)如图,连接AC,BD交于点O,连接FO,∵四边形ABCD是正方形∴BO=DO,BD=AB,∠ABD=∠ADB=45°∵AE=AB,AF⊥BE∴∠AEB=∠ABE,EF=BF=4,且BO=DO∴FO=DE=7,FO∥DE∵AE=AD∴∠AED=∠ADE∵∠ABD+∠ADB+∠AED+∠ADE+∠AEB+∠ABE=180°∴2(∠AEB+∠AED)=90°∴∠DEB=45°∵FO∥DE∴∠BFO=45°,且BM⊥FO∴FM=BM,∴BF=BM=4∴BM=FM=4∴MO=3∴BO==5∴BD=2BO=10∴AB=5=AE故答案为:527.【解答】解:∵在矩形ABCD中,AD=12cm,∴AD=BC=12cm.当四边形ABQP为矩形时,AP=BQ.①当0<t<3时,t=12﹣4t,解得,t=;②当3≤t<6时,t=4t﹣12,解得t=4;③当6≤t<9时,t=36﹣4t,解得t=;④当9≤t≤12时,t=4t﹣36,解得,t=12.综上所述,当t为或4或或12时,四边形ABQP为矩形.。
1.如图,已知E,F,G,H分别是四边形ABCD四边形的中点;(1)当满足条件四边形EFGH是矩形;(2)当满足条件四边形EFGH是菱形;(3)当满足条件四边形EFGH是正方形.2已知,如图,四边形ABCD是菱形,∠B是锐角,AF⊥BC于点F,CH⊥AD于点H,在AB边上取点E,使得AE=AH,在CD边上取点G,使得CG=CF,连接EF、FG、GH、HE.(1)求证:四边形EFGH是矩形;(2)当∠B为多少度时,四边形EFGH是正方形?并证明.3如图,根据图形解答下列问题(1)如图,以△ABC三边向外分别作等边△ACD、△ABE、△BCF,证明四边形ADFE是平行四边形.(2)△ABC满足什么条件时,四边形ADFE是矩形?(3)△ABC满足什么条件时,四边形ADFE是菱形?(4)△ABC满足什么条件时,四边形ADFE是正方形?4)如图(1),Rt△ABC中,∠ACB=90°,中线BE、CD相交于点O,点F、G分别是OB、OC的中点.(1)求证:四边形DFGE是平行四边形;(2)如果把Rt△ABC变为任意△ABC,如图(2),通过你的观察,第(1)问的结论是否仍然成立(不用证明);(3)在图(2)中,试想:如果拖动点A,通过你的观察和探究,在什么条件下四边形DFGE是矩形,并给出证明;(4)在第(3)问中,试想:如果拖动点A,是否存在四边形DFGE是正方形或菱形?如果存在,画出相应的图形(不用证明).5如图1,正方形ABCD的对角线相交于点M,正方形MNPQ与正方形ABCD全等,MN、MQ分别交正方菜ABCD的边于E、F两点.(1)试判断ME与MF之间的数量关系,并给出证明.(2)若将题中的“正方形MNPQ与正方形ABCD"改为“矩形MNPQ与矩形ABCD”,且BC=2AB,其他条件不变,当矩形MNPQ与矩形ABCD的位置如图2所示时,请判断ME与MF之间的数量关系,并给出证明.6如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形"中的哪一种,并写出证明过程.7如图,E是矩形ABCD边BC的中点,P是AD边上一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?8)如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD 上的点F重合.展开后,折痕DE分别交AB,AC于点G,E,连接GF.(1)求∠AGD的度数;(2)证明四边形AEFG是菱形;9已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= :时,四边形MENF是正方形(只写结论,不需证明).10如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE交CD于点F,连接DE.(1)请判断△PDE的形状,并给予证明;(2)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=56°,求∠DPE的度数.11.在综合实践活动课中,王老师出了这样一道题:如图1,在矩形ABCD中,M是BC的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.求证:四边形OEMF是菱形.做完题后,同学们按照老师的要求进行变式或拓展,提出新的问题让其它同学解答.(1)小明同学说:“我把条件中的‘矩形ABCD'改为‘菱形ABCD',如图2所示,发现四边形OEMF是矩形.”请给予证明;(2)小芳同学说:“我把条件中的‘点M是BC的中点’改为‘点M是BC延长线上的一个动点',发现点F落在AC的延长线上,如图3所示,此时OB、ME、MF三条线段之间存在某种数量关系.”请你写出这个结论,并说明理由.12在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).13(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.14已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F,求证:四边形CDEF是菱形。
