北师大版(初三)九年级第一章 证明(二)导学案 1.3.2
- 格式:doc
- 大小:83.38 KB
- 文档页数:5
第一章证明(二)单元总览1.1你能证明它们吗(1)目标导航1.了解作为证明基础的几条公理的内容;掌握证明的基本步骤和书写格式.2.能够用综合法证明等腰三角形的有关性质(等边对等角,三线合一).基础过关1.边边边公理的内容是.2.边角边公理的内容是.3.角边角公理的内容是.4.全等三角形的相等,相等.5.角角边推论的内容是.6.三角形ABC中,如果AB=AC,则.7.等腰三角形的、、互相重合.8.等边三角形的各边都,各角都是.能力提升9.下列说法中,正确的是()A.两边及一角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边对应相等的两个三角形全等10.若等腰△ABC 的顶角为∠A ,底角为∠B =α,则α的取值范围是( )A. α<45°B. α<90°C.0°<α<90°D.90°<α<180°11.△ABC 中, AB =AC , CD 是△ABC 的角平分线, 延长BA 到E 使DE =DC , 连结EC , 若 ∠E =51°,则∠B 等于( )A.68°B.52°C.51°D.78° 12.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 n -B.90-2 nC.2n D.90°-n °13.等腰三角形的两边分别是7 cm 和3 cm ,则周长为_________.14.等腰三角形的一边长为23,周长为43+7,则此等腰三角形的腰长为_________. 15.如图,∆ABC 中,AB=AC, ∠BAD=︒30 ,AE=AD,则∠EDC= .EDCBA15题图 16题图16.如图,在△ABC 中,∠A =20°,D 在AB 上,AD =DC ,∠ACD ∶∠BCD =2∶3,求:∠ABC 的度数.17.已知:如图∆ABD 、∆ACE 都是等边三角形,求证:BE=DC.EDCBA18.如图,在∆ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求∠ADB 的度数.DCBA聚沙成塔已知:如图,D 是等腰ABC 底边BC 上一点,它到两腰AB 、AC 的距离分别为DE 、DF.当D 点在什么位置时,DE=DF ?并加以证明.1.1你能证明它们吗(2)目标导航1.能够用综合法证明等腰三角形的有关性质.2.了解并能证明等腰三角形的判定定理.3.结合实例体会反证法的含义. 基础过关1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.4.在△ABC 中,AB=AC ,∠A=︒36,BD 是的角平分线,图中等腰三角形有( )A.1个B.2个C.3个D.4个5.在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( ) A.(1)(2)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(3)(4)BAC BAC B AC B AP EDCBA(1) (2) (3) (4) 7题图 能力提升6.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.7.如图,在△ABC 中,BC=5cm,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD//AB ,PE//AC ,则△PDE 的周长是 .8.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( )A.15B.12C.15或12D.以上都不正确 9.已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.10.如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BAC.11.用反证法证明:△ABC 中至少有两个角是锐角.12.如图,小明欲测量河宽,选择河流北岸的一棵树(点A )为目标,然后在这棵树得正南岸(点B )插一小旗作标志,从B 点沿南偏东︒60方向走一段距离到C 处,使∠ACB 为︒30,这时小明测得BC 的长度,认为河宽AB=BC ,他说得对吗?为什么?60︒CBA13.如图,在ABC Rt ∆中,∠CAB=︒90,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F.求证:△AEF 为等腰三角形.F EDCBA14.如图,在△ABC 中,AB=AC,P 是BC 上一点,PE ⊥AB, PF ⊥AC,垂足为E 、F,BD 是等腰三 角形腰AC 上的高, ⑴求证:BD=PE +PF.⑵当点P 在BC 边的延长线上时,而其它条件不变,又有什么样的结论呢?请用文字加以说明本题的结论.FEPC A D聚沙成塔如图所示,点O 是等边△ABC 内一点,∠AOB=110。
第2课时 正方形的判定学习目标:1、 知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算。
2、 经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法。
3、 理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点。
学习重点:掌握正方形的判定条件。
学习难点:合理恰当地利用正方形的判定定理解决问题。
【预习案】预习检测1、下列说法中错误的是( )A 、对角线相等的菱形是正方形B 、有一组邻边相等的矩形是正方形C 、四条边都相等的四边形是正方法D 、有一个角为直角的菱形是正方形2、已知四边形两对角线:①互相垂直;②相等;③互相平分。
具备条件____ 可得平行四边形;具备条件_______可得矩形;具备条件_______ 可得是菱形;具备条件________可得正方形。
(填序号)3.我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请画出来。
【探究案】探究点1:用菱形证明正方形.1.已知四边形ABCD 是菱形,当满足条件_________时,它成为正方形(填上你认为正确的一个条件即可). 证明:探究点2:用矩形证明正方形.2.已知四边形ABCD 是矩形,当满足条件_________时,它成为正方形(填上你认为正确的一个条件即可). 证明:探究点3:用平行四边形证明正方形3.在Rt △ABC 中,∠ACB=90°,CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,垂足分别是E ,F 。
求证:(1)四边形CFDE 是平行四边形。
F ED CB A 矩形 正方形正方形菱形(2)四边形CFDE是矩形或菱形(任选一项)。
(3)四边形CFDE是正方形。
【训练案】1.如下图E、F分别在正方形ABCD的边BC、CD上,且∠EAF=45°,试说明 EF=BE+DF。
2.画一个正方形,使它的对角线长为30,并说明画法的依据。
第一章证明(二)(课时安排)1.你能证明它们吗?3课时2.直角三角形2课时3.线段的垂直平分线2课时4.角平分线1课时1.你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。
2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。
2.能够用综合法证明等区三角形的有关性质定理。
情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。
能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。
60延伸.2.等边三角形三边相等,三个角都相等,并且每个角都等于二、回忆上学期学过的公理1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等;(SAS)4.两角及其夹边对应相等的两个三角形全等;(ASA)5.三边对应相等的两个三角形全等;(SSS)6.全等三角形的对应边相等,对应角相等.三、推论 两角及其中一角的对边对应相等的两个三角形全等。
(AAS )证明过程:已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC ≌△DEF证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠C=180°-(∠A+∠B) ∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E (已知) ∴∠C=∠F又∵BC=EF (已知)∴△ABC ≌△DEF (ASA )推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
九年级数学教案主备人:雷志学§1、2直角三角形(2)教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。
2、能够证明直角三角形全等的“HL ”判定定理既解决实际问题。
重点:能够证明直角三角形全等的“HL ”判定定理。
并且用纸解决问题。
难点:证明“HL ”定理的思路的探究和分析。
-教学过程:一、 复习提问1判断两个三角形全等的方法有哪几种?2、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
(思考交流引导学生分析证明思路,写出证明过程)二、 阅读课本23页学习目标:能够证明直角三角形全等的“HL ”判定定理。
问题1,此定理适用于什么样的三角形?(适用于直角三角形)2、判定直角三角形的方法有哪些,分别说出?(HL,SAS,ASA,AAS,SSS.先考虑HL,在考虑另外四种方法。
) 三、 做一做如图利用刻度尺和三角板,能否做出这个角的角平分线?并证明。
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。
)AO B四、练习 随堂练习P24--11、 锐角对应相等的两个直角三角形全等。
2、 斜边及一锐角对应相等的两个直角三角形全等。
3、 两条直角边对应相等的两个直角三角形全等。
4、 一条直角边和另一条直角边上的中线队以相等的两个直角三角形全等。
五、议一议如图:已知∠ACB=∠BDA=90。
要使 ⊿ACB ≌⊿BDA ,还需要什么条件?把他们写出来,并说明理由。
(教学中给予学生时间和空间,鼓励学生积极思考,并在独立思考的基础上, 通过交流,获得不同的答案,并将一种方法写出证明过程。
)六、 小结:1、本节课学习了哪些知识?2、还有那一些方面的收获?七、作业:1、基础作业:P23页习题1.5 1、2。
2、拓展作业:《目标检测》3、预习作业: 预习:线段的垂直平分线。
