材料力学性能第七章-金属的磨损
- 格式:pptx
- 大小:6.33 MB
- 文档页数:57
Encounters are always caught off guard, and parting is mostly planned for a long time. There will always be some people who will slowly fade out of your life. You have to learn to accept rather than miss.通用参考模板(WORD文档/A4打印/可编辑/页眉可删)材料力学性能及名词解释1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
第一章习题答案一、解说以下名词1、弹性比功:又称为弹性比能、应变比能,表示金属资料汲取弹性变形功的能力。
2、滞弹性:在弹性范围内迅速加载或卸载后,随时间延长产生附带弹性应变的现象。
3、循环韧性:金属资料在交变载荷下汲取不行逆变形功的能力,称为金属的循环韧性。
4、包申格效应:先加载致少许塑变,卸载,而后在再次加载时,出现σ e 高升或降低的现象。
5、解理刻面:大概以晶粒大小为单位的解理面称为解理刻面。
6、塑性、脆性和韧性:塑性是指资料在断裂前发生不行逆永久(塑性)变形的能力。
韧性:指资料断裂前汲取塑性变形功和断裂功的能力,或指资料抵挡裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花式:当一些小的台阶汇聚为在的台阶时,其表现为河流状花式。
9、解理面:晶体在外力作用下严格沿着必定晶体学平面破裂,这些平面称为解理面。
10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,必定是脆断,且较为严重,为最初级。
穿晶断裂裂纹穿过晶内,能够是韧性断裂,也可能是脆性断裂。
11、韧脆转变:指金属资料的脆性和韧性是金属资料在不同条件下表现的力学行为或力学状态,在必定条件下,它们是能够相互转变的,这样的转变称为韧脆转变。
二、说明以下力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100% 弹性变形所需的应力。
2、σr、σ、σ s:σ r:表示规定节余伸长应力,试样卸除拉伸力后,其标距部分的节余伸长达到规定的原始标距百分比时的应力。
σ:表示规定节余伸长率为%时的应力。
σs:表征资料的折服点。
3、σ b:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。
4、 n: 应变硬化指数,它反应了金属资料抵挡连续塑性变形的能力,是表征金属资料应变硬化行为的性能指标。
5、δ、δ gt 、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为 b 的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生 100%弹性变所需的应力。
(2)σr 规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
金属的摩擦磨损实验
金属的摩擦磨损实验是一种实验方法,用于研究金属材料在摩擦过程中的行为和性能。
该实验的目的是了解金属材料的摩擦系数、磨损率、耐久性以及在不同环境下的性能表现。
在金属的摩擦磨损实验中,通常采用滑动摩擦、滚动摩擦或冲击摩擦等实验条件,并采用各种摩擦磨损试验机进行测试。
根据实验要求,可以选择不同的试验机,如磨损试验机、往复摩擦试验机、滚动摩擦试验机等。
在实验过程中,需要测量金属材料的摩擦系数和磨损率。
摩擦系数是指材料在摩擦过程中所受的摩擦力与压力之比,反映了材料在摩擦过程中的润滑性能和耐磨性。
磨损率则是指材料在摩擦过程中损失的质量或体积与摩擦距离或时间的比值,反映了材料的耐久性和可靠性。
此外,在金属的摩擦磨损实验中,还需要考虑温度、湿度、载荷、速度等实验参数对金属材料性能的影响。
通过调整实验参数,可以研究金属材料在不同环境下的性能表现和变化规律,为材料的优化设计和改进提供依据。
总之,金属的摩擦磨损实验是一种重要的实验方法,可以帮助我们了解金属材料的性能和行为,为材料的优化设计和改进提供依据。
通过该实验,可以评估金属材料的耐磨性、耐久性和可靠性,为机械、汽车、航空航天等领域的工程应用提供技术支持。
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收弹性变形功的能力。
