第三章语音信号的压缩编码
- 格式:ppt
- 大小:874.00 KB
- 文档页数:60
语音压缩编码与图像压缩编码语音压缩编码语音压缩编码可分为三类:波形编码、参量编码和混合编码。
这些都属于有损压缩编码。
1.波形编码(1)波形编码的定义波形编码是指对利用调制信号的波形对语音信号进行调制编码的方式。
(2)波形编码的性能要求保持语音波形不变,或使波形失真尽量小。
2.语音参量编码(1)语音参量编码的定义语音参量编码是将语音的主要参量提取出来编码的方式。
(2)语音参量编码的基本原理首先分析语音的短时频谱特性,提取出语音的频谱参量,然后再用这些参量合成语音波形。
(3)语音参量编码的性能要求保持语音的可懂度和清晰度尽量高。
3.混合编码(1)混合编码的定义混合编码是既采用了语音参量又包括了部分语音波形信息的编码方式。
(2)混合编码的基本原理混合编码除了采用时变线性滤波器作为核心外,还在激励源中加入了语音波形的某种信息,从而改进其合成语音的质量。
(3)混合编码的性能要求保持语音的可懂度和清晰度尽量高。
图像压缩编码图像压缩按照图像是否有失真,可分为有损压缩和无损压缩;按照静止图像和动态图像,又可分为静止图像压缩和动态图像压缩。
1.静止图像压缩编码的特点(1)静止数字图像信号是由二维的许多像素构成的;(2)在各邻近像素之间都有相关性;(3)所以可以用差分编码(DPCM)或其他预测方法,仅传输预测误差从而压缩数据率。
2.动态图像压缩编码的特点(1)动态数字图像是由许多帧静止图像构成的,可看成是三维的图像;(2)在邻近帧的像素之间有相关性;(3)动态图像的压缩可看作是在静止图像压缩基础上再设法减小邻近帧之间的相关性。
《数字通信》第3章语音信号压缩编码(2)复习⏹语音压缩编码研究的基本问题是什么?⏹能够进行语音信号压缩的依据是什么?⏹DPCM的工作原理是什么?⏹与DPCM相比,ADPCM增加了什么辅助措施?⏹子带编码的工作原理是什么?复习⏹语音压缩编码⏹所有码速率低于PCM编码比特率64kbit/s的语音编码技术。
⏹研究的基本问题是如何尽可能降低语音编码所需要的比特率。
⏹能够进行语音信号压缩的依据:⏹语音信号在(1)时域、(2)频域和(3)人类听觉感知域存在多种多样的冗余。
⏹语音编码分类:⏹包括(1)波形编码、(2)参量编码和(3)混合编码。
⏹语音质量评价:⏹一般采用平均意见分MOS复习⏹DPCM⏹对差值序列进行量化编码的方法,传输的编码为样值与预测值之差⏹预测值为历史样值的线性和:⏹ADPCM:⏹为了进一步提高DPCM方式的质量,需要采取一些辅助措施,即自适应处理。
⏹包括两方面:(1)自适应量化;(2)自适应预测。
1()()Nsi s s i S nT W S nT iT ==-∑内容1.同学PPT演示2.参量编码3.混合编码4.低速率语音压缩编码的应用1.同学PPT演示2.参量编码参量编码基本原理:⏹根据对语音形成机理的分析,着眼于构造语音生成模型(对应为具有一定零极点分布的数字滤波器)⏹发送的信息:语音生成模型的参数⏹特点:⏹编码比特率较低⏹语音质量相对较差语音形成机理:⏹音素分为两类:⏹伴有声带振动的音称为浊音⏹声带不振动的音称为清音⏹浊音⏹又称有声音。
语声发声时声带在气流的作用下激励起的准周期声波⏹基音频率范围内:50-250Hz⏹能量集中在基音和基音的多次谐波频率附近⏹清音⏹又称无声音。
声带不振动,而是由气流引起的湍流。
