如果直角三角形的两条直角边 长分别为a,b,斜边长为c,那么 c2=a2+b2.
a
b
c
这是2002年在北京召开的国际 数学家大会会场,这是最高水 平的全球性数学学术会议,会 徽是赵爽弦图,在三世纪,我 国汉代赵爽用此图证明了勾股 定理.
表现了我国古人对数 学的钻研精神和聪明 才智,是我国古代数 学的骄傲。
用面积法等方法证明勾股定理
教法学法分析
教学方法:
本节课选择“引导探索法”,采用“问题境 情— 探索交流—猜想验证—建立模型”的模 式安排教学,由浅到深,由特殊到一般的提出 问题。引导学生自主探索,合作交流,让学生 通过观察、分析、讨论、操作、归纳,理解定 理,提高学生动手操作能力,以及分析问题和 解决问题的能力。
毕达哥拉斯(公元前 572—前497年),古希 腊著名的哲学家、数学 家、天文学家.
黑 白 相 间 的 地 砖
你能发现下图中的正方形A、B、C面积有什么关系 吗?三角形三边a,b,c之间又有何关系?为什么? 面积关系:
C
c
a b
SA+SB=SC
A
三边关系: a2+b2=c2
B
动手画一画
• 在你的练习本上画△ABC,使 ∠C=90°,AC=3㎝,BC=4㎝.并量 出斜边AB的长。三边之间有怎样 的数量关系?
【情感态度与价值观】
(1)通过探索勾股定理,培养学生积极参 与、合作交流的意识。 (2)通过对勾股定理历史的了解,感受数 学文化,激发学习热情。通过介绍中国古 代勾股方面的成就,激发学生热爱祖国和 热爱祖国悠久文化的思想感情,培养学生 的民族自豪感和钻研精神。
重点难点分析
教学重点 勾股定理的证明与运用 教学难点