3滞弹性:在弹性围快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。
7比例极限:应力与应变保持正比关系的应力最高限。
8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。
9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。
韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。
10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。
断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。
11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。
12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。
13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
金属材料的力学性能金属材料在外力或能的作用下,所表现出来的一系列力学特性,如强度、刚度、塑性、韧性、弹性、硬度等,也包括在高低温、腐蚀、表面介质吸附、冲刷、磨损、空蚀(氧蚀)、粒子照射等力或机械能不同程度结合作用下的性能。
力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,是选用金属材料的重要依据。
充分了解、掌握金属材料的力学性能,对于合理地选择、使用材料,充分发挥材料的作用,制定合理的加工工艺,保证产品质量有着极其重要的意义。
一、强度强度是材料受外力而不被破坏或不改变本身形状的能力。
(一)屈服点金属试样在拉伸试验过程中,载荷不再增加而试样仍继续发生塑性变形而伸长,这一现象叫做“屈服”。
材料开始发生屈服时所对应的应力,称为“屈服点”,以σs表示。
有些材料没有明显的屈服点,这往往采用σ0.2作为屈服阶段的特征值,称为屈服强度。
(二)抗拉强度拉伸试验时,材料在拉断前所承受的最大标称应力,即拉伸过程中最大力所对应的应力,称为抗拉强度,以σb表示。
二、塑性塑性是金属材料在外力作用下(断裂前)发生永久变形的能力,常以金属断裂时的最大相对塑性变形来表示,如拉伸时的断后伸长率和断面收缩率。
(一)伸长率金属材料在拉伸试验时试样拉断后其标距部分所伸长的长度与原始标距长度的百分比,称为断后伸长率,也叫伸长率,用δ表示。
(二)断面收缩率金属试样在拉断后,其缩颈处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率,以符号ψ表示。
三、硬度硬度是金属材料表面抵抗弹性变形、塑性变形或抵抗破裂的一种抗力,是衡量材料软硬的性能指标。
硬度不是一个单纯的、确定的物理量,而是一个由材料弹性、塑性、韧性等一系列不同性能组成的综合性能指标。
所以硬度不仅取决于材料本身,还取决于试验方法和条件。
(一)布氏硬度(二)洛氏硬度(三)维氏硬度四、韧性金属在断裂前吸收变形能量的能力,称为韧性。
衡量材料韧性的指标分为冲击韧性和断裂韧性。
第七章1、磨损:机件表面相接处并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象。
2、粘着:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
(实际上就是原子间的键合作用)3、磨屑:松散的尺寸与形状均不相同的碎屑????4、跑合:摩擦表面逐渐被磨平,实际接触面积增大,磨损速率迅速减小。
5、咬死:当接触压应力超过材料硬度H的1/3时,粘着磨损量急剧增加,增加到一定程度就出现咬死现象。
6、犁皱:指表面材料沿硬粒子运动方向被横推而形成沟槽。
7、耐磨性:材料在一定摩擦条件下抵抗磨损的能力8、冲蚀:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击。
9、接触疲劳:机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而是材料流失的现象。
10、是比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响?⑴凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。
韧性材料——连续屑,脆性材料——断屑。