⏹没有周期性⏹能量集中在比浊音更高的频率范围内浊音声压波形和频谱:周期性共振峰频率清音声压波形和频谱:非周期性语音信号产生模型:周期性信号:浊音激励源随机性型号:清音激励源G:增益控制线性预测编码(LPC)基本概念(1):基础:(1)语音信号具有慢变化特征:对大多数语音来说可以认为其激励源和声道的特性在10-20ms内保持不变(2)线性预测分析:用过去若干个语音抽样的线性组合来逼近当前语音抽样(3)系数确定原则:在给定的时间内,使e(n)的平方和最小100()()()()()(), 1ppre i i ppre i i x n a x n i e n x n x n a x n i a ==⎧=--⎪⎪⎨⎪=-=-=⎪⎩∑∑线性预测编码(LPC)基本概念(2):⏹与ADPCM区别:⏹ADPCM传输预测残差,LPC传输预测系数⏹ADPCM关注每个样值的绝对一致性,LPC关注每个短时内的主观一致性⏹ADPCM传输每一个采样值的预测残差,LPC传输整个帧的预测系数参量编码的声码器:⏹线性预测编码声码器:⏹语音分为两大类:浊音和清音⏹浊音模型:准周期脉冲序列⏹清音模型:白色随机噪声激励⏹开环方式⏹传输参数:(共15个参量)(1)清/浊音判决u/v(2)基音周期TP(3)增益G(4)声道模型参数{ a} ---12个i线性预测编码声码器:线性预测编码(LPC)实现方框图⏹通道声码器:⏹带通滤波器组对输入信号进行滤波⏹对每个滤波器,输出1个幅度谱均值,一组数据就反应了信号频谱的包络⏹发送信号:频谱包络数据、清浊音判决和基音周期⏹接收端:通过清浊音判决和基音周期提供声门激励信号,并用频谱包络信号对其进行调制,经带通滤波器输出后叠加在一起就合成为输出语音信号⏹缺点:(1)需要进行基音检测和清浊音判决,而精确求出这两组数据非常困难,且其误差对合成语音质量影响较大(2)通道数有限导致可能多个谐波分量会落入同一个通道,在合成时它们被赋予相同的幅值,结果会导致合成信号的频谱畸变⏹共振峰声码器:⏹共振峰(formant):声音在经过共振腔时,受到腔体的滤波作用,使得频域中不同频率的能量重新分配,一部分因为共振腔的共振作用得到强化,另一部分则受到衰减,得到强化的那些频率在时频分析的语图上表现为浓重的黑色条纹。
语音压缩编码技术上传时间:2004-12-22随着通信、计算机网络等技术的飞速发展,语音压缩编码技术得到了快速发展和广泛应用,尤其是最近20年,语音压缩编码技术在移动通信、卫星通信、多媒体技术以及IP电话通信中得到普遍应用,起着举足轻重的作用。
语音压缩编码技术的类别语音编码就是将模拟语音信号数字化,数字化之后可以作为数字信号传输、存储或处理,可以充分利用数字信号处理的各种技术。
为了减小存储空间或降低传输比特率节省带宽,还需要对数字化之后的语音信号进行压缩编码,这就是语音压缩编码技术。
语音的压缩编码方法归纳起来可以分为三大类:波形编码、参数编码和混合编码。
波形编码比较简单,失真最小,方法简单,但数码率比较高。
参数编码的编码速率可以很低,但音质较差,只能达到合成语音质量,其次是复杂度高。
混合编码吸收了波形编码和参数编码的优点,从而在较低的比特率上获得较高的语音质量,当前受到人们较大的关注。
语音压缩编码技术的发展自从1937年A.H.Reeves提出脉冲编码调制(PCM)以来,语音编码技术已有60余年的发展历史。
尤其近20年随着计算机和微电子技术的发展语音编码技术得到飞速发展。
CCITT于1972年确定64kb/sPCM语音编码G.711建议,它已广泛的应用于数字通信、数字交换机等领域,至今,64kb/s的标准PCM系统仍占统治地位。
这种编码方法可以获得较好的语音质量但占用带宽较多,在带宽资源有限的情况下不宜采用。
