电自线代:第3章(空间解析几何)
- 格式:ppt
- 大小:4.36 MB
- 文档页数:96
线性代数与空间解析几何1、为什么要学习这门课?“线性代数与空间解析几何”对传统内容进行了重新处理,特别是代数与几何的结合,将矩阵的初等变换作为贯穿全书的计算和重要的理论推导工具,注重不同知识点与重要理论的内在本质联系,将几何空间、n维向量空间到抽象线性空间概念的建立从特殊到一般进行铺垫,精选了大量的应用实例,注重将数学建模思想融入课程教学等。
这使得“线性代数与空间解析几何”在理论体系的处理上更加科学简洁、深入浅出、可读性强、易教易学。
2、这门课的主要内容是什么?“线性代数与空间解析几何”主要内容包括矩阵及其初等变换、行列式、几何空间、“维向量空间、特征值与特征向量、二次型与二次曲面、线性空间与线性变换等。
本课程每章内容自成体系,完全满足教育部大学数学课程教学指导委员会制订的工科类线性代数与空间解析几何课程教学要求,也可以作为独立章节学习的参考资料。
3、学习这门课可以获得什么?在“线性代数与空间解析几何”的学习过程中,我们可以发现线性代数和空间解析几何中有很多相似之处,确切的说是线性代数中的一些理论是从空间解析几何中发展和改进而来的。
如通过空间解析几何中多元一次方程组的解法线性代数提出了行列式,使行列式有了几何意义,同时是行列式直观化。
也是通过行列式,多元方程组的解答更便捷、快速。
又比如在线性代数中先后提出来线性空间、欧氏空间。
线性空间也将向量做了推广,使向量抽象化。
欧氏空间也在线性空间的基础上提出内积,使几何空间中的向量的一些度量性质推广化,等等,这样的例子很多很多。
总体来说线性代数与空间解析几何是相互联系、相互促进的。
可以更确切一点的说是空间解析几何是线性代数的基石,而线性代数是空间解析几何的推广和并使之抽象化。
4、这门课有什么特色?线性代数是代数的一个分支,它以研究向量空间与线性映射为对象;由于费尔马和笛卡儿的工作,线性代数基本上出现于十七世纪。
直到十八世纪末,线性代数的领域还只限于平面与空间。
线性代数与空间解析几何总结线性代数和空间解析几何是非数学专业的一门基础课程,可以看做是高等代数和解析几何的简化版。
其内容大概分为八章,以线性代数内容为主,穿插少量解析几何知识。
全书逻辑严谨,内容关联性强,但是缺乏直观性,对于没有基础的大一新生,不免显得生硬。
第一章主要讲述行列式相关内容,直接给出了行列式的定义。
这一章的重点内容是根据行列式的定义推出一些性质,利用定义推导出行列式运算的一些性质,并且根据这些性质灵活的化简计算具体的行列式。
其实行列式的计算相当繁琐,我们只需要掌握最基本的一些方法,如构造三角行列式(这种方法很重要,矩阵初等变换也要用)、加边法、递推法等等,还有一个重要的范德蒙行列式需要掌握。
在章末,给出了克莱姆法则及其在解方程组时的应用,这本来是线性方程组理论内容,为了强化行列式的应用,放在了第一章介绍。
第二章讲述矩阵的基本内容,这是全书的核心,而矩阵理论也是整个线性代数体系的核心内容之一。
这一章内容很多,而且联系复杂,但以矩阵的逆和秩为中心内容。
首先,介绍的是矩阵的基本概念,基本分类和基本运算,对于矩阵的运算,比较重要的是矩阵与矩阵之间的乘法,这是个新运算,要多加练习,在此基础上,还引出了方阵的幂的概念。
然后就开始通过单位矩阵和1的类比,引出矩阵的逆的概念,给出了矩阵逆的性质,给出了判别矩阵是否可逆的充要条件(以后还有很多补充)和求逆矩阵的伴随矩阵法。
接着通过解线性方程组的一般解法,引出矩阵的初等变换,给出了行阶梯型矩阵、行最简型矩阵和标准型矩阵的概念。
给出了矩阵秩的定义(显然,一个方阵是否可逆与其是否满秩是等价的),指出初等行变换不会改变矩阵的秩,并给出了求矩阵秩的方法——化矩阵为行阶梯型矩阵。
接着,又给出了初等矩阵的定义,并且将矩阵初等变换和矩阵与一个初等矩阵相乘建立起一一对应的关系,用初等变换将矩阵化为标准型,显然,根据初等变换不该变矩阵的秩,则初等变换不改变矩阵可逆性,由于我们可以很容易地观察出标准型矩阵的秩和行列式,所以若一个方阵可逆,它的标准型必然是一个单位阵。