1.1菱形的性质与判定第1课时菱形的性质1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系.2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力.(重难点)阅读教材P2~4,完成下列问题:(一)知识探究1.有一组________________的平行四边形叫做菱形.2.菱形具有________________的一切性质.3.菱形是________图形,它的____________________就是它的对称轴.它有________对称轴,两条对称轴互相垂直.4.菱形的四条边都相等.5.菱形的两条对角线________,并且每一条对角线平分一组________.(二)自学反馈如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)图中有哪些线段是相等的?哪些角是相等的?(2)有哪些特殊的三角形?活动1小组讨论例1已知:如图,在菱形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD.例2如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.活动2 跟踪训练1.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( )A .AB ∥DC B .AC =BDC .AC ⊥BD D .OA =OC2.如图,在菱形ABCD 中,AC =6,BD =8,则菱形的边长为( )A .5B .10C .6D .83.已知菱形的边长和一条对角线的长均为2 cm ,则菱形的面积为( )A .3 cm 2B .4 cm 2C. 3 cm 2 D .2 3 cm 24.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 等于________.5.点E 是菱形ABCD 的对角线BD 上任意一点,连接AE 、CE ,找出图中一对全等三角形为____________.6.如图所示,在菱形ABCD 中,∠ABC =60°,DE ∥AC 交BC 的延长线于点E.求证:DE =12BE.第2课时菱形的判定1.理解并掌握菱形的定义及其两个判定方法.(重点)2.会用这些判定方法进行有关的论证和计算.(难点)(一)知识探究1.有一组________的平行四边形是菱形.2.对角线________的平行四边形是菱形.3.________的四边形是菱形.(二)自学反馈判断下列说法是否正确:(1)对角线互相垂直的四边形是菱形;()(2)对角线互相垂直平分的四边形是菱形;()(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;()(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.()活动1小组讨论例1已知:如图,在?ABCD中,对角线AC与BD交于点O,AC⊥BD.求证:?ABCD是菱形.例2已知:如图,在?ABCD中,对角线AC与BD相交于点O,AB=5,OA=2,OB=1.求证:?ABCD是菱形.活动2跟踪训练1.如图,在?ABCD中,添加下列条件不能判定?ABCD是菱形的是()A.AB=BC B.AC⊥BDC.BD平分∠ABC D.AC=BD2.如图,已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是() A.AD平分∠BAC B.AB=AC,且BD=CDC.AD为中线D.EF⊥AD3.将一张矩形纸片对折,如图所示,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形()A.三角形B.不规则的四边形C.菱形D.一般平行四边形4.如图所示,在?ABCD中,AC⊥BD,E为AB中点,若OE=3,则?ABCD的周长是________.5.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.6.如图,在ΔABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE//AB交MN于E,连结AE、CD.请判断四边形ADCE的形状,说明理由.3课时菱形的性质与判定的运用1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.(重难点)2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.阅读教材P8~9,能灵活运用菱形的性质及判定.自学反馈如图所示:在菱形ABCD中,AB=6.(1)三条边AD、DC、BC的长度分别是多少?(2)对角线AC与BD有什么位置关系?(3)若∠ADC=120°,求AC的长;(4)求菱形ABCD的面积.活动1小组讨论例如图,四边形ABCD是边长为13 cm的菱形,其中对角线BD长为10 cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.活动2跟踪训练1.菱形ABCD的周长为40 cm,它的一条对角线BD长10 cm,则∠ABC=________°,AC=________cm. 2.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是________cm2.3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.活动3课堂小结通过本节课的学习你有哪些收获,还存在什么疑问?1.2矩形的性质与判定第1课时矩形的性质1.掌握矩形的定义,理解矩形与平行四边形的关系.2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明.(重点)3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.(难点)(一)知识探究1.有______________的平行四边形叫做矩形.2.生活中你见到过的矩形有________、________.3.矩形是________的平行四边形,具有平行四边形的________性质.4.矩形的________都是直角.5.矩形的对角线________.6.直角三角形斜边上的中线等于斜边的________.(二)自学反馈1.矩形是轴对称图形吗?如果是的话,它有几条对称轴?2.请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:(1)矩形是特殊的平行四边形,特殊之处就是有一个角是直角.()(2)平行四边形是矩形.()(3)平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.()3.已知△ABC是直角三角形,∠ABC=90°,BD是斜边AC上的中线.若BD=3 cm,则AC=________cm. 活动1小组讨论例1在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5 cm,求矩形对角线的长.1.矩形具有一般平行四边形不具有的性质是()A.对边相互平行B.对角线相等C.对角线相互平分D.对角相等2.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为()A.3∶2 B.2∶1 C.1.5∶1 D.1∶13.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()4.如图,在Rt△ABC中,∠ACB=90°,D、E为AB、AC的中点.则下列结论中错误的是()A.CD=AD B.∠B=∠BCDC.∠AED=90°D.AC=2DE5.在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长为________.6.矩形的一条对角线长10 cm,且两条对角线的一个夹角为60°,则矩形的宽为________cm.7.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.8.如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=AB的长.活动3课堂小结1.有一个角是直角的平行四边形叫做矩形.2.矩形的四个角都是直角,矩形的对角线相等.3.直角三角形斜边上的中线等于斜边的一半.第2课时矩形的判定能运用矩形定义、判定定理,解决简单的证明题和计算题,进一步培养分析能力.(重难点)阅读教材P14~16,完成下列问题:(一)知识探究1.对角线________的平行四边形是矩形.2.有三个角是________的四边形是矩形.(二)自学反馈1.能够判断一个四边形是矩形的条件是()A.对角线相等B.对角线垂直C.对角线互相平分且相等D.对角线垂直且相等2.矩形的一组邻边分别长3 cm和4 cm,则它的对角线长________cm. 3.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、∠MCA、∠NCA、∠FAC的平分线.(1)判断AB和CD、BC和AD的位置关系?(2)∠ABC、∠BCD、∠CDA、∠DAB各等于多少度?(3)四边形ABCD是()A.菱形B.平行四边形C.矩形D.不能确定(4)AC和BD有怎样的大小关系?为什么?活动1小组讨论例1如图,在?ABCD中,对角线AC和BD相交于点O,△ABO是等边三角形,AB=4.求?ABCD的面积.活动2跟踪训练1.下列说法错误的是()A.有一个内角是直角的平行四边形是矩形B.矩形的四个角都是直角,并且对角线相等C.对角线相等的平行四边形是矩形D.有两个角是直角的四边形是矩形2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想使该四边形成为矩形,只需再加上一个条件是________.(填上你认为正确的一个答案即可)4.直角∠AOB内的任意一点P到这个角的两边的距离之和为6,则图中四边形的周长为________.5.如图,在?ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:(1)△ADE≌△CBF;四边形BFDE为矩形.6.如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.7.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24cm,求矩形的周长?活动3课堂小结矩形的判定方法:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.第3课时矩形的性质与判定的运用能够运用严密的数学语言证明矩形的性质和判定定理以及其他相关结论.(重难点)阅读教材P16~18,完成下列问题:自学反馈1.如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5 cm,则∠DAO=________,AC=________cm,S矩形ABCD=________.2.如图,四边形ABCD是平行四边形,添加一个条件________,可使它成为矩形.活动1小组讨论例1在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.例2如图,在△ABC中,AB=AC,AD为∠BAC的平分线,AN为△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.活动2跟踪训练1.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD2.如图,矩形的两条对角线的一个夹角为60°,两条对角线的长度的和为20 cm,则这个矩形的一条较短边的长度为()A.10 cm B.8 cm C.6 cm D.5 cm3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE4.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.5.在四边形ABCD中,AB∥DC,∠C=90°,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是________________.(写出一种情况即可)6.如图,?ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.7.如图,在Rt△ABC中,∠A = 90°,AB = AC,D是斜边BC上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:四边形AEDF是矩形;(2)试问:当点D位于BC边的什么位置时,四边形AEDF 是正方形?并证明你的结论.DF 于点F,证明:EC=EF.8.如图,在矩形ABCD中,E是BC上一点且AE=AD,又AE活动3课堂小结1.说说你的收获.2.说说你的困惑.3.