CCITT于80年代初着手研究低于64kb/s的非PCM编码算法,并于1984年通过了32kb/sADPCM语音编码G.721建议,它不仅可以达到PCM相同的语音质量而且具有更优良的抗误码性能,广泛应用于卫星,海缆及数字语音插空设备以及可变速率编码器中。
随后,于1992年公布16kb/s低延迟码激励线性预测(LD-CELP)的G.728建议。
它以其较小的延迟、较低的速率、较高的性能在实际中得到广泛的应用,例如:可视电话伴音、无绳电话机、单路单载波卫星和海事卫星通信、数字插空设备、存储和转发系统、语音信息录音、数字移动无线系统、分组化语音等。
语⾳压缩编码语⾳编码第⼀章⾳频1.1 ⾳频和语⾳的定义声⾳是携带信息的重要媒体,是通过空⽓传播的⼀种连续的波,叫声波。
对声⾳信号的分析表明,声⾳信号有许多频率不同的信号组成,这类信号称为复合信号。
⽽单⼀频率的信号称为分量信号。
声⾳信号的两个基本参数频率和幅度。
1.1.1声⾳信号的数字化声⾳数字化包括采样和量化。
采样频率由采样定理给出。
1.1.2声⾳质量划分根据声⾳频带,声⾳质量分5个等级,依次为:电话、调幅⼴播、调频⼴播、光盘、数字录⾳带DAT(digital audio tape)的声⾳。
第⼆章语⾳编码技术的发展和分类现有的语⾳编码器⼤体可以分三种类型:波形编码器、⾳源编码器和混合编码器。
⼀般来说,波形编码器的话⾳质量⾼,但数据率也很⾼。
⾳源编码器的数据率很低,产⽣的合成话⾳⾳质有待提⾼。
混合编码器使⽤⾳源编码器和波形编码器技术,数据率和⾳质介于⼆者之间。
语⾳编码性能指标主要有⽐特速率、时延、复杂性和还原质量。
其中语⾳编码的三种最常⽤的技术是脉冲编码调制(PCM)、差分PCM(DPCM)和增量调制(DM)。
通常,公共交换电话⽹中的数字电话都采⽤这三种技术。
第⼆类语⾳数字化⽅法主要与⽤于窄带传输系统或有限容量的数字设备的语⾳编码器有关。
采⽤该数字化技术的设备⼀般被称为声码器,声码器技术现在开始展开应⽤,特别是⽤于帧中继和IP上的语⾳。
在具体的编码实现(如VoIP)中除压缩编码技术外,⼈们还应⽤许多其它节省带宽的技术来减少语⾳所占带宽,优化⽹络资源。
静⾳抑制技术可将连接中的静⾳数据消除。
语⾳活动检测(SAD)技术可以⽤来动态跟踪噪⾳电平,并将噪⾳可听度抑制到最⼩,并确保话路两端的语⾳质量和⾃然声⾳的连接。
回声消除技术监听回声信号,并将它从听话⼈的语⾳信号中清除。
处理话⾳抖动的技术则将能导致通话⾳质下降的信道延时与信道抖动平滑掉。
2.1波形编码波形编解码器的思想是,编码前根据采样定理对模拟语⾳信号进⾏采样,然后进⾏幅度量化与⼆进制编码。
语音信号压缩编码原理及应用随着通信、计算机网络等技术的飞速发展,语音压缩编码技术得到了快速发展和广泛应用,尤其是最近20年,语音压缩编码技术在移动通信、卫星通信、多媒体技术以及IP电话通信中得到普遍应用,起着举足轻重的作用。
语音是人类最重要、最有效、最常用和最方便的交换信息的形式,是人们思想疏通和情感交流的最主要途径。
在实际的语音通信中,有些信道难以扩宽且质量很差;有些信道正被广泛使用,短期内难以更新;有些昂贵的信道,每压缩一个比特都意味着节省开支。
因此,语音压缩编码无疑在语音通信及人类信息交流中占有举足轻重的地位。
语音编码就是将模拟语音信号数字化,数字化之后可以作为数字信号传输、存储或处理,可以充分利用数字信号处理的各种技术。
为了减小存储空间或降低传输比特率节省带宽,还需要对数字化之后的语音信号进行压缩编码,这就是语音压缩编码技术。
一,语音压缩编码技术的发展自从1937年A.H.Reeves提出脉冲编码调制(PCM)以来,语音编码技术已有60余年的发展历史。
