11.(2024江苏扬州邗江期末,16,★★☆)如图,在Rt△ABC中,
AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则DC的长
3
是2.
解析 在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC=
A=B2 =3A,C如2图,过52 D 作42 DE⊥AB于点E,∵BD平
分∠ABC,DC⊥BC,∴DC=DE,设DC=DE=x,∵S△BCD+S△ABD=S△ABC,
2
2ab+b2-2ab=a2+b2,∵中间小正方形的边长为c,∴小正方形的
面积为c2,∴a2+b2=c2,∴甲能利用面积验证勾股定理.乙中直
角梯形的面积为 (a =b)(aa2+b) b12+ab1,两个直角三角形
2
22
的面积和为2× 1 ab=ab,则中间等腰直角三角形的面积为1 a2+
2
2
1 b2+ab-ab=1 a12+ b2,∵中间等腰直角三角形的两条直角边
7.(2024四川成都龙泉驿期末)如图,△ABC中,AB=AC,BD⊥AC于 点D,∠BDF=∠BAF=∠C,BD=3,CD=1. (1)求证:∠CBD=∠EDA. (2)求AB的长.
解析 (1)证明:∵BD⊥AC, ∴∠C+∠CBD=∠EDA+∠BDF=90°, ∵∠BDF=∠C,∴∠CBD=∠EDA. (2)设AD=x,则AB=AC=AD+CD=x+1, ∵BD=3,AD2+BD2=AB2,∴x2+32=(x+1)2, 解得x=4,∴AB=x+1=5.
∴1 BC·DC+1 AB·DE1=222解33