第3章向量组的线性相关性(共6学时)一、教学目标与基本要求1.掌握向量组的线性相关与无关的概念及其简单性质2.掌握向量组的相关性的判定定理3.掌握向量组的秩和矩阵的秩的关系4.了解正交向量组的概念,掌握施密特正交化过程5.了解向量空间、坐标变换等的概念二、教学内容与学时分配1.n维向量2.向量组的线性相关与线性无关(2学时)3.向量组的最大线性无关组与秩(2学时)4.正交向量组5.向量空间(2学时)三、教学内容的重点难点重点:线性相关性的判断,向量组(矩阵)秩、最大无关组的求法。
难点:有关向量组的线性相关性的证明题,矩阵运算后秩的变化。
四、教学内容的深化和拓宽矩阵运算后秩的变化(详情见讲稿),从而强化教材中概念的理解及应用。
五、思考题与习题思考题:见讲稿习题:3,5,(2),6,8,10,(2),12,13,16,19,(1),24六、教学方式与手段以课堂讲授为主,提问、互动为辅。
本章内容抽象,定理、结论较多,注意强化概念、定理内容。
讲稿内容在上一章我们介绍的矩阵的概念及其运算,为了进一步了解矩阵及矩阵的行、列之间关系,本章介绍向量的概念及性质。
3.1 n 维向量3.1.1 维向量的概念及运算 n从解析几何中我们已看到,刻画数轴上的点,只须一个数却可; 要刻画平面上的点的位置,须用两个有序数来确定,也即是平面上点的坐标;要刻画空间中某点的位置,要用三个数所组成的数组来确定,反过来,给定的有序数组,也能确定平面、空间点的位置。
),(y x ),,(z y x 要刻画椭球体的位置,需用6个数所组成的数组来确定,椭球体的中心需三个数,长、中、短半轴需用三个数,我们可写成有序数组,反过来我们给定了有序数组,并说明表示椭球的中心,表椭球的长、中、短半轴,则椭球的位置及形状也确定了,事实上其方程可写为),,,,,(000c b a z y x ),,,,,(000c b a z y x ),,(000z y x ),,(c b a 1)()()(220220220=−+−+−c z z b y y a x x 。
{}12 3.11.:(1)(1,1,1):-2-10;(2)(1,2,0)(2,1,1):10;(3)2-0.3:(1),2,1,1,,:2(1)(1)M x y z M M y x z x y n x y ππππ++=--=+==----+-习题写出下列平面的方程过点且平行于平面过点和且垂直于平面过轴且与平面的夹角为解所求平面与平行故其法向量由点法式方程所求平面方程012(1)0,:220(2):,{1,1,0}{1,1,1},110111,(1)(2)0,30z x y z n n n i j kM M n i jx y x y π--=-+-==-=-∴=-=+--+-=+-=即法一设所求平面的法向量为则由已知条件垂直于平面的法向量与由点法式方程所求平面方程为即法二:设所求平面方程为Ax+By+Cx+D=0将M 0{,,}20{1,1,0}2001 ,0,31 0,30.3(3),0,A B C A B D n A B C D A B A B D C D x D y D x y z A x B y ππ++=⎧⎪=-+++=⎨⎪-+=⎩-=-=-+=+-=+= 12,M 的坐标代入,且由向量与平面的法向量垂直得方程组解得所求平面方程为1-即3因平面过轴故可设其方程为因其与已知平面的夹角为00022,3{,,0}{2,1,,31cos ,32||||||||1 61660,33303-0.2.?.n A B n n n n n A A B BA B Bx y x y ππ∴==⋅∴===⋅∴+-==-∴+== 其法向量与已知平面的法向量的夹角为即或平面或为所求下列图形有何特点画出其图形 (1)230;(2)0;(3)340.:(1),.z y x y z xO y -==+-=解平面平行于面图形如下图00000000000000000 (2),. (3),.3.,(,,),.:(,,){,,},, :()()()0, xO z x y z x y z x y z x x x y y y z z z x x y y z -+-+-=++与面重合图形如下图平面过原点其图形如下图由原点向平面作垂线垂足为求此平面的方程解连结点与原点的向量可作为平面的法向量由平面的点法式方程得即2220000.4.