尤其近20年随着计算机和微电子技术的发展语音编码技术得到飞速发展。
CCITT于1972年确定64kb/sPCM语音编码G.711建议,它已广泛的应用于数字通信、数字交换机等领域,至今,64kb/s的标准PCM系统仍占统治地位。
这种编码方法可以获得较好的语音质量但占用带宽较多,在带宽资源有限的情况下不宜采用。
CCITT于80年代初着手研究低于64kb/s的非PCM编码算法,并于1984年通过了32kb/sADPCM语音编码G.721建议,它不仅可以达到PCM相同的语音质量而且具有更优良的抗误码性能,广泛应用于卫星,海缆及数字语音插空设备以及可变速率编码器中。
随后,于1992年公布16kb/s低延迟码激励线性预测(LD-CELP)的G.728建议。
它以其较小的延迟、较低的速率、较高的性能在实际中得到广泛的应用,例如:可视电话伴音、无绳电话机、单路单载波卫星和海事卫星通信、数字插空设备、存储和转发系统、语音信息录音、数字移动无线系统、分组化语音等。
语音压缩编码技术姓名:王俐捷学号:0804220244语音是人类最重要、最有效、最常用和最方便的交换信息的形式,是人们思想疏通和情感交流的最主要途径。
在实际的语音通信中,有些信道难以扩宽且质量很差;有些信道正被广泛使用,短期内难以更新;有些昂贵的信道,每压缩一个比特都意味着节省开支。
因此,语音压缩编码无疑在语音通信及人类信息交流中占有举足轻重的地位。
一,语音压缩编码技术的种类1.波形编码(waveform coding)基本原理是在时间轴上对模拟话音信号按照一定的速率来抽样,然后将幅度样本分层量化,并使用代码来表示。
在接收端将收到的数字序列经过解码恢复到原模拟信号,保持原始语音的波形形状。
话音质量高,编码速率高。
如PCM编码类(a率或u率PCM、ADPCM 、ADM),编码速率为64-16kb/s,语音质量好。
2.参数编码(声源编码parametric coding)根据语音信号产生的数学模型,通过对语音信号特征参数的提取后进行编码(将特征参数变换成数字代码进行传输)。
在接收端将特征参数,结合数学模型,恢复语音,力图使重建语音保持尽可能高的可懂度,重建语音信号的波形同原始语音信号的波形可能会有相当大的区别。
如线性预测(LPC)编码类。
编码速率低,2.4-1.2kb/s,自然度低,对环境噪声敏感。
3.混合编码(Hybrid coding)将波形编码与参数编码相结合,在2.4-1.2kb/s速率上能够得到高质量的合成语音。
规则码激励长时预测编码RPE—LPT即为混合编码技术。
混合编码包括若干语音特征参量又包括部分波形编码信息,以达到波形编码的高质量和参量编码的低速率的优点。
二,语音压缩编码使用的编码算法1.波形编码(waveform coding)使用的算法脉冲编码调制(pulse code modulation,PCM)、差值脉冲编码调制(DPCM)、增量调制(DM)以及它们的各种改进型自适应差分编码(ADPCM)、自适应增量调制(ADM)、自适应差值脉冲编码调制(ADPCM) 、自适应传输编码(Adaptive Transfer Coding,ATC)和子带编码(SBC)等都属于波形编码技术。
音频压缩编码音频压缩编码可分为语音信号的压缩编码和宽带音频信号的压缩编码。
前者即为声码器,出现较早(约5O~60年代),现在主要用于数字电话通信上,后者包括各种音乐节目信号.出现在80年代后期,是当前的热门课题,它要求达到CD(激光唱片)的音质。