北师大版九年级上学期第一章 平行四边形及特殊的平行四边形证明题集锦1.( 1)如图1,点0是线段AD 的中点,分别以A0和DO 为边在线段AD 的同侧作等边三角形 OAB 和等边三角形OCD 连结AC 和BD,相交于点E ,连结BC.求/ AEB 的大小;(2)如图2,A OAB 固定不动,保持△ OCD 勺形状和大小不变,将△ 0C [绕 着点O 旋转(A OAB 和A OCD 不能重叠),求/ AEB 的大小.2•如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C D 不重合),以CG 为 一边在正方形ABCD 外作正方形CEFG 连结BG DE 我们探究下列图中线段 BG 线段DE 的 长度关系及所在直线的位置关系:长度关系及所在直线的位置关系; (1)①猜想如图1中线 段BG 线段DE 的②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形•请你通过观察、测量等方法判断①中得到的结论是否仍然成 立,并选取图2证明你的判断.A图2A图1图3(2)将原题中正方形改为矩形(如图4—6),且AB=a BC=b CE=ka CG=kb (a b, k 0), 第⑴ 题①中得到的结论哪些成立,哪些不成立若成立,以图5为例简要说明理由.(3)在第1⑵题图5中,连结DG、BE,且a=3, b=2, k=-,求BE2 DG2的值.23. 如图甲,在△ ABC中,/ ACB为锐角•点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF解答下列问题:(1)如果AB=AC / BAC=90o①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 _______ ,数量关系为 ________ •②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么(2)如果A盼AC,/ BAO90o,点D在线段BC上运动•试探究:当△ ABC满足一个什么条件时,CF丄BC (点C F重合除外)画出相应图形,并说明理由.(画图不写作法)CF相交于点P,求线段CP长的最大值.4. 已知:如图,点C在线段AB上,以AC和BC为边在AB的同侧作正三角形△ ACM fP^ BCN图甲图乙图丙8.已知:三角形ABC 和CDE 为等腰直角三角形,点F 、G 分别为BE 和AD 的中点,连接FG 和连结AN BM 分别交CM CN 于点P 、Q.求证:PQ// AB.7、如图,△ ABC 中, A 吐AC, D E 、F 分别是 BC AB AC 上的点,BD= CF, CD= BE G 为 EF 中点,连结DG 问DG与EF 之间有何关系证明你的结论。
北师大版九年级上册第一章特殊的平行四边形典型例题1.例1.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F 。
求证:①四边形AEDF 是菱形②当△ABC 满足什么条件时,四边形AEDF 是正方形?2. 例2。
如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,且BE ∥DF 。
求证:BE =DF 。
教师在这里将这道题进行开放处理:例2’ 如图,在平行四边形ABCD 中,AC 与BD 相交于O 点,点E 、F 在AC 上,_________,求证:BE =DF 或BE ∥DF 。
3。
例3.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、CD 、AC 、BD 的中点.求证:四边形EGFH 是平行四边形.BF CD EAD4.例4.如图,已知:△ABC,CF⊥AB,BE⊥AC,M、N分别为BC、EF中点,求证:MN⊥EF。
拓展例4’,变化条件和结论如图,已知:△ABC中,M、N分别为BC、EF中点,MN⊥EF,CF ⊥AB,求证:BE⊥AC5。
例5。
如图在△ABC中,∠BAC=90°,D、E、F、分别是BC、CA、AB边的中点。
求证:AD =EFC6.:如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形,你能证明吗? 引伸:⑴在这个图形中除△BCD ≌△BED 外,还有其它的全等三角形,你能找出并证明吗?⑵当AB=6;BC=8时,你能求出重叠部分的面积吗? ⑶在⑵的条件下对这个图形你还可以作何尝试?7。
在△ABC 中,∠ACB=90°,E 时AB 中点,以A 、C 、E 为定点作平行四边形。
⑴当∠B的大小满足什么条件时,四边形ACEF 是菱形?并证明你的结论。
⑵四边形ACEF 有可能是正方形?为什么?E A BCDCEAFBC8。
以△ABC的三边为边,在BC的同侧做等边三角形△ABD、△BCE、△ACF⑴判定四边形ADEF的形状并加以证明⑵当△ABC满足什么条件时,四边形ADEF是菱形?⑶当△ABC满足什么条件时,四边形ADEF是矩形?⑷当△ABC满足什么条件时,四边形ADEF是正方形?⑸当△ABC满足什么条件时,四边形ADEF不存在?9. △ABC中,D、E、F分别是各边的中点,连接AE、DF.1)AE、DF有什么关系?2)△ABC满足什么条件时,AE⊥DF?3)△ABC满足什么条件时,AE=DF?4)△ABC满足什么条件时,四边形ADFE是正方形?FCAD BECFADEBC1、如图,矩形纸片ABCD ,把纸片折叠使A 、C 二点重合,得到折痕EF,连接AF 、CE ,判断四边形AFCE 的形状并加以证明。
北师大版九年级上学期
第一章 平行四边形及特殊的平行四边形证明题集锦
1.( 1)如图1,点0是线段AD 的中点,分别以A0和DO 为边在线段AD 的同侧作等边三角形 OAB 和等边三角形OCD 连结AC 和BD,相交于点E ,连结BC.
