数字信号处理第三章-2
- 格式:ppt
- 大小:808.50 KB
- 文档页数:28
数字信号处理(方勇)第三章习题答案3-1 画出)5.01)(25.01()264.524.14)(379.02()(211211------+--+--=z zz z z z z H 级联型网络结构。
解:23-2 画出112112(23)(465)()(17)(18)z z z H z z z z --------+=--+级联型网络结构。
解:()x n ()y n 243-3 已知某三阶数字滤波器的系统函数为1211252333()111(1)(1)322z z H z z z z -----++=-++,试画出其并联型网络结构。
解:将系统函数()H z 表达为实系数一阶,二阶子系统之和,即:()H z 11122111111322z z z z ----+=+-++ 由上式可以画出并联型结构如题3-3图所示:)题3-3图3-4 已知一FIR 滤波器的系统函数为121()(10.70.5)(12)H z z z z ---=-++,画出该FIR 滤波器的线性相位结构。
解: 因为121123()(10.70.5)(12)1 1.30.9H z zz z z z z ------=-++=+-+,所以由第二类线性相位结构画出该滤波器的线性相位结构,如题3-4图所示:()x n 1-1-1z -题3-4图3-5 已知一个FIR 系统的转移函数为:12345()1 1.25 2.75 2.75 1.23H z z z z z z -----=+--++求用级联形式实现的结构流图并用MATLAB 画出其零点分布及其频率响应曲线。
解: 由转移函数可知,6=N ,且)(n h 偶对称,故为线性相位系统,共有5个零点,为5阶系统,因而必存在一个一阶系统,即1±=z 为系统的零点。
而最高阶5-z 的系数为+1,所以1-=z 为其零点。
)(z H 中包含11-+z 项。
所以:11()()(1)H z H z z -=+。
(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
()()⎪⎩⎪⎨⎧≤≤=-其他0150,2n e n x q p n a解:程序见附录程序一:P=8,q 变化时:t/T x a (n )k X a (k )t/T x a (n )p=8 q=4k X a (k )p=8 q=4t/Tx a (n )p=8 q=8kX a (k )p=8 q=8幅频特性时域特性t/T x a (n )p=8 q=8k X a (k )p=8 q=8t/T x a (n )51015k X a (k )p=13 q=8t/Tx a (n )p=14 q=851015kX a (k )p=14 q=8时域特性幅频特性分析:由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱;当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值,p=14时的泄漏现象最为明显,混叠可能也随之出现;(2) 观察衰减正弦序列 的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现的位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混叠和泄漏现象?说明产生现象的原因。
第三章
3-1 解:
(1)
(2)
(3)补零后:不变;变化,变的更加逼近(4)不能
3-2 解:
(1)令循环卷积
其余
(2)
其余
其余
(3)
其余
(4)补一个零后的循环卷积
其余
3-3 解:
,即可分辨出两个频率分量
本题中的两个频率分量不能分辨
3-4解:
对它取共轭:
与比较,
可知:1,只须将的DFT变换求共轭变换得;
2,将直接fft程序的输入信号值,得到;
3,最后再对输出结果取一次共轭变换,并乘以常数,即可求出IFFT变换的的值。
3-5解:可以;
证明:设
其中是在单位圆上的Z 变换,与
的关系如下:
是在频域上的N点的采样,与的关系如下:
相当于是在单位圆上的Z变换的N点采样。
3-6解:
,
,
图见电子版
3-7解:
,
,
,
,图见电子版
3-8解:
,,,同理:
图见电子版
3-9 解:
系统为单位脉冲响应
设加矩形窗后得到的信号为,
对应的短时离散频谱:
,
,
,
,
电子图
3-10 解:
(1)考虑对称位置取(2)考虑对称位置取(3)考虑对称位置取
3-11 解:
(1)
(2)
(3)
(4)
3-12
镜像为
镜像为
镜像为
镜像为
3-13 解:
(1)离散信号值:
(2)
3-14 解:
至少需要2000点个信号值
3-15解:
,,,。
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理Digital signal processing物联网工程复变函数、线性代数、信号与系统2484816《数字信号处理》是物联网工程专业基础必修课。
主要研究如何分析和处理离散时间信号的基本理论和方法,主要培养学生在面对复杂工程问题时的分析、综合与优化能力,是一门既有系统理论又有较强实践性的专业基础课。
课程的目的在于使学生能正确理解和掌握本课程所涉及的信号处理的基本概念、基本理论和基本分析方法,来解决物联网系统中的信号分析问题。
培养学生探索未知、追求真理、勇攀科学高峰的责任感和使命感。
助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神。
培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当。
它既是学习相关专业课程设计及毕业设计必不可少的基础,同时也是毕业后做技术工作的基础。
运用时间离散系统的基本原理、离散时间傅里叶变换、 Z 变换、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、时域采样定理和频域采样定理等工程基础知识,分析物联网领域的复杂工程问题。
培养探索未知、追求真理、勇攀科学高峰的责任感和使命感。
助力学生树立正确的价值观,培养思辨能力、工程思维和科学精神。
说明利用DFT 对摹拟信号进行谱分析的过程和误差分析、区分各类网络的结构特点;借助文献研究运用窗函数法设计具有线性相位的FIR 数字滤波器,分析物联网领域复杂工程问题解决过程中的影响因素,从而获得有效结论的能力。
培养学生精益求精的大国工匠精神,激发学生科技报国的家国情怀和使命担当。
第一章 时域离散信号与系统(1)时域离散信号表示; (2)时域离散系统;(3)时域离散系统的输入输出描述法; * (4)摹拟信号数字处理方法;:数字信号处理中的基本运算方法,时域离散系统的线性、时不变性及系统的因果性和稳定性。
时域采样定理。
培养探索未知、 追求真理、 勇攀科学高峰的责任感和使命感。
:时域离散系统的线性、时不变性及系统的因果性和稳定性、时域采样定理。