语音信号处理-第03章 语音信号的时域分析方法
- 格式:pdf
- 大小:479.06 KB
- 文档页数:14
实验二 语音信号的时域分析1 实验目的通过Matlab 编程实现语音信号的时域波形图,并观察清音、浊音信号的时域特点。
掌握语音信号的时域分析技术,如短时平均能量、短时平均幅度、短时平均过零率分析、短时平均自相关、短时平均幅度差。
2 实验原理语音信号的时域分析就是分析和提取语音信号的时域参数。
时域分析通常用于最基本的参数分析及应用,此方法表示语音信号比较直观,物理意义明确,实现起来比较简单,运算量少。
3 实验过程1)观察浊音信号波形图2)观察清音信号波形图3)计算语音信号的短时能量、短时平均幅度并画图120()N n n m E x m -==∑10|()|N n n m M x m -==∑4)计算信号的短时平均过零率并画图 11{|sgn[()]sgn[(1)]|}2N n n m Zn x m x m -==--∑ 5)计算语音信号的短时自相关函数并画图10()()()N k n n n m R k x m x m k --==+∑6)计算语音信号的短时平均幅度差函数并画图10()|()()|N k n n nm F k x m x m k --==-+∑一.短时能量[x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav') x=x(:,1);c=x;x=x';N=256;M=N/2;k=1:N;w=0.54-0.46*cos(2*pi/N*k);Fn=fix((L-N)/M)+1;y=[];for i=1:Fnbeg=(i-1)*M+1;ed=beg+N-1;temp=x(beg:ed);temp=temp.*w;y=[y;temp];endEn=[];k=0;for i=1:Fnx=y(i,:);temp=sum(x.*x,2);En=[En,temp];endEn=sum(y.*y,2);subplot(211);plot(c);subplot(212);plot(En);xlabel('time');ylabel('amplitude');title('picture');二.短时自相关函数[x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav') x=x(:,1);x=x';N=256;M=N/2;k=1:N;w=0.54-0.46*cos(2*pi/N*k);Fn=fix((L-N)/M)+1;y=[];for i=1:Fnbeg=(i-1)*M+1;ed=beg+N-1;temp=x(beg:ed);temp=temp.*w;y=[y;temp];endZn=sum(abs(sign(y(2:N))-sign(y(1:N-1))),2)*0.5N=256;K=128;for i=1:Fnr=[];x=y(i,:);for k=1:Kr(k)=sum(x(1:N-k).*x(k+1:N),2);endendplot(r);三.短时平均过零率[x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav') x=x(:,1);c=x;x=x';N=256;M=N/2;k=1:N;w=0.54-0.46*cos(2*pi/N*k);Fn=fix((L-N)/M)+1;y=[];for i=1:Fnbeg=(i-1)*M+1;ed=beg+N-1;temp=x(beg:ed);temp=temp.*w;y=[y;temp];endfor i=1:Fnx=y(i,:);Zn1=[0];for k=2:NZ=0.5*abs(sign(x(k))-sign(x(k-1)));Zn1=Zn1+Z;endZn=[Zn,Zn1];endsubplot(211);plot(c);subplot(212);plot(Zn);xlabel('time');ylabel('amplitude');title('picture');四.短时平均幅度[x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav') x=x(:,1);c=x;x=x';N=256;M=N/2;w=0.54-0.46*cos(2*pi/N*k); Fn=fix((L-N)/M)+1;y=[];for i=1:Fnbeg=(i-1)*M+1;ed=beg+N-1;temp=x(beg:ed);temp=temp.*w;y=[y;temp];endEn=[];k=0;for i=1:Fnx=y(i,:);temp=sum(abs(x),2);En=[En,temp];endEn=sum(y.*y,2);subplot(211);plot(c);subplot(212);plot(En);xlabel('time');ylabel('amplitude');title('picture');五.短时平均幅度差函数[x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav') x=x(:,1);x=x';N=256;M=N/2;k=1:N;w=0.54-0.46*cos(2*pi/N*k);Fn=fix((L-N)/M)+1;y=[];for i=1:Fnbeg=(i-1)*M+1;ed=beg+N-1;temp=x(beg:ed);temp=temp.*w;y=[y;temp];endZn=sum(abs(sign(y(2:N))-sign(y(1:N-1))),2)*0.5N=256;K=128;for i=1:Fnr=[];x=y(i,:);for k=1:KF1(k)=abs(x(M)-x(M+k));endendplot(F1);。