(2,3,0),(1,1,2)(4,5,1),.:{3,4,2},45114531,34214(2)5(3)310 14z x y z A B n A B i j kn a A B i j k x y z =++--==-∴=⨯==---+---=为所求平面方程平面过点且与向量a 平行求此平面的方程解法一平面的法向量与与a垂直由点法式方程得即531430.:0,,,-230{,,}20,45014435 .433143:1453143x y z A x B y C z D A B A B D A B C a A B C D A B C A D B D C D x y z --+=+++=++=⎧⎪-++=⎨⎪++=⎩⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩--+=解法二设平面的一般式方程为将坐标代入并由其法向量与垂直可得方程组解得由此得平面方程0.5.1.:,,,,1 ||,6x y z abcO A B C O A B C V abc A B C O d ++===求以平面与三坐标轴的交点为顶点的三角形面积解法一设原点为平面与坐标轴的三个交点为则四面体的体积平面上的高为到平面的距离3 :(,0,0),(0,,0),(0,0,),{,,0},{,0,},111||||0||2220A B C V S d A a B b C c AB a b AC a c ABC i j kS AB AC a b bci a c ∴∆===-=-∆=⨯=-=-的面积解法二设所求平面与三个坐标轴的交点为则则的面积1212||6.(2,0,8)2470,35230,.:,,124161411,352ac j ab k M x y z x y z n n n i j kn n n i j k ππ++=--+-=+-+=∴=⨯=-=-++-平面过点且与二平面都垂直求的方程解法一所求平面的法向量与两已知平面的法向量都垂直由点法12 16(-2)-14-11(8)0,16-14-11-1200.:0,,,2802403520x y z x y z Ax By C z D M n n A A C D A B C A B C +==+++=-+=⎧⎪-+=⎨⎪+-=⎩式方程得所求平面方程为即解法二设所求平面的一般式方程为将点的坐标代入由其法向量与两已知平面的法向量垂直可得方程组解得1612014120111201614111200D B DC D x y z ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩∴---=所求平面方程为127.:3250:3230.:(,,), ::x y z x y z x y z ππ-+-=--+==求由平面与所成二面角的平分面方程解法一设平面上任一点的坐标为则由平面上任一点到两已知平面的距离相等得从而得所求平面方程为121212 2380,4520.:, (3)(23)(21)350.,,,.x y z x y z x y z n ππλλλλππππ+-+=-+-=+-++-+-=或解法二过平面的交线的平面束方程为由于它为的平分面因此其法向量与的法向量有相等的夹角得|(3)3(23)2(2-1)||3(3)2(23)(21)|11,,4-5-202-380.x y z x y z λ+++++++--==-+=++=解得或因此所求平面方程为或12121212112 3.41.1250 :12,:230(1)://;(2);(3).:(1){1,2,1}, x x y l y l y z z l l l l l l l s l λλλ=+⎧--=⎧⎪=-+⎨⎨-+=⎩⎪=⎩=习题对于直线与证明求与的距离求与所确定的平面方程解的方向向量的方向向量221121222 210{2,4,2},2,012 //,//.