⑵高应力碾碎性磨粒磨损:磨粒与摩擦面接触处的最大压应力超过磨粒的破坏强度,磨粒不断被碾碎,使材料被拉伤,韧性金属产生塑性变形或疲劳,脆性金属则形成碎裂式剥落。
⑶低应力擦伤性磨粒磨损:作用于磨粒上的应力不超过其破坏强度,摩擦表面仅产生轻微擦伤。
11、试述粘着磨损产生的条件、机理及其防止措施?条件:在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。
机理:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
材料力学性能复习大纲一、名词解释10个×3分=30分二、单项选择12个×2分=24分三、简答题5个×6分=30分四、论述题1个×16分=16分————————————————————————————————————————————————第一章金属在单向静拉伸载荷下的力学性能基本概念工程应力-应变曲线:将拉伸力-伸长曲线的纵、横坐标分别用拉伸试样的原始截面积A0和原始标距长度L0去除,则得到应力-应变曲线。
因均以一常数相除,故曲线形状不变,这样的曲线称为工程应力-应变曲线。
真应力-真应变曲线:用拉伸过程中每一瞬间的真实应力和真实应变绘制曲线,则得到真实应力-应变曲线。
比例极限:保证材料的弹性变形按正比关系变化的最大应力。
弹性极限:材料由弹性变形过渡到弹塑性变形时的应力,是表征开始塑性变形的抗力。
弹性比功:表示材料在弹性变形过程中吸收变形功的能力,又称弹性比能、应变比能。
屈服强度、抗拉强度、屈服现象:拉伸试验中,材料由弹性变形转变为弹塑性变形状态的现象。
应变硬化指数:应变硬化指数反映金属材料抵抗继续塑性变形的能力,是表征金属应变硬化的性能指标。
强度、塑性、韧度滞弹性:在弹性范围内快速加载或卸载后,弹性应变落后于外加应力,并随时间延长产生附加弹性应变的现象,称为滞弹性(弹性后效)。
内耗:加载时消耗的变形功大于卸载时释放的变形功,这部分被金属吸收的功,称为内耗。
包申格效应:金属材料经过预先加载产生少量塑性变。
卸载后,若再同向加载,则规定残余伸长应力增加;若反向加载,则规定残余伸长应力降低的现象。
韧性断裂:金属材料断裂前产生明显宏观塑性变形的断裂。
脆性断裂:材料断裂前基本上不发生明显的宏观塑性变形的断裂。
穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,大部分是脆性断裂。
解理断裂:解理断裂是金属材料在一定条件下(如低温),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。
材料⼒学性能总结材料⼒学性能第⼀章⼆节.弹变1,。
弹性变形:材料在外⼒作⽤下产⽣变形,当外⼒取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
2.弹性模量:表征材料对弹性变形的抗⼒3.弹性性能与特征是原⼦间结合⼒的宏观体现,本质上决定于晶体的电⼦结构,⽽不依赖于显微组织,因此,弹性模量是对组织不敏感的性能指标。
4.⽐例极限σp:应⼒与应变成直线关系的最⼤应⼒。
5.弹性极限σe:由弹性变形过渡到弹性塑性变形的应⼒。
6.弹性⽐功:表⽰单位体积⾦属材料吸收弹性变形功的能⼒,⼜称弹性⽐应变能。
7.⼒学性能指标:反映材料某些⼒学⾏为发⽣能⼒或抗⼒的⼤⼩。
8.弹性变形特点:应⼒与应变成⽐例,产⽣变形,当外⼒取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象,称为滞弹性。
10.循环韧性:指在塑性区加载时材料吸收不可逆变形功的能⼒。
11.循环韧性应⽤:减振、消振元件。
12.包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载规定残余伸长应⼒降低的现象,称为包申格效应。
13.包申格应变:指在给定应⼒下,正向加载与反向加载两应⼒-应变曲线之间的应变差。
14.消除包申格效应:预先进⾏较⼤的塑性变形。
在第⼆次反向受⼒前先使⾦属材料于回复或再结晶温度下退⽕。
三节:塑性1.塑性:⾦属材料断裂前发⽣不可逆永久(塑性) 变形的能⼒.2.影响材料屈服强度的因素:㈠内在因素. 1. ⾦属本性及晶格类型.主滑移⾯位错密度⼤,屈服强度⼤。
2. 晶粒⼤⼩和亚结构.晶界对位错运动具有阻碍作⽤。
晶粒⼩可以产⽣细晶强化。
都会使强度增加。
3.溶质原⼦:溶质元素溶⼊⾦属晶格形成固溶体,产⽣固溶强化。
4,第⼆相. a.不可变形的第⼆相绕过机制.留下⼀个位错环对后续位错产⽣斥⼒, b.可以变形的第⼆相切过机制.由于,质点与基体间晶格错排及位错切过第⼆相质点产⽣新界⾯需要做功,使强度增加。