说说你的方法.1.3正方形的性质与判定第1课时正方形的性质1.在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,并能运用正方形的性质进行证明与计算.(重难点)2.进一步了解平行四边形、矩形、菱形及正方形之间的相互关系,并形成文本信息与图形信息相互转化的能力.阅读教材P20~21,完成下列问题:(一)知识探究1.有________相等并且有一个角是________的__________叫做正方形.2.正方形既是________又是________,它既具有________的性质,又有________的性质.3.正方形的________相等,都是________,________相等.4.正方形的对角线________________________.(二)自学反馈正方形的性质:1.边:________都相等且________.2.角:四个角都是________.3.对角线:两条对角线互相________且________,并且每一条对角线平分________.4.正方形既是________图形,又是________图形,正方形有________对称轴.活动1小组讨论例如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.活动2跟踪训练1.菱形,矩形,正方形都具有的性质是( )A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等 2.正方形面积为36,则对角线的长为( )A .6B .6 2C .9D .9 23.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( ) A .14 B .15 C .16 D .174.如图,延长正方形ABCD 的边BC 至E ,使CE =AC ,连接AE 交CD 于F ,则∠AFC =________°. 5.如图,正方形ABCD 的对角线AC 、BD 交于点O ,∠OCF =∠OBE.求证:OE =OF.6.如图,正方形ABCD 中,过D 做DE ∥AC ,∠ACE =︒30,CE 交AD 于点F ,求证:AE = AF ;7.如图,在⊿ABC 中,∠BAC =︒90,AD ⊥BC 于D ,CE 平分∠ACB ,交AD 于G ,交AB 于E ,EF ⊥BC 于F ,求证:四边形AEFG 是菱形; 活动3 课堂小结ABDCEFG第2课时正方形的判定1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.(重难点)2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断.阅读教材P22~24,完成下列问题:(一)知识探究1.对角线相等的________是正方形.2.对角线垂直的________是正方形.3.有一个是直角的________是正方形.(二)自学反馈1.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.∠D=90°B.AB=CDC.AD=BC D.BC=CD2.下列命题正确的是()A.两条对角线相等的菱形是正方形B.对角线与一边的夹角是45°的四边形是正方形C.两邻角相等,且有一角是直角的四边形是正方形D.对角线相等且互相垂直的四边形是正方形3.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC4.如图,将一张矩形纸片ABCD折叠,使AB落在AD边上,然后打开,折痕为AE,顶点B的落点为F.则四边形ABEF是________形.活动1小组讨论例如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.活动2跟踪训练1.如图,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,垂足分别为E、F,求证:四边形BEDF是正方形.2.如图,E、F、G、H分别是正方形ABCD四条边上的点,AE=BF=CG=DH,四边形EFGH是什么图形?证明你的结论.3.如图所示,点E,F,G,H分别是CD,BC,AB,DA的中点,求证:四边形EFGH是平行四边形.4.如图,正方形ABCD的边长为3,E,F 分别是AB,BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.活动3课堂小结1.对角线相等的菱形是正方形2.对角线垂直的矩形是正方形3.有一个角是直角的菱形是正方形.§2.1一元二次方程(1)问题1:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?问题2:你能找到关于102、112、122、132、142这五个数之间的等式吗?得到等式102+112+122=132+142之后你的猜想是什么?根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。
北师大版九年级数学上册全册导学案第一章 证明(二)§1.1 你能证明它们吗(1)撰稿人 王可 审稿人 龚敏林 日期教学目标1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式2.经历“探索—发现—猜想—证明”的过程,能够用综合法证明等腰三角形的有关性质定理3.运用等腰三角形的性质定理及其推论证明与等腰三角形有关的角相等或线段相等 教学重点、难点:1.了解作为证明基础的几条公理的内容2.掌握证明的基本步骤和书写格式教学过程一、预习反馈 明确目标1.等腰三角形知识回顾1) 如图1,在△ABC 中,AB = AC ,则顶角为 ,底角为 ,腰为 ,底边为 。
2) AD 是△ABC 的中线,则 ;AD 是△ABC 的角平分线,则 ;AD 是△ABC 的垂线,则 ; 3) 如图,在△ABC 中,AB = AC ,点D 在AC 上,且BD = BC = AD 。
找出所有的等腰三角形 。
2.说出学过的公理及推论3.已知∠D =∠C ,∠A =∠B ,且AE = BF 。
求证:AD = BC 。
二、创设情境 自主探究1. 议一议 等腰三角形的性质 等腰三角形的两个底角相等 (等边对等角)我们如何验证这个命题成立呢?我们以前是用度量、折纸的方法得到的,但要说明一个结论成立,仅仅依靠观察或度量是不够的,证明是必要的。
那么,我们应该如何证明呢? 2.讲解例题 已知,如图,在△ABC 中,AB = AC 。
求证:∠B =∠C 。
分析:要想证明∠B=∠C ,根据以前所学的证明方法,只需证明分别包括∠B 和∠C 的两个三角形全等。
但图中只有一个三角形。
我们应该如何作辅助线呢?引导学生作出辅导线,得出证明过程。
发散学生思维,让学生找出其它的证明方法。
除了作顶角的平分线还可以怎样作辅助线?顶角的平分线 底边上的中线 底边上的高ABCDDCBAABCA A A ABCA BCDE F三、展示交流 点拨提高如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。
新北师大版九年级数学上册1.3.2正方形的判定导学案【教学目标】知识与技能1.能进一步理解掌握正方形的判定定理.2.进一步体会证明的必要性以及计算与证明在解决问题中的作用.过程与方法1.经历探索、猜想、证明的过程,进一步发展推理论证能力.2.进一步体会证明的必要性以及计算与证明在解决问题中的作用. 3.体会证明过程中所运用的归纳概括以及转化等数学思想方法.情感、态度与价值观1.通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性. 2.体会数学与生活的联系.【教学重难点】教学重点特殊四边形―― 正方形的判定定理的灵活应用.教学难点特殊四边形―― 正方形的判定定理的灵活应用.【导学过程】【创设情景,引入新课】回顾正方形有哪些性质【自主探究】:自学,明确正方形的性质定理和判定定理的灵活应用.Ⅱ.解决问题:下面大家来猜一猜,想一想依次连接任意四边形各边的中点可以得到一个平行四边形.那么,依次连接正方形各边的中点.(如图)能得到―个怎样的图形呢?先猜一猜,再证明.依次连结正方形各边的中点得到的四边形是正方形.证明:∵四边形ABCD是正方形.∴∠A=∠B=∠C=∠D=90°, AB=BC=CD=DA.又∵A1、B1、C1、D1分别是边AB、BC、CD、DA的中点。
∴AA1=BA=BB1=B1C =CC1=C1D=DD1=D1A.∴△AD1A1≌△BA1B1≌△CB1C1≌△DC1D1.∴A1B1=B1C1=C1D1=D1A1.∵∠A=∠B=90°, AA1=AD1,A1B=BB1,∴∠AA1D1=∠BA1B1=45°.∴∠D1A1B1=90°.∴四边形A1B1C1D1是正方形.这个题是先证明了四边形A1B1C1D1的四条边相等,即是菱形,然后又证明了这个四边形的一个角是直角,即有一个角为直角的菱形是正方形,从而得证四边形A1B1C1D1是正方形.【课堂探究】已知:如图,点E,F,G,H分别是正方形ABCD四条边上的点,并且AF= BG= CH= DE。
北师大版九年级数学上册第一章 1.3.2正方形的判定 导学案预习目标1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断.预习导学阅读教材P22~24,完成下列问题:(一)知识探究1.对角线相等的________是正方形.2.对角线垂直的________是正方形.3.有一个是直角的________是正方形.(二)自学反馈1.已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BC D .BC =CD2.下列命题正确的是( )A .两条对角线相等的菱形是正方形B .对角线与一边的夹角是45°的四边形是正方形C .两邻角相等,且有一角是直角的四边形是正方形D .对角线相等且互相垂直的四边形是正方形3.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠CC .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC4.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F.则四边形ABEF 是________形.例题讲解活动1 小组讨论例 如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.证明:∵BF ∥CE ,CF ∥BE ,∴四边形BECF 是平行四边形.∵四边形ABCD 是矩形,∴∠ABC =90°,∠DCB =90°.又∵BE 平分∠ABC ,CE 平分∠DCB ,∴∠EBC =12∠ABC =45°,∠ECB =12∠DCB =45°. ∴∠EBC =∠ECB.∴EB =EC.∴平行四边形BECF是菱形.在△EBC中,∵∠EBC=45°,∠ECB=45°,∴∠BEC=90°.∴菱形BECF是正方形.提示:掌握平行四边形、矩形、菱形成为正方形所需要的条件是解决这类问题的关键.活动2 跟踪训练1.如图,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,垂足分别为E、F,求证:四边形BEDF是正方形.2.如图,E、F、G、H分别是正方形ABCD四条边上的点,AE=BF=CG=DH,四边形EFGH是什么图形?证明你的结论.3.如图所示,点E,F,G,H分别是CD,BC,AB,DA的中点,求证:四边形EFGH是平行四边形.活动3 课堂小结1.对角线相等的菱形是正方形;2.对角线垂直的矩形是正方形;3.有一个角是直角的菱形是正方形.参考答案【预习导学】(一)知识探究1.菱形 2.矩形 3.菱形(二)自学反馈1.D 2.A 3.C 4.正方【合作探究】活动2跟踪训练1.证明:∵∠ABC=90°,DE⊥BC,DF⊥AB,∴四边形BEDF是矩形.∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF.∴四边形BEDF是正方形.2.四边形EFGH 是正方形.证明:∵四边形ABCD 是正方形,∴AB =BC =CD =DA.∵AE =BF =CG =DH ,∴HA =EB =FC =GD.∵∠A =∠B =∠C =∠D =90°,∴Rt △AEH ≌Rt △BFE ≌Rt △CGF ≌Rt △DHG.∴HE =EF =FG =GH.∴四边形EFGH 是菱形.又∠AHE =∠BEF ,∠AHE +∠AEH =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°.∴四边形EFGH 是正方形.3.证明:连接BD.∵点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点,∴EF 是△BCD 的中位线,GH 是△ABD 的中位线.∴EF ∥BD ,EF =12BD ,GH ∥BD ,GH =12BD.∴EF ∥GH ,EF =GH.∴四边形EFGH 是平行四边形.。