(2):(1,-3,0), (1)2(3)0,250, i j k s s s s s l l l A l x y z x y z =-==-∴-+++=+++=得法一在上找一点过该点作垂直于的平面即1112 12450,2 ,3172(,-,-).333 ||.:(1,1,0),l l B A B AB l C l λλλλ+-+++==-=-将的参数方程代入解得从而得平面与的交点则与的距离所求法二在上找一点上找111121(1,-3,0),, cos sin |||||||| ||||sin (3):(1,1,0),(1,-3,0), A AC l s AC s AC d AC l C l A n s θθθθ⋅===-=⋅==-=一点设与的夹角为则而则所求距离法一在上找一点上找一点则平面的法向量12121{2,0,2},22(-1)-20,--10. :(1,1,0),(0,3,1),(1,3,0)i j kA C x z x z l C D l A ⨯==--==----由点法式方程得即为所求法二在上找两点上找一点120,,,30 0030 10.2.:233020 ::10210760Ax By C z D A C D A B D A D A B D B B C D C D x z x y z x y l l x y x z +++=-+==-⎧⎧⎪⎪-+==⎨⎨⎪⎪--+==⎩⎩--=-++=-=⎧⎧⎨⎨+-=+-=⎩⎩设平面的一般式方程为将的坐标代入得方程组解得从而得平面方程证明二直线与1212111122212 ,,.:213{30,3,21},{10,1,7},110(21,0,15),{1,2,7}, (0,0,6) l l l l i j k l s s l A l s l B l l l =-=-=--=-相交并求出与的交点夹角以及与所确定的平面解法一的方向向量取在上找一点的方向向量上找一点从而得与的参数式方程12121212121212121221102110:,:2,215767 2,1,,(1,2,1),1919cos ,cos ,,,arccos ,3030x x y l y z z l l l l l l s s l l λλλλλλλλλλλλ=-=⎧⎧-=⎧⎪⎪==⎨⎨⎨=⎩⎪⎪=-+=-⎩⎩==-<>=<>=∴<>= 令解得分别代入的参数方程得为的交点12121212121221 {21,63,21}{1,3,1},(-21)3(15)0,3-60.:,,,,,,0,,//, ,1,n s s n x y z x y z s s A B s s AB l l s s l l l l λ=⨯=---=+++=++=⎡⎤=∴⎣⎦=平面的法向量取得平面方程即解法二同上则由知与共面而与相交将的参数式方程代入的第一个方程解得从 (1,2,-1),.而得交点坐标其余同解法一3. 3.2-3-6140,5.:2-3-60, 5,35,236350:(,,), x y z x y z D d D x y z A x y z O A +=+====±∴--±=求与平求与平面平行且与坐标原点的距离为的平面方程解法一由已知条件可设平面的一般式方程为原点到平面的距离得平面方程为解法二设原点到平面垂线的垂足为由与已知平面法向量平行可设5{2,3,6},||||7||5,,7101530 ,,,777 101530 2()-3()-6()0,2-3-6350.77741204.(3,1,4):2O A k k k O A k k A x y z x y z x y z M l x y =--===±⎛⎫∴± ⎪⎝⎭±±=±=--+=-+-由得的坐标为由点法式方程得平面方程即求点关于直线.230:(,,),114{6,6,3}212{2,2,1},:2(-3)-2(-1)(4)0, 2-20.(-5,7,0),2- z i j kA x y z l s s M l x y z x y z lB l x πλ⎧⎨+=⎩=--=--=-++=+==的对称点解法一设对称点的坐标为的方向向量取过作垂直于的平面为即在上找一点得的参数式方程58,,273158311548(,,),,,,333232323158(,,),333311548,,,232323y x y z M A M A x y z πλλππ⎧=⎨=-+⎩++-===++-===代入平面得从而l与的交点为的中点即从而l与的交点为的中点即从而7728 (-,,).33331-4:(,,),(,,)222442{2,2,1}2221,2207377728 ,(,,).33332835.