2500年前,古希腊著名数学家 毕达哥拉斯非常善于观察和思 考,经常能从平淡的生活现象 中发现数学问题.
灿若寒星
有一次他在朋友家做客时, 发现朋友家用砖铺成的地面
中隐藏着深刻的道理
观察:图中两个
小正方形与大正
方形的面积之间
有什么关系?
灿若寒星
如果直角三角形两直角边
分别为a,b,斜边为c
ab
c
思考:直角三角形三 边之间有什么关系?
D
C
解:连结AC,在Rt△ABC
中,∠B=90°,根据勾股定理,
AC2=AB2+BC2=12+22=5
2m ∴AC 5
>2.2m
A 1m B
答:薄木板能从门框内通过。
灿若寒星
试一试
如图,一个2.5m长的梯子AB,斜靠在竖 直的墙AO上,AO的距离为2.4m,
如果梯子的顶端A沿墙下滑0.4m, A 那么梯子的底端B也外移0.4m吗?
0.4
C
2.4
2.5
┏
OB
D
?
灿若寒星
感受数学之美
图中,所有的四边形
都是正方形,所有的 A
三角形都是直角三角
形,正方形M,N的面 B 积的和是_____1.00
M
N
欣赏美丽的勾股树
100
灿若寒星
灿若寒星
一份自豪 身为中国人 一种思想 数形结合
一次探索
特殊到一般
一个定理
勾股定理
灿若寒星
灿若寒星
A
2、Rt△AOB中∠AOB=90°
若AB=2.5,AO=2.4,求BO
灿若寒星
O
B
②
①?
Rt△ABC中,已知AC=8,BC=6,能否求ຫໍສະໝຸດ 灿若寒A星 B的长?解决问题