求/ AEB 的大小;(2)如图2,A OAB 固定不动,保持△ OCD 勺形状和大小不变,将△ 0C [绕 着点O 旋转(A OAB 和A OCD 不能重叠),求/ AEB 的大小.
2•如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C D 不重合),以CG 为 一边在正方形ABCD 外作正方形CEFG 连结BG DE 我们探究下列图中线段 BG 线段DE 的 长度关系及所在直线的位置关系:长度关系及所在直线的位置关系; (1)①猜想如图1中线 段BG 线段DE 的②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形•请你通过观察、测量等方法判断①中得到的结论是否仍然成 立,并选取图2证明你的判断.
A
图2
A
图1
图3
(2
)将原题中正方形改为矩形(如图
4—6),且AB=a BC=b CE=ka CG=kb (a b, k 0), 第⑴ 题①中得到的结论哪些成立,哪些不成立若成立,以图5为例简要说明理由.(3)在第
1
⑵题图5中,连结DG、BE,且a=3, b=2, k=-,求BE2 DG2的值.
2
3. 如图甲,在△ ABC中,/ ACB为锐角•点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF
解答下列问题:(1)如果AB=AC / BAC=90o①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 _______ ,数量关系为 ________ •②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么(2)如果A盼AC,/ BAO90o,点D在线段BC上运动•试探究:当△ ABC满足一个什么条件时,CF丄BC (点C F重合除外)画出相应图形,并说明理由.(画图不写作法)CF相交于点P,求线段CP长的最大值.
4. 已知:如图,点C在线段AB上,以AC和BC为边在AB的同侧作正三角形△ ACM fP^ BCN
图甲图乙图丙
8.已知:三角形ABC 和CDE 为等腰直角三角形,点F 、G 分别为BE 和AD 的中点,连接FG 和
连结AN BM 分别交CM CN 于点P 、Q.求证:PQ// AB.
7、如图,△ ABC 中, A 吐AC, D E 、F 分别是 BC AB AC 上的点,BD= CF, CD= BE G 为 EF 中点,连结DG 问DG
与
EF 之间有何关系证明你的结论。
5. 如图,在正方形 ABCD^A PBC △ QCD 是两个等边三角形, 于E ,CP 与DQ 交于F 。
求证:PM= QM
6. 如图,在△ ABC 中, AD 平分/ BAC AB= AC — BD 则/ B :
Z C 的值为多少
A
11.已知:如图,在四边形 ABCD 中, AD= BC, M N 分别是AB CD 的中点,AD BC 的延长线
GC 试说明FG 和GC 勺关系
9.如图,已知△ ABC / ACB=90 ,分别以AB BC 为边向外作△ BCE ,且DA=DBBE=EC 若/ ADB 2 BEC=N ABC 连接DE 交AB 于点F ,试探究线段DF 与EF 的数量关系,并加以证 明。
10.已知:如图,P 是正方形ABCM 点,/ PAD=Z PDA= 15°.求证:△ PBC 是正三角形
.
A
D
C
交
MN T E 、F .求证:/ DEN=Z F .
12.如图,分别以厶ABC 的AC 和BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形CBFG 点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.
13如图,四边形 ABCD 为正方形,DE// AC , AE = AC , AE 与CD 相交于F .求证:CE= CF.
14、如图,四边形 ABCD 为正方形,DE// AC ,且CE= CA 直线EC 交DA 延长线于F . 求证:AE= AF.
15、设P 是正方形 ABCD-边BC 上的任一点,PF 丄AP, CF 平分/ DCE 求证:P 心PF.