(3,1,2)x y z A x y z M A l M Ax y z l s x y z x y z x y z P ++--=-⎧⎪=-+-=-⎨⎪-+=⎩⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩得对称点坐标解法二设对称点为由的中点在上及与的方向向量垂直可得方程组解得得对称点为求点1:3,1,1,.:,3(-3)(-1)(-2)0,123-120,9-11-120,1136123(,,)||11111111:(3,1,1)l x t y t z t P P l d P l x y z x y z l t t t t P P l d PP l A t t t '==-=+++=++=+++=='==-+在直线上的投影并求点到的距离解法一过点作垂直于的平面其方程为即将的参数式方程代入得解得得投影点的坐标及到的距离解法二设上任一点的坐标为,,12||,1136123(,,).11111111P A PA t P l d ====则的距离当时此距离取得最小值即为到的距离从而得投影点坐标6.2350:.220:123{1,7,5},{1,7,5}.21111(0,1,1),.175:7-10,7-1005-x y z l x y z i j k l s s x y z l A l z x y x y xO y z l y x +--=⎧⎨-++=⎩=-=---=--+-==+=+=⎧⎨=⎩求直线的标准方程和在三个坐标面上的投影解的方向向量为取取上一点得直线标准方程法一在的一般式方程中消去得从而得在面上的投影在的一般式方程中消去得11-10,5--1005-7-120,5-7-120:(21)(2)(-3)(2-5)0,{0,0,1},3,7-10,7-1z x z xO z y l x y z y z yO z x l x y z xO y k x y l xO y x y λλλλπλπ==⎧⎨=⎩==⎧⎨=⎩++-+++===+=+=从而得在面上的投影在的一般式方程中消去得从而得在面上的投影法二过的平面束为其中与面垂直的平面的法向量与垂直得从而得的方程从而得在面上的投影05--10,,00571200x z xO z yO z z y y z x =⎧⎧⎨⎨==⎩⎩--=⎧⎨=⎩同样方法可得其在面上的投影在面上的投影121211112211127.:125721;;,234322.1273:,23,22,541212730,23222(1,x y z x y z l l x x l l y y z z l l l λλλλλλλλλλλλλ-+----====--=+=+⎧⎧⎪⎪=--=+⎨⎨⎪⎪=+=-⎩⎩+=+=⎧⎧⎨⎨--=+=-⎩⎩证明直线与位于同一平面内并求这平面及两直线间的夹角解法一的参数式方程为解方程组得将代入的参数式方程得与的交点1212121212122,5),234{2,16,13},3222-16-13310,8cos ,cos(,)-8,arccos .:,(1,2,5),(7,2,1),[,i j k l l n x y z l l s s l l l l A B s s -∴=-=--+=<>==⎛⎫∴<>=-⎝-与共面,平面的法向量由点法式方程得平面方程两直线间的夹角为其方向向量的夹角解法二在上分别取两点121,]0,,0,,,231-25016720,,31234013312-16-13310,.A B l l A x B y C z D A B l A D A B C D A B C D B D A B C C D x y z =∴+++=⎧=⎪++=⎧⎪⎪⎪+++==-⎨⎨⎪⎪-+=⎩⎪=-⎪⎩+=与共面设平面一般式方程为将坐标代入且由其法向量与的方向向量垂直得方程组解得得平面方程其余与法一同1221121212128.7432152::342641(1):;(2).:(1):,7321644,54,322732164454289289x y z x y z l l l l l l x x y y z z λλλλλλλλλλλλ+++-+-====---=-+=+⎧⎧⎪⎪=-+=--⎨⎨⎪⎪=--=-⎩⎩-+=+⎧⎨-+=--⎩⎧=⎪⎨=-对于直线与证明它们不在同一平面上写出过且平行于的平面方程解法一的参数式方程为解得1212121212121212212,,,,.