最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
第一章证明(二)单元备课一、教材分析本章是八年级下册第六章《证明(一)》的继续.教科书首先给出四条公理,这四条公理与《证明(一)》中给出的两条公理一起作为对命题继续进行逻辑证明的基础.本章所证明的命题大都与等腰三角形和直角三角形有关,主要包括:等腰三角形 (含等边三角形)的性质定理及判定定理,直角三角形的性质定理及判定定理,线段垂直平分线的性质定理及判定定理,角平分线的性质定理及判定定理.与《证明(一)》类似,本章所涉及的很多命题(如等腰三角形的性质、直角三角形全等的条件,勾股定理及其逆定理等等)在前几册中已由学生通过一些直观的方法进行了探索,所以学生对这些结论已经有所了解.对于这些命题,教科书努力将证明的思路展现出来.教科书首先采用提问的方式让学生回忆这些结论,探索结论的方法和过程.因为这些方法和过程往往会对证明的思路有所启发.然后再利用公理和已有的定理去证明这些结论.这样处理旨在将抽象的证明与直观的探索联系起来.如在证明“等腰三角形的两个底角相等”时,教科书首先回顾了利用折纸来探索此结论的方法,由此促使学生发现证明思路:作底边上的中线构造全等三角形,从而证明两个角相等.本章还涉及一些以前没有探索过的命题,对于这些命题,教科书采用了不同的处理方式:⑴直接通过证明得到部分命题;⑵对于另一部分命题,则尽可能创设一些问题情境,为学生提供自主探索发现的空间,然后再进行证明,从而将证明作为探索活动的自然延续和必要发展,使学生经历“探索——发现——猜想——证明”的过程,体会合情推理与演绎推理在获得结论中各自发挥的作用.如对于“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.教科书先引导学生拼摆三角尺,探索发现有关结论,同时探索的过程也为即将进行的证明提供了思路.此外,教科书还注意渗透归纳、类比、转化等数学思想方法.本章的设计还考虑了对学生学习方法的指导,以及思维能力的培养.一方面,教科书为学生设置了可将结论进行推广和一般化的空间,将探索发现和证明有机地结合起来;另一方面,教科书还注意引导学生探索证明的不同思路和方法.并进行适当的比较和讨论,开阔学生视野,培养学生的思维能力.如在一种证明方法结束后提出问题“你还有其他的证明方法吗?与同伴进行交流.”本章虽然以逻辑证明为主,但在教材和背景的选取上仍尽可能与实际联系,增强论证的趣味性,从而激发学生对数学证明的兴趣和掌握综合法的信心,同时也使学生体会到逻辑证明在实际中的意义和作用.二、教学目标1. 经历探索、猜测、证明的过程,进一步体会证明的必要性,发展学生初步的演绎推理能力.2. 一步掌握综合法的证明方法,结合实例体会反证法的含义.3. 解作为证明基础的几条公理的内容,能够证明与三角形、线段的垂直平分线、角平分线等有关的性质定理及判定定理.4. 结合具体例子了解逆命题的概念,会识别两个互逆命题,并知道命题成立其逆命题不一定成立.5. 能够利用尺规作已知线段的垂直平分线和已知角的平分线;已知底边和底边上的高,能用尺规作出等腰三角形.三、教学重点与难点重点:探索证明的思路和方法及推理证明.难点:探索证明的思路和方法.四、课时安排1. 你能证明它们吗?3课时2. 直角三角形2课时3. 线段的垂直平分线2课时4. 角平分线2课时回顾与思考2课时五、教学建议1. 使学生经历探索、猜测、证明的过程,进一步体会证明的必要性.本章既涉及一些以前曾探索过的例题,又涉及一些新的结论,因此在教学中,应把证明作为探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、实验的结果,运用归纳、类比的方法首先提出猜想,然后再进行证明,这样做有利于学生全面地理解证明.在具体教学时,一方面,教师可引导学生回忆探索的过程及其得出的结论,并强调证明的必要性;另一方面,学生经过探索还会得到以往没有探索过的新的结论,然后再去证明.教师应充分利用这样的机会,启发引导学生体会探索结论和证明结论的相互关系,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2. 注意对证明思路的启发,提倡证明方法的多样性.在掌握了基本的证明步骤和要求的基础上,教学时应注意在证明思路和方法上对学生的引导,帮助学生分析辅助线的添加,辅助图形的构造.同时,很多结论的证明方法是不唯一的.辅助线的添加方法也是多种多样的,因此教师在教学时要注意引导学生探索证明的不同方法,提倡证明方法的多样性,并引导学生在与他人的交流中比较证明方法的异同,提高逻辑思维水平.3. 要求学生掌握证明的基本要求和方法推理证明是本章学习的重点,因此教学中要注意培养学生掌握推理证明的基本要求,如明确条件和结论,能够用数学的符号语言正确表达;明确每一步推理的依据并能准确地表达推理的过程.另外,对于证明思路和方法,教师要注意给学生留出充分思考的时间和空间,同时还要注意学生的个体差异,对学习证明有困难的学生给予帮助和指导.对于反证法,教学中可以通过生活实例和简单的数学例子使学生体会其思想,不宜对反证法的证明或证明难度提出高要求.4. 注意数学思想方法在教学中的渗透以及对学生学习方法的启发.在命题的探索和证明过程中,蕴涵着一些数学思想方法,如归纳、类比、转化的思想方法,反证法的思想方法等.教学中应注重这些思想方法的强化和渗透,有意识地引导学生去领会这些思想方法并运用在问题的解决过程中.5. 依据《标准》和教科书的基本要求,把握好证明的难易程度.掌握和体验证明的基本方法,需要证明一定数量的命题,但要避免过分追求证明题的数量及证明技巧.教学应依据教科书的基本要求,控制好证明题的难度.六、评价建议1. 关注对学生探索结论和证明思路,证明方法等过程的评价.其一,要关注学生是否积极主动参与探索活动以及同伴之间的交流情况;其二,要关注学生能否通过独立思考获得证明的思路,能否使用规范的数学语言表达思考的过程能否尝试用不同的方法证明同一个命题.2. 关注学生对证明思路、证明方法的掌握情况和推理论证能力的水平.3. 关注学生能否运用规范的数学语言表述论证过程.第一章证明(二)1 你能证明它们吗?(第1课时)教案一、教材分析本节课学习等腰三角形性质定理的证明,并由证明通过想一想得出等腰三角形底边上三条主要线段重合的性质(即三线合一),这条性质是今后证明两角相等,两条线段相等及两条直线互相垂直的重要依据,是这一节的重点,务必使学生牢固掌握.这一节的难点是用文字语言叙述的几何命题的证明,即通常说的文字题.由于它包括了证明几何命题的完整过程,从分析题设、结论、画图到写已知、求证,直到完成证明,每一部分都有些难度,所以学生会感到困难.二、教学目标1. 了解作为证明基础的几条公理的内容.2. 使学生经历“探索——发现——猜想——证明”的过程,学会综合法证明等腰三角形的有关性质定理.3. 让学生学会分析几何证明题的思路,并掌握证明的基本步骤和书写格式.4. 引导学生探索添加辅助线的规律.三、教学重点、难点重点:等腰三角形的性质定理的证明.难点:用语言叙述的几何命题的证明.四、教具准备等腰三角形(纸片)、投影片、三角板.五、教学建议注重对证明思路的启发,提倡证明方法的多样性.六、教学过程图1这节课你学会了什么?有何收获?学 案一、学习目标经历“探索——发现——猜想——证明”的过程,学会用综合法证明等腰三角形的有关性质定理.二、方法规律与探究等腰三角形是一种特殊的三角形,遇到解决有关等腰三角形的问题时,一般是过等腰三角形的顶点作底边上的高或底边上的中线或顶角的角平分线,利用等腰三角形中的三线合一的性质.若在同一个三角形中证明两个角相等,一般要联想到等腰三角形的性质定理——等边对等角.因此需证明两边相等,从而可得到两边所对的角相等.三、分组练习练习 一1. 填空题:⑴如图1-1,在△ABC 中,AB=AC ,AD 是高. ①若∠B=65°,则∠BAD=________.②若BC=8cm , 则BD=______cm. ③若△ABC 的周长为36cm ,AD=10cm , 图1-1则△ABD的周长为_________.⑵如图1-2,AB=AC,AD=AE,∠BAD=28°则∠EDC=___________.图1-22. 证明题:(1)如图1-3,直线EF截∠MAN的两边于B,C,且AB=AC.求证:∠1=∠2.图1-3(2)如图1-4,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:∠BAD=∠EAC.图1-5图1-4练习二如图1-5,在△ABC中,AB=AC,延长BA至D,使AD=AB,连结CD,AE是△ACD的高.(1)求证:AE∥BC;(2)当∠BAC=70°时,求∠CAE的度数.图1-5四、达标检测题1. 选择题:(1)如图1-6,AB=AC,AD=BD=BC,则图中共有相等的角( )A、3对B、6对C、2对D、以上都不对图1-6(2)在△ABC中,∠A:∠B:∠C=2:1:1,则△ABC是( )A、等边三角形B、锐角三角形C、直角三角形D、等腰直角三角形2. 证明题(用两种方法证明)如图1-7中,AB=AC,BD=DC. 求证:∠B=∠C. 图1-7五、收获答案练习一1. (1) ①25°②4cm ③28cm ⑵14°2. (1)略;(2)提示:过A点A作AF⊥BC,或取BC边的中点或作∠DAE的角平分线. 练习二提示:(1) 证明E是CD的中点;(2)55°.达标检测题1. ①B ②D2. 提示:方法一:连结AD,证明△ABD≌△ACD.方法二:连结BC,利用等边对等角.1 你能证明它们吗(第2课时)教案一、教材分析例1是用语言叙述的正确的几何命题,应先让学生经历观察,探索发现相等的线段,再引导他们规范地写出证明的全过程.议一议第2题实质上是等腰三角形的判定定理的证明,是证明两条线段相等的重要依据,它是三角形中角的相等关系转化为边的相等关系的重要依据.二、教学目标1. 使学生能用多种方法证明等腰三角形两底角的角平分线相等和“等角对等边”.2. 结合实例体会反证法的含义.3. 让学生区别“等边对等角”和“等角对等边”.三、教学重点、难点重点:会证明等腰三角形的判定定理,即:“等角对等边”.难点:区别等腰三角形性质定理和判定定理的证明.四、教具准备课件、投影片、三角板.五、教学建议从问题出发,先让学生经过自己的观察,探索发现相等的线段,然后再引导他们去证明,进一步体会证明的必要性.六、教学过程图1 图2 图31-3)1-5C=∠B,但已知条件∠学案一、学习目标学会证明等腰三角形中有关相等的线段及等角对等边,并体会反证法的含义.二、方法规律与探究证明文字叙述的几何命题的题目,首先要分清题设,结论,画出草图,结合图形写出已知,求证,然后再证明,在同一个三角形中,若要证明两条边相等,一般思路是证明这两条边所对的角相等,从而根据“等角对等边”使问题得证.特殊情况下,可以添加适当的辅助线,把要证明的两个角转化到两个三角形中,证明两个三角形全等.三、分组练习练习一1. 证明:等腰三角形两底角的角平分线的交点到底边的两个端点的距离相等.(要求:画出图形,写出已知,求证和证明)2. 如图1-1,在△ABC中,AB=AC,BE为角平分线,DE∥BC.