第三章语音信号分析1、语音信号分析?语音信号分析的目标是从语音信号中提取出一个或多个能够描述语音信号的参数,以便在语音编码、语音合成和语音识别等应用。
语音信号分析的目的就是在于方便有效地提取并表示语音信号所携带的信息,是语音信号处理的前提和基础,只有分析出可表示语音信号特征的参数,才有可能利用这些参数进行高效的语音通信,语音合成和语音识别等处理。
一般而言,语音处理的目的有两种:对语音信号进行分析,提取特征参数。
如:语音编码中需要判断语音的清浊音特性并提取浊音的基音周期;语音识别中需要提取符合人耳听觉特性的Mel倒谱参数等。
加工语音信号。
如:语音增强中对含噪语音进行背景噪声抑制,以获得相对干净的语音;在语音合成中需要对分段语音进行拼接平滑,获得主观音质较好的合成语音。
根据所分析出的参数性质的不同可以分为:时域分析、频域分析、倒谱域分析、线性预测分析等;根据分析方法的不同:模型分析方法和非模型分析方法。
不论分析怎么样的参数以及采用什么分析方法,在按帧进行语音分析,提取语音参数之前,有一些经常使用的、共同的短时分析技术必须预先进行,如语音信号的数字化,语音信号的端点检测、预加重、加窗和分帧等,这些也是不可忽视的语音信号分析的关键技术。
2、语音信号的数字化和预处理?语音信号的数字化(数字系统具有高速、低成本、低功耗、通用的特点)一般包括放大及增益控制、反混叠滤波、采样、A/D变换及编码(一般就是PCM码):语音信号的数字化过程框图预处理一般包括预加重、加窗和分帧等。
在分析处理之前必须把要分析的语音信号部分从输入信号中找出来,这项工作叫做语音信号的端点检测。
预滤波的目的有两个:抑制输入信号各频域分量中频率超过f的所有分量(s f)为采样频率,以防止混叠干扰s(高频成分产生失真)。
抑制50Hz的电源工频干扰。
(市电电压的频率为50Hz,它会以电磁波的辐射形式,对人们的日常生活造成干扰,这种干扰称为工频干扰)这样,预滤波器必须是一个带通滤波器,设其上、下截止频率分别是Hf 和Lf ,则对绝大多数语音译码器:Hzf H 3400=,Hzf L 100~60=,采样频率kHzf s 8=,要求较高的场合:Hzf H 4500=,Hzf L 60=,采样频率kHzf s 10=。
基于MATLAB 分析语音信号时域特征钱平(信号与信息处理 s101904010)一、时域特征实验原理及实验结果分析1.窗口的选择通过对发声机理的认识,语音信号可以认为是短时平稳的。
在5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。
我们将每个短时的语音称为一个分析帧。
一般帧长取10~30ms 。
我们采用一个长度有限的窗函数来截取语音信号形成分析帧。
通常会采用矩形窗和汉明窗。
图1给出了这两种窗函数在帧长N=50时的时域波形。
0.20.40.60.811.21.41.61.82矩形窗samplew (n )0.10.20.30.40.50.60.70.80.91hanming 窗samplew (n )图1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下()⎩⎨⎧<≤=其他001Nn n whamming 窗的定义:一个N 点的hamming 窗函数定义为如下()⎪⎩⎪⎨⎧<≤--=其他00)12cos(46.054.0Nn N n n w π 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;汉明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。
因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。
表1对比了这两种窗函数的主瓣宽度和旁瓣峰值。
00.10.20.30.40.50.60.70.80.91-80-60-40-200矩形窗频率响应归一化频率(f/fs)幅度/d B00.10.20.30.40.50.60.70.80.91-100-50Hamming 窗频率响应归一化频率(f/fs)幅度/d B图2 矩形窗和Hamming 窗的频率响应表1 矩形窗和hamming 窗的主瓣宽度和旁瓣峰值2.短时能量由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。