//,.:,(7,4,3),(21,5,2)342,,6415070,.2815(2):(21,-5,2),34l l l l l l l l l l A B s s AB l l l B i j kn s s λλ⎪⎪⎪⎩∴-----⎡⎤=--=-≠∴⎣⎦-=⨯=-将代入的参数式方程知无公共交点而与不在同一平面上法二上分别取一点则与不共面法一取上点平面的法向量212{12,9,36},{4,3,12}6414312930(21,5,2),(27,9,1).0,,,21520 2790,3420493n x y z l B C Ax By C z D B C s A B C D A B C D A B C A =---=--++-=--+++=-++=⎧⎪-++=⎨⎪+-=⎩=-取由点法式方程得平面方程在上取两点设平面的一般式方程为将的坐标代入且其法向量与垂直可得解得1,.431293031431D B D x y z C D ⎧⎪⎪⎪=-++-=⎨⎪⎪=-⎪⎩代入得平面方程22221.,,||||1,,,4||||||||lim:||||cos ||||,42()2||||||||limlim(||||||||)(||||||||)2||||22.22,,x x x a b b a b a xb a xa b a a a xb aa bx xb a x a xb a x a xb a a r a i j k j ππ→→→=<>=+-⋅=⋅=+-⋅+∴====++++=--复习题三设均为非零向量且求解原式设向量与共线与成锐角||||15,.:,{,2,2},||||3||15.5,,5,{5,10,10},3.368,||||2,.:,68{0,8,6},||||10|r r r a r k k k r k k r j k r p q i j k x p p p q x p q i k jp k k p ==--===±∴=-=-=++=∴⨯=-+∴=-=且求解由于与共线设得由与成锐角取得设向量和向量与轴都垂直且求向量解由于与和轴都垂直平行于设123123123123123123123186|2,,{0,,}.5554.,,,:||||4,||||2,|||| 3.().:,,,,,0()||||||||k k p ααααααααααααααααααααα==±=±===⨯⋅∴<⨯>=∴⨯⋅=⨯⋅得从而设向量两两垂直且符合右手系规则计算解由于两两垂直且符合右手系规则12312121||||||||||||sin24.25.(1,1,1)(0,1,1)0,.:,{1,0,2}{1,1,1}.1022,2--0.111:M M x y z n M M n i j k n i j k x y z παααπππ=⋅⋅⋅=-++==--=∴=--=--=平面过和且与平面垂直求的方程解法一由已知条件平面的法向量与和均垂直由点法式方程得平面方程解法二设120,,00,0A x B y C z D M M A B C D B C D A B C π+++=+++=⎧⎪-+=⎨⎪++=⎩的一般式方程为将的坐标代入由的法向量与已知平面的法向量垂直得方程组12212220:2--0.6.:2310:0,.:,(21)(13)(1)03211-31-0,,2 8-A B C BD x y z x y z x y z x y z x ππππππππλλλλπλλλλπ=-⎧⎪=⎨⎪=⎩=--+=++=++-+-+=+++==解得从而得的方程 平面过与的交线且与平面垂直求的方程解法一过的平面束方程为且由其法向量与的法向量垂直得解得从而得的方程1211227-30.112:,235{2,3,5},235{8,7,1},1118730.::0,,(1,1,2),(1,2,3),,y z x y z ij k s n s n x y z Ax By C z D ππππππππππ+=++-==-=-=⨯=-=----+=+++=---解法二化的交线为标准方程其方向向量的法向量由点法式方程得的方程解法三设的一般式方程为在的交线上找两点将其代入的方程且由与垂直可83--207230301387303127.