求证:①BD=DE;②BD=CE; 图1-1③CD平分∠ACB.练习二如图1-2在等腰△ABC中,AB=AC,∠BAC=120°,AD为BC边上的高,过D点作DE∥BA交AC于点E,图中除△ABC外,还有等腰三角形吗?若有请指出,并给出证明. 若无,请说明理由.图1-2四、达标检测1. 选择题:⑴下列命题中,真命题是( )A、等腰三角形的角平分线,中线和高线重合.B、等腰三角形一定是锐角三角形.C、若三角形中有两个角相等,那么这两个角所对的边也相等.D、等腰三角形两角相等.⑵在等腰△ABC中,∠A=90°,在底边BC上截取BD=AC,过D作DE⊥BC交AC于E点,则图中等腰三角形有( )A 1个B 2个C 3个D 4个2. 证明题:已知:如图1-3,△ABC是等边三角形,BD=ED,延长BC到E,使CE=CD.求证:AD=CD. 图1-3五、收获:答案练习一1. 略.2. ①证明∠DBC=∠DEB ②先证△ADE为等腰三角形,再证BD=CE. ③先证△DEC为等腰三角形,再证∠BCD=∠CDE.练习二有等腰三角形;是△EDC;先证明∠B=∠C=30°,再证∠EDC=30°,∴∠EDC=∠C,∴DE=CE. 即△EDC为等腰三角形.达标检测:1. 选择题:⑴C ⑵B2. 证明题:∵△ABC是等边三角形,∴∠ACB=60°.∴∠ACE=120°.∵CE=CD,∴∠CDE=∠CED=30°.∵BD=ED,∴∠DBE=∠DEC=30°.∴∠BDE=120°.∴∠BDC=90°.即BD⊥AC.又∵△ABC是等边三角形,∴AD=CD.1 你能证明它们吗(第3课时)教案一、教材分析本节课共设计了两个知识点:⑴等边三角形的判定定理——在等腰三角形中只要有一个角是60°,就可以判定这个三角形是等边三角形,不论这个角是顶角还是底角.⑵在直角三角形中,30°角所对的直角边等于斜边的一半,在证明时设计了学生拼摆三角尺的活动,让学生通过活动发现结论,并给出证明.这样可使学生在探索过程中得到启发.同时也为以后如何使用作好铺垫.例如例2试图说明怎样运用这一知识点,求一个角是30°的直角三角形的边长.二、教学目标1. 掌握等边三角形判定定理的证明.2. 让学生通过实际操作活动,探索直角三角形中,30°角所对的直角边与斜边的关系,并能从拼摆过程中得到添加辅助线的方法.三、教学重点、难点重点:探索两个定理的证明思路.难点:灵活添加辅助线.四、教具准备每人准备两个含30°角的直角三角板,投影片.五、教学建议引导学生从问题出发,根据操作实验的结果,运用归纳,类比的方法得出猜想,然后再进行证明.六、教学过程,连接AD,ACD=90°.学 案一、学习目标学会等边三角形判定定理的证明;掌握直角三角形中,30°角所对的直角边与斜边的关系. 二、方法规律与探究等边三角形是特殊的等腰三角形,判断某个三角形是等边三角形时,一般先证明此三角形是等腰三角形,再求得一个角为60°即可. 遇到含30°角的直角三角形,联想到“直角三角形中,30°角所对的边等于斜边的一半”.常常在直角三角形中求边长时用到,但必须注意前提是直角三角形.三、分组练习练习一1. 填空题:⑴如图1-1,△ABC 中,∠C=90°,AD 平分∠BAC, AD=BD,CD=2cm,则∠ADC=________; AD=_______. 图1-1⑵若△ABC 的中线AD=12BC ,则∠A=______.2. 解答题:如图1-2,∠BAC=30°,D为角平分线上一点,DE⊥AC于F,DF∥AC且交AB于F,若DF=10cm,①求证:△AFD为等腰三角形;②求DE的长. 图1-2练习二1. 如图1-3,△ABC、△BEF都是等边三角形,AF交BC于M,CE交BF于N,求证:①AF=CE;②△MBN是等边三角形.图1-32. 如图1-4,某船于上午11时30分在A处观测海岛B在东偏北30°,该船以10海里1时的速度向东航行到C处,再观测海岛在东偏北60°,且船距海岛20海里.⑴求该船到达C点时的时间;⑵若该船从C点继续向东航行,何时到达B岛正南的D点?图1-4四、达标检测1. 填空题:⑴若等腰三角形一腰上的高线平分这腰,则这个三角形是______三角形;若等腰三角形底边上的高等于一腰上的高,则这个三角形是____三角形.⑵等腰三角形的顶角为150°,腰长为10cm,则这个三角形的面积为_______.2. 解答题:如图1-5,在△ABC中,∠A=90°,∠B=15°,BD=CD,试探索AC与BD有何数量关系?并证明你的结论.图1-5五、收获答 案练习一1. ⑴60°;4cm.⑵90°.2. ⑴证明∠FAD=∠FDA; ⑵5cm . 练习二1. 证明⑴△ABF ≌△CBE(SAS)⑵由△ABF ≌△CBE 得∠AFB=∠CEA ,又BF=BE ,∠MBF=∠NBE=60°. ∴△MBF ≌△NBE ∴MB=NB. 又∠MBN=60°,即可得证△MBN 是等边三角形.2. ⑴13时30分; ⑵14时30分. 达标检测1. ⑴等边三角形;等边三角形.⑵25cm2.2. BD=2AC ;由题意得∠ADC=30°,∴AC=12 CD. 又BD=CD, ∴AC=12BD ,即BD=2AC.2 直角三角形(第1课时)教案一、教材分析直角三角形是一种特殊的三角形,它有许多重要性质.在前面几节中,我们曾介绍过直角三角形的一个性质:30°的角所对的直角边等于斜边的一半.这一节所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,在以后的学习中,将利用勾股定理及直角三角形的其他一些性质,研究直角三角形中一些计算问题.因此,本节是这一章的重要内容,也是我们以后学习的基础.二、背景资料中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫作股,斜边叫做弦.据《周髀算经》记载,西周开国时期(约公元前1千多年)有个叫商高的人对周公说,把一根直尺折成直角,两端连接得一个直角三角形,如果勾是3,股是4,那么弦等于5.人们还发现,在直角三角形中,勾是6,股是8,弦一定是10;勾是5,股是12,弦一定是13,等等.即32+42=52,62+82=102,52+122=132,…,勾2+股2=弦2. 是不是所有的直角三角形都具有这个性质呢?世界上许多数学家,先后用不同方法证明了这一性质.我国把它称为勾股定理.三、教学目标1. 进一步掌握推理证明的方法,发展演绎推理能力.2. 了解勾股定理及其逆定理的证明方法.3. 结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立逆命题不一定成立.四、教学重点、难点重点:勾股定理及其逆定理.难点:用勾股定理的逆定理判断一个三角形是不是直角三角形及综合运用直角三角形的性质解题.五、教具准备三角板、投影仪、幻灯片.六、教学建议1. 教师可引导学生回忆探索的过程及其得出的结论,并强调证明的必要性,还要启发引导学生体会探索结论的相互关系,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.教学时应注意在证明思路和方法上对学生的引导,以前探索结论时所使用的方法对证明思路往往具有重要的启迪作用,教师应注意引导启发.七、教学过程图1吗?把你的验证过程写下来,并与学案一、学习目标1. 已知直角三角形的两边会求第三边.2. 会用勾股定理的逆定题判断一个三角形是不是直角三角形.3. 能够说出所给命题的逆命题.二、方法规律与探究勾股定理反映了直角三角形三边之间的数量关系,这是直角三角形的性质定理.即c2=a2+b2(c 为直角所对的边),在其他三角形中不存在这样的关系,这一点要切记.基于这一点,在利用勾股定理进行计算与证明中,在无直角三角形的情况下,可适当作垂线,构造出直角三角形,以便利用勾股定理.同时要注意逆定理条件的特点,当一个三角形的三边已知时,往往可运用勾股定理的逆定理证明有关线段垂直问题.三、分组练习练 习 一1. 已知直角三角形的两边长为3,4,则第三边长为________.2. △ABC 的三边为a=0.6cm, b=0.8cm, c=1cm, 则∠C=________.3. 如图1,△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC=( )A.B. 6C.D. 4图14. 在Rt △ABC 中,∠C=90°,AC=3 BC=4,则BC 边上的中线的长为( )A.B. 52C. 52 D. 6练 习 二1. Rt △ABC 中,斜边AB=5,则AB 2+BC 2+CA 2=_________.2. 一个三角形三边长分别为3,4,5,那么最大边上的高为______.3. 如图2,AD=4,CD=3,∠ADC=90°,AB=13,BC=12,求图形的面积.图2四、达标检测题:1. 写出命题“线段垂直平分线上的点到这条线段两个端点的距离相等”的逆命题______________________.2. 等边三角形的边长为8,则它的面积为_____________.3. 在下列各组数据中,可以构成直角三角形的是________.A. 5,6,7B. 40,41,9C. . , , ,1D. 0.2,0.3,0.44. 已知△ABC 的三边分别为a ,b ,c ,且a+b=17,ab=60, c=13,三角形ABC 是否是直角三角形?为什么?五、收获:答案练习一:1. 5或2. 90°3. A4. A练习二:1. 502. 2.43. 提示:连接AC,利用勾股定理求得AC=5;再判断三角形ABC为直角三角形;可再求出△ABC的面积为30,△ADC的面积为6;所以所求图形的面积为24.达标检测题:1. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2. 163. B4. 提示:由a+b=17得出(a+b)2=172,整理得:a2+b2=172-2ab,由ab=60得a2+b2=169,又c=13,所以c2=169,a2+b2=c2,故△ABC是直角三角形.2 直角三角形(第2课时)教案一、教材分析在学生已经掌握了一般三角形全等的判定方法的基础上,本节重点学习直角三角形的全等的判定定理的证明.一般三角形的判定方法都是作为公理提出来的,使学生确信它们的正确性,为了便于综合练习各种三角形全等的判定方法,本节让学生经历“探索——发现–—猜想——证明”的过程,去证明特殊的三角形——直角三角形的判定定理,从而使三角形全等的判定方法这部分知识相对完整些.二、教学目标1. 使学生经历探索、猜测、证明的过程,进一步体会证明的必要性.2. 掌握直角三角形全等的“HL”判定定理的证明.三、教学重点、难点重点:掌握判定直角三角形全等的特殊方法——HL定理.难点:能熟练选择判定方法判定两个直角三角形全等.四、教具准备三角板、投影仪、幻灯片.五、教学建议教学中要注意培养学生掌握推理证明的基本要求.如明确条件和结论,能够用数学的符号语言正确表达;明确每一步推理的依据并能准确地表达推理的过程.六、教学过程学 案一、学习目标能够证明直角三角形全等的“HL ”判定定理;灵活选择判定方法判定两个直角三角形全等. 二、方法规律与探究直角三角形是三角形中的一类,一般三角形所具有的性质,直角三角形都具备,因此判定两个直角三角形全等时,完全可以用以前学过的公理及推论.由于直角三角形中,有一个角是直角,而直角都相等,所以要判定两个直角三角形全等时,要注意这两个三角形中已经具备一对角相等的条件,只需找另外两个条件即可.而“HL ”定理是直角三角形独有的,所以在运用“HL ”定理时一定要强调指出是直角三角形.在学习时要分清各种判定方法所具备的条件,反复练习,理清思路,不断提高运用能力.三、分组练习练 习 一1. 如图1,AB=AC ,AD=AE ,AF ⊥BC 于F ,则图中全等的三角形有( ).A. 1对B. 2对C. 3对D.4对 2. AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 、B ′C ′边上的高,且AB= A ′B ′,AD= A ′D ′,若使△ABC ≌△A ′B ′C ′,请你补充条件___(只需填写一个你认为适当的条件).3. 已知:如图2,∠A=∠D=90°,CD 是AB 边上的中线,延长CD 到E 使DE=CD ,连结AE ,图中有_____对全等三角形.