B
F
16、设P是平行四边形ABCD内部的一点,且/ PBA=Z PDA求证:/ PAB = /PCB
17. 如图2-1,在Rt△ ABC 中,/ ACB=90,/ BAC=60 , (1)将Rt△ ABC绕点A逆时针旋转90°,得到Rt△ AC'B',直线BB'交直线CC'于点D,连接AD.探究:AD与BB'之间的关系,并说明理由。
(2)如图2-2,若将Rt△ ABC绕点A逆时针旋转任意角度,其他条件不变,还有(1)的结论吗为什么
18. 在厶ABC tA BDE中,/ ABC2 BDE=90,BC=DE AC=BE 分别是的中点,连接MN交CE 于点K (1)如图3-1,当共线,AB=2BC寸,探究CK与EK之间的数量关系,并证明;(2)如
图3-2,当不共线,A盼2BC时,(1)中的结论是否成立,若成立,请证明;若不成
立,请说明理由;(
3)将题目中的条件“/ ABC2 BDE=90 , BC=DE AC=BE都去掉,再添加一
个条件,写出一个类似的对一般三角形都成立的问题(画出图形,写出已知和结论,不用证明)19. 如图,△ ABO W^ CDO匀为等腰三角形,且/ BAO=/ DCO=9°,
AC,试探究MNW AC的数量关系,并说明理由
H13-1 SJ3-2
M为BD的中点,
MN L
21.如图,分别以厶ABC 的边AB AC 为边,向外作正方形 ABFG 和ACDE 连接EG
20. _________________________________________________________________________ 填空或解答:点B. C. E 在同一直线上,点 A. D 在直线CE 的同侧,A 吐AC, EC = ED, / BAC=Z CED 直线 AE BD 交于点F 。
( 1)如图①,若/ BAG60°,则/ AF 吐 _____________________ ; 如图②,若/ BAC= 90。
,则/ AF 吐 ___________ ; ( 2)如图③,若/ BAC=a ,则/ AF 吐 _________ (用含a 的式子表示);(3)将图③中的△ ABC 绕点C 旋转(点F 不与点A. B 重 合),得图④或图⑤。
在图④中,/ AFB 与/a 的数量关系是 ____________________ 在图⑤中, / AFB 与/a 的数量关系是 ___________________ 请你任选其中一个结论证明。
20.已知:如图①所示,在 △ ABC 和厶ADE 中,AB AC ,AD AE , BAC DAE ,且 点B ,A, D 在一条直线上,连接 BE ,CD ,M ,N 分别为BE ,CD 的中点.(1)求证:① BE CD :②厶AMN 是等腰三角形.(2)在图①的基础上,将 △ ADE 绕点A 按顺时针方向 旋转180
,其他条件不变,得
求证: S A ABC S A AEG
24.如图,分别以厶ABC 的边AB AC 为边,向外作正方形 ABFG 和ACDE 连接EQ 若AH 丄
到图②所示的图形•请直接写出(1)中的两个结论是否仍然成
图①
A
图②
22.如图,分别以厶ABC 的边AB AC 为边,向外作正方形 ABFG 和ACDE 连接EG 若0为EG 的中点求证:BC=2A0
23.如图,分别以厶ABC 的边AB AC 为边,向外作正方形ABFG 和ACDE 连接EG,若0为EG 的中点,0A 的延长线交BC 于点H
求证:
AHI BC
D
BC, HA的延长线交EG于点O求证:O为EG的中点
25.如图,分别以厶ABC的边AB AC为边,向外作正方形ABFG和ACDE连接BE, CG 求证:(1)BE=CG(2) BE丄CG
26.如图,分别以厶ABC的边AB AC为边,向外作正方形ABFG和ACDE连接BE, CG 作FM丄BC,交CB的延长线于点作DN丄BC,交BC的延长线于点N求证:FM+DN=BC
O 是FD 中点,OP! BC 于点P 求证:BG=2OP
28. 如图,分别以△ ABC 的边AB AC 为边,向外作正方形ABF 母口 ACDE 连接CE BG GE ,M N 、P 、Q 分别是EG GB BC CE 的中点求证:四边形 MNP 是正方形
29. 如图,已知P 是等边△ ABC 的 BC 边上任意一点,过P 点分别作AB AC 的垂线PE PD, 垂足为E 、D 。
问:△ AED 的周长与四边形EBCM 周长之间的关系
30. 如图,已知/ MON 勺边OMk 有两点A 、B ,边ON±有两点 C D,且AB= CD P 为/MON 的平分线上一点。
问:(ABP 与△ PCD 是否全等请说明理由。
(2)^ ABP 与△ PCD 勺面积 是否相等请说明理由
0 D N
D。