(1,-2,1):.234A D ABCD A B C D B D A B C C D x y z x y z A l π⎧=⎪++=⎧⎪⎪⎪+-+==-⎨⎨⎪⎪++=⎩⎪=-⎪⎩--+=+-+==-得方程组解得从而得的方程求点到直线的距离32:::1324(1,2,1)(32,13,24):,:,2(-1)-3()4(-1)02(-1)x t l y tz t A l t t t d d A l A l x y z z x =-+⎧⎪=-⎨⎪=-+⎩--+--+====++=解法一将写成参数方程点到上一点的距离为最小值为此即点到的距离法二过点做一平面与垂直平面方程为求平面与直线的交点1-3(2)4(-1)0,:2,31222341238.(1,2,3)(4,3,1),:211.::4(1)3(-2)(x y z y x y z z d x y z A l l A x y z αα=-⎧++=⎧⎪⎪=-+-+⎨⎨=-=⎪⎪=⎩⎩==-+--===+++解得故距离为求过点与向量垂直并与直线相交的直线方程解关键是求出待求直线与已知直线的交点法一过点且与向量垂直的平面方程为-3)0:4(1)3(-2)(-3)05510,(,,)123333211123:.8111:(12,2,3),0,(22,-4,)(4,3,1)04(22)3(-4)0l x y z x y z x y z t t t A t t t t t t αα=+++=⎧⎪-⎨-+-==⎪⎩+--==--+-++++=⇒++++=⇒此平面与的交点应满足求得交点为故待求直线方程为法二设待求之交点为此交点与的连线应与向量垂直即连线向量与之内积为即15510(,,)3333123:.8111t x y z =⇒-+---==-交点为故待求直线方程为。
《线性代数与空间解析几何》学习指导陈延梅课程名称:线性代数与空间解析几何英文名称:Linear Algebra and Space Analytic Geometry开课院系:远程教育学院开课学时:54学分:3授课对象:远程教育学院专升本计算机科学与技术专业学生一、教学目的与课程性质、任务。
《线性代数与空间解析几何》是为计算机等工科专业开设的一门重要基础数学课,它具有逻辑推理的严密性和实际应用的广泛性。
本课程的基本概念、基本方法和基本理论是计算机专业学生学习后继课程所必备的数学基础,同时本课程对于培养学生的严密的逻辑推理能力,抽象的思维表达能力,空间想象能力以及解决实际问题的能力都有着十分重要的意义。
本课程将线性代数与空间解析几何融为一体,使学生切实体会“代数”与“几何”的密切关系,学会并掌握以代数为工具研究几何问题以及为代数问题寻找直观的几何背景。
二、教学要求通过这门课程的学习,使学生能够比较系统地掌握行列式,矩阵,几何向量,n 维向量,线性方程组,特征值、特征向量和相似矩阵,二次型及二次曲面的基本概念、基本方法和基本运算技巧。
逐步培养学生抽象思维能力,逻辑推理能力,运算技能,并且能运用所学知识解决实际问题。
具体要求如下:第一章行列式1 了解行列式的定义;2 掌握行列式性质、行列式的降阶法则;3 熟练掌握三阶行列式、四阶行列式和特殊高阶行列式的计算方法;4 了解克莱姆法则的基本思想,并会将其运用于求解特殊的线性方程组。
第二章矩阵1 了解矩阵的概念和一些特殊矩阵;2 掌握矩阵的基本运算(加法、减法、数乘以及矩阵的乘法);3 理解方阵的逆的概念和方阵可逆的充分必要条件,会用伴随矩阵方法求可逆方阵的逆;4 理解矩阵的秩的概念;5 掌握矩阵的初等变换和矩阵等价的概念,并会熟练运用矩阵的初等变换将矩阵化成行阶梯形、最简形和标准形;掌握利用矩阵的初等变换求矩阵的秩和可逆方阵的逆;6 了解初等方阵的概念及其与初等变换的关系;7 了解分块矩阵的概念,熟悉分块矩阵的基本运算。