练习二已知:如图3,AD=BC,AD⊥AC,BC⊥BD.求证:AC=BD四、达标检测题1. 在Rt△ABC中,∠C=90°,CD是AB边上的中线,延长CD到E使DE=CD,连结AE,图中有________对全等三角形.2. 要测量河两岸相对角的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图4),可以证明△EDC≌△ABC,使ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是( ).A.边角边公理B.角边角公理C.边边边公理D.斜边、直角边公理3. 已知:如图5,AD⊥BE,垂足C是BE的中点,AB=DE.求证:AB∥DE. 图5五、收获答案练习一1. 22. BC= B′C′(或AC= A′C′或∠C=∠C′等)3. 提示:Rt△ADC≌Rt△BCD(HL)可得△AOB≌△DOC(AAS).练习二提示:证法1:连结CD,可证Rt△ADC≌Rt△BCD(HL).(如图6)证法2:延长DA、CB交于点E. (如图6)∵AD⊥AC,BC⊥BD∴∠CAE=∠DBE=90°又∵∠E=∠E,BD=AC 图6∴△DBE≌△CAE(AAS)∴ED=EC,EB=EA∴ED-EA=EC-EB即AD=BC.达标检测题:1. D2. B3. 提示:利用“HL”定理证明Rt△ABC≌Rt△DEC,可得∠B=∠E,所以证得AB∥DE.3 线段的垂直平分线(第1课时)教案一、教材分析线段的垂直平分线的性质定理及逆定理,都是非常重要的定理.证明这些定理需要应用直角三角形全等的判定定理和等腰三角形的性质定理,所以把线段的垂直平分线这一节安排在直角三角形和等腰三角形之后,可以使这些定理有较多的应用机会,从而有利于学生掌握它们,灵活地运用它们.二、教学目标1. 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.2. 能够证明线段垂直平分线的性质定理、判定定理.3. 能够利用尺规作图作已知线段的垂直平分线.三、教学重点、难点重点:线段的垂直平分线的性质定理及逆定理.难点:综合运用这两个定理.四、教具准备三角板、投影仪、幻灯片.五、教学建议教学时应引导学生着重分析证明的思路和方法,通过一定数量的推理证明训练,逐步使学生掌握证明的方法和思路.另外,对于证明思路和方法,教师要注意给学生留出充分思考的时间和空间,同时还要注意学生的个体差异,对学习证明有困难的学生给予帮助和指导.六、教学过程。
第一章特殊平行四边形E F D C B A F ED C BA 第一章 特殊平行四边形课题1.1菱形的性质与判定(第二课时)教师二备一、问题引入1、 叫做菱形.2、菱形的四条边 ,对角线 .3、除了菱形的定义可以判断一个平行四边形是菱形外,还有什么条件可以判断? 二、基础训练1、要使□ABCD 为菱形,下列添加条件中正确的是( )A.AB ⊥BCB.AC ⊥BDC.AC=BDD.∠ABC=∠CDA 2、如图所示,在□ABCD 中,AE,CF 分别是∠BAD 和∠BCD 的平分线,若添加一个条件,仍无法判断四边形AECF 为菱形的是( )A.AE=AFB.EF ⊥ACC.∠B=60°D.AC 是∠EAF 的平分线三、例题展示 例1:如图所示,ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例2:如图所示,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E,DF ∥AB 交AC 于F,试判断四边形AEDF 的形状,并证明你的结论.第一章特殊平行四边形HEF GCBAD 例2:如图,已知:两条等宽的长纸条倾斜地重叠着,求证:重叠部分为菱形.四、课堂检测1、下列条件中,能判定一个四边形为菱形的条件是( )A.对角线互相平分的四边形B.对角线互相垂直且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形2、菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm3、 菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( ) A. 43B. 83C. 103D. 1234、如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,求菱形ABCD 的高DH.5、如图,已知在四边形ABCD 中,AD=BC,点E,F,G ,H 分别是AB,CD,AC,BD 的中点,求证:四边形EGFH 是菱形.教学反思C DA B 第4题第一章特殊平行四边形Q P D C B A例2:如图所示,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. (1) 求证:∠PBA=∠PCQ=30°;(2)求证:PA=PQ 四.课堂检测 1 1、矩形ABCD 的边AD=3cm ,对角线AC 、BD 的夹角∠AOB=120°,则AC= . 2 2、 Rt △ABC 的两直角边长分别为3和4,则斜边上的中线是 ,斜边上的高是 . 3 3、矩形的面积为12cm 2,一条边长为3cm ,则矩形的对角线长为_______ 4 4、已知点E 是矩形ABCD 的边BC 的中点,那么S △AED =(_)ABCD S 矩形A.21B.41C.51D.615 5、矩形ABCD 沿AC 折叠,使点B 落在点E 处, 求证:EF=DF. 66、已知:在矩形ABCD 中,E 为DC 边上一点,BF ⊥AE 于点F ,且BF =BC .求证:AE =AB.7、如图,在矩形ABCD 中,对角线AC 和BD 相交于点O,过顶点C 作BD 的平行线与AB 的延长线相交于点E,求证:△ACE 是等腰三角形教学反思 第5题 第6题F B D C A E 第7题O ED CBA第一章特殊平行四边形第一章 特殊平行四边形课题 1.2矩形的性质与判定(第三课时)教师二备一、问题引入1、矩形的性质定理:除了具有与平行四边形一样的性质之外,矩形所具有的特殊性质是:①矩形的____________________都是直角; ②矩形的对角线___________.2、矩形的判定定理:①有一个角是直角的________________是矩形(定义); ②有_____________________ 是直角的四边形...是矩形; ③对角线_________ ___的平行四边形是矩形. 二、基础训练1、在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,AB=4㎝,则AC=_______㎝.2、如图所示,已知ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明ABCD 是矩形的有(填写序号).3、如图,矩形的对角线交于点O ,过点O 的直线交AD 、BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为___ _______.三、例题展示例1:在矩形ABCD 中,对角线AC 与BD 相交于点O,AE ⊥BD 于点E,ED=3BE,求AE 的长.第2题 21DCBAO ED CBA四、课堂检测1、如上图1,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥AC 于F,PE ⊥BD 于E,则PE+PF 的值为( )A .125B .135C .52 D .22、已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,四边形ABDE 是平行四边形, 求证:四边形ADCE 是矩形.3、如图,以△ABC 的三边为边,在BC 的同侧分别作3个等边三角形,即△ABD 、△BCE 、△ACF .请回答问题并说明理由: (1)四边形ADEF 是什么四边形?(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?教学反思E D C B A 第2题图 BA CED F 第3题图第1题图第一章特殊平行四边形第一章特殊平行四边形第一章 特殊平行四边形单元检测一、选择题1、如图,四边形ABCD 的对角线互相平分,要使它变为矩形, 需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD2、在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为( ) A.20 B.18 C.16 D.153、(2014•广西玉林市)下列命题是假命题的是( )A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形 4、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 5、下列条件 中,不能判定四边形ABCD 为矩形的是( ) A .AB ∥CD ,AB=CD,AC=BD B.∠A=∠B=∠D=90° C.AB=BC,AD=CD,∠C=90° D.AB=CD,AD=BC,∠A=906、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点, 菱形ABCD 的周长为28,则OH 的长等于( ) A3.5 B. 4 C. 7 D. 147、正方形具有而矩形不一定具有的性质是( ) A .四个角都是直角 B .对角线互相平分 C .对角相等 D .对角线互相垂直8、(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后,点D 的对应点D′的坐标是( ) A .(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空题 9、(2014•江苏苏州)已知正方形ABCD 的对角线AC=,则正方形ABCD 的周长为 . 10、(2014•山东淄博)已知□ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形,你添加的条件是 .11、已知矩形ABCD 的两条对角线相交于点O,∠AOB=60°,AB=4㎝,则矩形的对角线长为 .12、( 2014•福建泉州)如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,则CD 的长为 cm .第1题图ODC BA第6题图第8题图 第12题图第4题图13、(2014•四川宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是 cm .14、(2014年四川资阳)如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点, 则△BEQ 周长的最小值为 . 三.解答题15、( 2014•福建泉州)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD 边上,BE =DF ,连接CE ,AF .求证:AF =CE .16、(2014•四川巴中)如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.第14题图第15题图第16题第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程5、(2014德州)方程01222=+++k k kx x 的两个实数根足42221=+x x ,则的值为第二章 一元二次方程课题 2.6 应用一元二次方程(一)教师二备一、问题引入:1、列方程解应用题的一般步骤: (1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系; (2)“设”,即设 ,设未知数的方法有直接设未知数和间接设未知数两种; (3)“列”,即根据题中的 关系列方程;(4)“解”,即求出所列方程的 ; (5)“检验”,即验证是否符合题意;(6)“答”,即回答题目中要解决的问题. 