它应用于数字声广播(DAB),V—CD(Video—CD),数字视盘(DVD-Digital Video Disc)及未来的高清晰度<HDTV)的伴音中。
现代技术发展中处处会遇到信号的传送和存储,为充分利用有限的资源和有限空间,必须压缩数据量,音频信号是其典型的例子。
1语音压缩编码标准语音的PCM码率为64kblt/s。
电声技术1/1997来美国麻省理工学院(MIT)林肯实验室提出的多带激励(IMBE)改善了传送语音质量。
目前国内战术卫垦通信系统准备采用2.4kb/s的IMBE算法。
2宽带音频压缩编码2.1概况-按48kb/s采样频率16bit(或18bit)量化。
按双通道立体声则总PCM码率为1.536Mbit /s (或1.728Mbit/s)。
按环绕声制式左、中、右、左环、右环和重低音六声道采样的PCM 码率为4.608 Mbit/s(或5、1 84Mbit/s)或每个通道768kb/s(或864kb/s)。
现在,一般标准要求经压缩后每声道降到64~128bit/s,即压缩比l2~6倍而音质不受影响。
宽带声频信号压缩编码的实质性发展和标准化的进展是由1988年由ISO(国际标准化组织)/匝c(国际电工委员会)组建的MPEG(活动图象专家组)的工作,l 989年征求l4种方案后,先保留了4种.再进一步工作后确定了2种:MUSICAM(Masking PatternAdapted Universal Subhand Integrated CodingAnd Multiplexing)掩蔽模式通用子带集成编码与多路复用和ASPEC(Adaptive Spectral Per—ceptual Entropy Coding)自适应频谱感知熵编码在96kbit/s~128kbit/s码率下表现明显优势。
第1章概述一、模拟信号与数字信号的特点模拟信号——幅度取值是连续的连续信号离散信号数字信号——幅度取值是离散的二进码多进码连续信号离散信号●数字信号与模拟信号的区别是根据幅度取值上是否离散而定的。
●离散信号与连续信号的区别是根据时间取值上是否离散而定的。
二、模拟通信与数字通信●根据传输信道上传输信号的形式不同,通信可分为模拟通信——以模拟信号的形式传递消息(采用频分复用实现多路通信)。
数字通信——以数字信号的形式传递消息(采用时分复用实现多路通信)。
●数字通信传输的主要对象是模拟话音信号等,而信道上传输的一般是二进制的数字信号。
所要解决的首要问题模拟信号的数字化,即模/数变换(A/D变换)三、数字通信的构成●话音信号的基带传输系统模型四、数字通信的特点1、抗干扰能力强,无噪声积累对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号。
由于无噪声积累,可实现长距离、高质量的传输。
2、便于加密处理3、采用时分复用实现多路通信4、设备便于集成化、小型化5、占用频带较宽五、数字通信系统的主要性能指标● 有效性指标 P7·信息传输速率——定义、公式l n f f s B ⋅⋅=、物理意义 ·符号传输速率——定义、公式(BB t N 1=)、关系:M N R B b 2log = ·频带利用率——是真正用来衡量数字通信系统传输效率的指标(有效性)频带宽度符号传输速率=η Hz Bd /频带宽度信息传输速率=η Hz s bit //● 可靠性指标 P8·误码率——定义 ·信号抖动例1、设信号码元时间长度为s 7106-⨯,当(1)采用4电平传输时,求信息传输速率和符号传输速率。
(2)若系统的带宽为2000kHz ,求频带利用率为多少Hz s bit //。