重点:找出相等关系的关键是审题,审题是列方程(组)的基础,找出 是列方程(组)解应用题的关键. 二、基础检测:1、(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()28121=+x x B . ()28121=-x xC .()281=+x xD .()281=-x x2、(2014丽水)如图,某小区规划在一个长m 30、宽m 20的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为278cm ,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程第2题图三、例题展示:例:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头.小岛F位于BC中点.一艘军舰从A 出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)分析:(1)图形中线段长表示的量:已知AB= = 海里,DE表示的路程,表示军舰的路程.(2)找出题目中的等量关系即:速度等量:V军舰= 时间等量:t军舰=t补给船根据分析正确设出未知数,写出解题过程.四、课堂检测:1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=152、一个矩形的面积是48平方厘米,它的长比宽多8厘米,则矩形的宽x(厘米),应满足方程______ ___ _.3、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?4、(2014新疆,)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?教学反思第二章一元二次方程课题 2.6 应用一元二次方程(二)教师二备一、问题引入:常见应用题类型1、增长率问题:增长率问题分正增长率问题与负增长率问题.台元 元 降价前 降价后根据分析正确设出未知数,在练习本上写出解题过程.四、课堂检测:1、(2014•湖南衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.2、2、(2013山东泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问:第二周每个旅游纪念品的销售价格为多少元?教学反思第二章 一元二次方程单元检测题(总分100分)一、选择题:(每小题4分,共32分)1、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .2=mC .2-=mD .2±≠m2、已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于( )A.-1B.0C.1D.2 3、方程x x 22=的解为( )A.2=xB.21-=x ,02=xC. 21=x ,02=xD. 0=x 4、解方程)15(3)15(2-=-x x 的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5、用配方法解下列方程时,配方有错误的是( )A.09922=--x x 化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t 化为1681)47(2=-t D.02432=--y y 化为910)32(2=-y6、如果关于x 的一元二次方程02=++q px x 的两根分别为31=x ,12=x ,那么这个一元二次方程是( )A.0432=++x xB.0342=-+x xC.0342=+-x xD. 0432=-+x x7、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6- B. 1 C. 2 D. 6-或18、某型号的手机连续两次降价,每个售价由原来的1225元降到了625元,设平均每次降价的百分率为x ,列出方程正确的是( ) A .()122516252=+x B. ()625112252=+xC. ()122516252=-x D.()625112252=-x二、填空题:(每小题4分,共20分)9、一元二次方程x x 71322=-的二次项系数为: ,一次项系数为: ____ ,常数项为: ___.10、请写出一个一元二次方程使它有一个根为-3, . 11、关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .12、关于x 的一元二次方程0322=-+k x x 有实数根,则k 的取值范围是 . 13、实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则, 方程()031=*+x 的解为 . 三、解答题:14、解下列方程:(每小题6分,共12分)(1) 01862=--x x (2) 752652x x x15、已知关于的方程(的两根之和为,两根之差为1,其中是△的三边长(1)求方程的根;(2)试判断△的形状.(每小题12分)16、团委准备举办学生绘画展览,在长30cm、宽为20cm的矩形画面的四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等,求彩纸的宽度.(每小题12分)17、果批发商场经销一种高档水果,如果每千克盈利15元,每天可售出500kg,经市场调查发现,在进货价不变的情况下,每涨价1元,日销售量将减少30kg,现该商场要保证每天盈利8250元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(每小题12分)第三章概率的进一步认识课题 3.1用树状图或表格求概率(一)教师二备一、问题引入:A.61B.31C.21D.652、一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是( ).A.501B.252C.51D.1033、三个人站成一排,通过试验可得,甲站在中间的概率为().A.61B.31C.21D.414、甲、乙两人赛跑,则开始起跑时都迈出左腿的概率是()A.1B.21C.31D.415、某校决定从两名男生和两名女生中选出两名同学作为2014年元旦联欢晚会的主持人,则恰好选出一男一女的概率是.6、如图是某地的灌溉系统,一个漂浮物A流到B处的概率为.7、小明说:“我投均匀的一枚硬币2次,会出现两次都为反、一正一反和两次都为正三种情况,所以出现一正一反这种情况的概率是31”,你觉得他的说法有道理吗?说明你的理由.8、有两组卡片,第一组两张卡片上都写着A、B,第二组三张卡片上都写着A、B、C.试用树状图和列表法求出从每组卡片中各抽取一张,两张都是B的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(二)教师二备一、问题引入:有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是.3、一个盒子内装有大小、形状相同的三个球,其中红球、绿球、白球各1个,小明摸出一个球再放回,再摸出一个球,则两次都摸到白球的概率是()A.21B.41C.61D.914、学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.32B.65C.61D.215、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.83B.21C.85D.436、从分别标有﹣1,1,2的三张卡片中一次抽取2张,卡片上的两个数的乘积为负数的概率是.7、如图,有A、B、C、D 四张卡片,其正面分别写有“寸、又、日”四个偏旁部首,有的能独立成字,有的能组合成字.现四张卡片背面朝上.(1)任意翻过一张卡片,能独立成字的概率为;(2)先任意翻过一张卡片作为左部偏旁,再任意翻过一张与其组合,请用列表或画树状图的方法求翻过的两张卡片恰好能组合成字的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(三)教师二备一、问题引入:1、同时抛掷硬币三次,一共有 种可能出现的结果?求三枚硬币全部正面朝上的概率 .2、用树状图和列表的方法求概率应注意各种结果出现的可能性 . 二、基础训练:1、(1)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,再放回,又取一粒,两粒都是白色的概率为_________.(2)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,不放回,又取一粒,两粒都是白色的概率为_________.2、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上 (如右图),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.323、有长度分别为2cm 、5cm 、7cm 、10cm 的四条线段,从中任取三条线段能够组成三角形的概率是( )A.14 B.12 C.23 D.34三、例题展示:例1、小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英胜,否则小丽胜,用树状图或表格说明这个游戏对双方公平吗?例2:小明准备今年五一到上海参观世博会,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次.(1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上正面向上,由爸爸陪同前往上海;有两次或两次以上反面向上,则由妈妈陪同前往上海.分别求由爸爸陪同小明前往上海和由妈妈陪同小明前往上海的概率. 四、课堂检测:1、一个家庭有3个小孩.这个家庭有3个男孩的概率是 ;2、如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),红 黄蓝蓝红 红 黄则转盘停止后指针指向的数字之和为偶数的概率是.3、一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.4、有四张不透明的卡片(如图),除正面的数字不同外,其余都相同,现将它们背面向上洗匀,从中任意抽取两张,上面的数字之和恰好为零的概率为().A.15B.14C.13D.125、随机掷一枚均匀的硬币三次,三次正面都朝上的概率是.6、利用下面的转盘做“配紫色”的游戏,用树状图求出“配紫色”的概率.7、在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,则2次摸出的球都是白色的概率为;(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为.教学反思第三章概率的进一步认识课题 3.2用频率估计概率教师二备一、问题引入:能有()A.16个B.15个C.13个D.12个2、随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是.3、从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为.4、一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为31%,则水塘大约有鲢鱼尾.5、一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是()A.124B.87.5%C.14D.186、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A.40只B.25只C.15只D.3只7、一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是_________.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.教学反思课题第三章概率的进一步认识单元测试教师二备10、在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发教学反思现摸到白球的频率约为40%,估计袋中白球有_________个.11、一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是.12、抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是_________.13、小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.14、纸箱里有两双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为.三、解答题15、如图所示,有一张“太阳”和两张“月亮”共三张精美卡片,它们除花形外,其余都一样.(1)从三张卡片中一次抽出两张卡片,请通过列表或画树状图的方法,求出两张卡片都是“月亮”的概率;(2)若再添加几张“太阳”卡片后,任意抽出一张卡片,使得抽出“太阳”卡片的概率为2,那么应添加多少张“太阳”卡片?请说明理由.316、小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有1,2,3,4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜.(1)请用列表或画树形图的方法.分别求出小伟,小欣获胜的概率;(2)请修改两人获胜的规则,使两人获胜的可能性一样大.第四章图形的相似课题 4.1成比例线段(第1课时)教师二备一、问题引入:(1)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB:CD=m:n,或写成nmCDAB=其中, ________ 叫做这个线段比的前项;________ 叫做这个线段比的后项.如果把nm表示成比值k,那么kCDAB=,或AB=k·CD.两条线段的比实际上就是两个数的比.(2)如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,CD,EH,EF的长度分别是多少?分别计算.你发现了什么?上图中________________ 是成比例线段,_______________ 也是成比例线段.四条线段a,b,c,d中,如果_______________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.如果a:b=b:c,则b2=ac,线段b叫做线段a、c的比例中项;归纳比例的基本性质___________________________________________.二、基础训练:1、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是___ ___.2、线段AB=10cm,CD=15cm,则AB:CD=;a=2m,b=10cm,则a:b=.3、已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=____ .4、如果2x=5y,那么yx= .EFEHADABEFADEHAB,,,5、下面四条线段中,不能成比例的是( )A . a =3, b =6, c =2, d =4B . a =4, b =8, c =5, d =10C . a =2, b =22,c= 32 , d=3D . a=2, b=52 , c= 15 ,d=32三、例题展示: 例题1: 如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AB AD AD AE = ,那么a 的值应当是多少?四、课堂检测:1、若四条线段中a =2,b =6,c =6,且满足dcb a =,那么d =_ ____. 2、线段x 、y 满足5x =3y ,那么x :y = . 3、等腰Rt ΔABC 的直角边与斜边之比是 . 4、若917=+y y x ,则y x =__ ___.5、如图,已知d c b a ==3,则b b a += , dd c += . 6、若41=b a ,则b b a 23+的值为 .7、若532zy x ==,x +y +z =5,那么x = ,y = ,z = . 8、如果754z y x ==,那么zz y x ++= .教学反思a cbd。
正方形的性质与判定【学习目标】1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。
2.知道特殊四边形的中点四边形的形状,并理解决定中点四边形形状的因素。
【学习过程】一、温故知新1、有一个的平行四边形是矩形2、有一组邻边的平行四边形是菱形二、自研自探环节请自主阅读课本P14至P16,然后思考什么样的图形称为正方形?并完成以下问题:1、定义:叫正方形。
2、矩形:①有的矩形是正方形(判定定理1)②对角线的矩形叫正方形(判定定理2)3、菱形:①有的菱形是正方形(判定定理3)②对角线的菱形叫正方形(判定定理4)4、平行四边形:①有,有的平行四边形是正方形②对角线的平行四边形是正方形5、完成图形关系三、合作探究环节:【小对子交流学习】1.在平行四边形ABCD中,∠A=90°,如果添加一个条件推出该四边形是正方形,则这个条件是()A.∠D=90° B.AB=CD C. AD=BC D. BC=CD2.下列说法错误()A.两条对角线相等的菱形是正方形B.两条对角线相等且垂直平分的四边形是正方形C.两条对角线垂直且相等的四边形是正方形D.两条对角线垂直的矩形是正方形3.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角的度数应为()。
A.60° B.30° C.45° D.90°四、展示提升环节(小组合作展示)例1 已知:如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.例2 判断中点四边形的形状特征:图1 图2 图31.如图1,在ΔABC 中,EF 为ΔABC 的中位线,①若∠BEF=30°,则∠A= . ②若EF=8cm ,则AC= .2.在AC 的下方找一点D,做CD 和AD 的中点G 、H,问EF 和GH 有怎样的关系?EH 和FG 呢?3.四边形EFGH 为四边形ABCD 的中点四边形,问四边形E FGH 的形状有什么特征?4.动手画一画,平行四边形、矩形、菱形、正方形的中点四边形EFGH ,并判断中点四边形的形状。
1。
3.2正方形的性质与判定教学目标:1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.2。
发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力.3.经历“探索—发现—猜想—证明"的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题.4。
通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣.教学重点与难点:重点:形成判定正方形的基本思路难点:综合应用菱形、矩形、正方形的性质定理和判定定理探索中点四边形形状课前准备:多媒体课件.教学过程:一、创设情境导入新课活动内容:回答下列问题。
问题1:我们学习了平行四边形、矩形、菱形、正方形,那么请思考一下,它们之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流.问题2:如图,将一张长方形纸对折两次,然后剪下一个角,打开.怎样剪才能剪出一个正方形?问题3:议一议:满足什么条件的矩形是正方形?满足什么条件的菱形是正方形?与同伴交流一下。
处理方式:问题1由学生尝试画出平行四边形、矩形、菱形、正方形之间的关系图,目的是让学生理清它们之间的联系和区别.对于问题2先让学生折纸,然后用剪刀剪出一个正方形,并引导学生思考怎样判定一个图形是正方形。
这也为新课的学习做好铺垫.ﻬ设计意图:(1)以问题串的形式引入新课,让学生明确本节课所要解决的问题。
(2)让学生回忆平行四边形、矩形、菱形、正方形之间的关系,正方形性质和判定的探索过程及其得出的结论,目的是启发引导学生体会探索结论和证明结论的相互关系,即合情推理与演绎推理的相互依赖和相互补充的辨证关系。
二、探究学习,感悟新知探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法。
九年级数学导学案
探究一:
(1)请你通过折叠的方法找出一个锐角三角形纸片每
条边的垂直平分线。
观察这三条垂直平分线,你发现了
什么?
(2)请你用利用尺规作出钝角三角形三条边的垂直平
分线。
再观察这三条垂直平分线,你又发现了什
么?
(3)请证明三角形三边的垂直平分线交于一点
证明:如图,在△ABC 中,设AB ,BC 的垂直平分线交于
点P ,连接AP ,BP ,CP 。
A B
C
定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
结论:锐角三角形的三边垂直平分线的交点在内;钝角三角形的三边垂直平分线的交点在外;钝角三角形的三边垂直平分线的交点在;
探究二:
一、思考:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?
2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?
二、做一做:已知底边及底边上的高,求作等腰三角形。
已知:线段a、h
求作:△ABC,使AB=AC,且BC=a,高AD=h.
三、我的课堂我做主
不能确定
3、等腰 Rt △ABC中,AB=AC,BC=a,其斜边上的中线与一
腰的垂直平分线交于点O,则点O到三角形三个顶点的
距离是。
4、如图,有A、B、C三个工厂,现要建一个供
水站,使它到这三个工厂的距离相等,求供水
站的位置(要求尺规作图,只保留作图痕迹,
不写作法)
5、如图,在△ABC中,AB=AC,AB的垂直平分
线交AC于点E,已知△BCE的周长为8,AC-
BC=2,求AB与BC的长.
课后作业:
1、判断题:
⑴三角形的任意两边的垂直平分线的交点到三个顶点的距离相
等.( )
⑵线段的垂直平分线上的点和这条线段的距离相等. ( )
⑶三角形三条边的垂直平分线必交于一点()
⑷平面上只存在一点到已知三角形三个顶点距离相等()
2、如左下图,点P为△ABC三边中垂线交点,则
P A__________PB__________PC.
3、如右上图,在锐角三角形ABC中,∠BAC=50°,AC、BC的
垂直平分线交于点O,则∠1_______∠2,∠3____∠4,∠5____
∠6,∠2+∠3=______°,∠1+∠4=______°,∠5+∠
6=______°,∠BOC=___ _°
4、如图,D为BC边上一点,且BC=BD+AD,则AD__________DC,
点D在__________的垂直平分线上.
A
B
C
5、如图,AD 是△ABC 中BC 边上的高,E 是AD 上异于A ,D 的点,若BE =CE ,则△________≌△________(HL );从而BD =DC ,则△__________≌△__________(SAS );△ABC 是__________三角形.
6、如右上图,∠BAC =120°,AB =AC ,AC 的垂直平分线交BC 于D ,则∠AD B=__________°.
7、已知线段a ,求作以a 为底,以
a 2
1为高的等腰三角形。
中考真题:已知:如图,Rt △ABC 中,∠ACB=900, ∠BAC=600,DE 垂直平分BC ,垂足为D ,交AB 于点E ,点F 在DE 的延长线上,且AF=CE ,试探究图中相等的线段。
三、小结反馈
课后反思。