空间解析几何第章常见的曲面
- 格式:ppt
- 大小:2.26 MB
- 文档页数:68
常见曲面习题11.证明:如果2220a b c d ++->,那么由方程2222220x y z ax by cz d ++++++=给出的曲面是一球面,求出它的球心坐标和半径。
证明:将方程配方得222222()()()x a y b z c a b c d +++++=++-,由2220a b c d ++->,得到方程表示球心是(,,)a b c ---2.求过三点(3,0,0),(0,2,0),(0,0,1)的圆的方程。
解:空间中的圆可由过三点(3,0,0),(0,2,0),(0,0,1)的一个球面和一个平面的交线表示,设过该三点的球面方程为2220x y z ax by cz d ++++++=,得到930,420,10a d b d c d ++=⎧⎪++=⎨⎪++=⎩球面方程为22294(1)032d dx y z x y d z d ++++---++=,其中d 任意。
过该三点的平面方程是132x yz ++=,所以所求圆的方程可以为 2226()2(9)3(4)6(1)60,23660x y z d x d y d z d x y z ⎧++-+-+-++=⎨++-=⎩ 其中d 任意。
3.证明曲线24224324,1,(,)1,1t x t t t y t t t t z t t ⎧=⎪++⎪⎪=∈-∞+∞⎨++⎪⎪=⎪++⎩在一球面上,并此球面方程。
证明:因为曲线满足2322222224242422242424()()()111()(1)11tt t x y z t t t t t t t t t t y t t t t++=++++++++=++==++++即22211()24x y z +-+=,所以曲线在一个球面上。
4.适当选取坐标系,求下列轨迹的方程(1)到两定点距离之比等于常数的点的轨迹; (2)到两定点距离之和等于常数的点的轨迹; (3)到定平面和定点等距离的点的轨迹。
空间解析几何的曲线与曲面的方程表示在空间解析几何中,曲线与曲面的方程表示是非常重要的概念。
通过方程,我们可以描述和研究曲线和曲面的特性、性质以及它们与其他几何对象之间的关系。
本文将介绍空间解析几何中曲线与曲面的方程表示方法。
一、曲线的方程表示在空间中,曲线可以通过参数方程、一般方程和轨迹方程进行表示。
1. 参数方程:曲线的参数方程表示为:x = f(t), y = g(t), z = h(t)其中,x,y和z分别是曲线上某一点的坐标,f(t),g(t)和h(t)是参数方程。
通过改变参数t的取值范围,我们可以得到曲线上的各个点坐标。
2. 一般方程:曲线的一般方程表示为:F(x, y, z) = 0其中,F(x, y, z)是曲线上的点(x, y, z)所满足的关系式。
3. 轨迹方程:曲线的轨迹方程表示为:F(x, y, z, k) = 0其中,(x, y, z)是曲线上的点,k是参数。
二、曲面的方程表示在空间中,曲面可以通过隐式方程、一般方程和参数方程进行表示。
1. 隐式方程:曲面的隐式方程表示为:F(x, y, z) = 0其中,F(x, y, z)是曲面上的点(x, y, z)所满足的关系式。
2. 一般方程:曲面的一般方程表示为:Ax + By + Cz + D = 0其中,A,B,C和D是常数,(x, y, z)是曲面上的点。
3. 参数方程:曲面的参数方程表示为:x = f(u, v), y = g(u, v), z = h(u, v)其中,(u, v)是参数,f(u, v),g(u, v)和h(u, v)是参数方程。
通过改变参数u和v的取值范围,我们可以得到曲面上的各个点坐标。
总结:通过以上介绍,我们了解了空间解析几何中曲线与曲面的方程表示方法。
曲线可以通过参数方程、一般方程和轨迹方程描述,而曲面可以通过隐式方程、一般方程和参数方程描述。
这些方程可以帮助我们研究曲线与曲面的性质、特性以及它们与其他几何对象之间的关系。
第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
空间曲面与曲面积分在数学中,曲面是一种在三维空间中展开的二维对象。
曲面可以通过参数方程或隐函数方程来描述。
与平面不同,曲面具有曲率和形状的变化。
空间曲面的研究是数学分析和几何学的重要领域之一。
1. 曲面的定义与性质曲面可以通过参数方程来定义,常见的参数方程有笛卡尔坐标系参数方程、球坐标系参数方程和柱坐标系参数方程等。
曲面的性质包括曲面的方向、切平面、法线和曲率等。
2. 曲面积分的概念曲面积分是将函数沿着曲面进行积分的一种方法。
常见的曲面积分有第一类曲面积分和第二类曲面积分。
第一类曲面积分是将函数在曲面上的数值进行积分,而第二类曲面积分则是将函数乘以曲面的微元进行积分。
3. 第一类曲面积分第一类曲面积分的计算涉及到曲面的面积元素和函数的数值。
具体而言,可以通过将曲面分割成小区域,计算每个小区域的贡献,然后将贡献进行累加来得到曲面积分的结果。
常见的例子包括曲面面积的计算和质量分布的求解。
4. 第二类曲面积分第二类曲面积分的计算需要考虑曲面的方向和曲面的法向量。
根据曲面的方向和法向量的关系,第二类曲面积分可以分为曲面的左侧区域和右侧区域两种情况。
具体而言,可以通过将曲面分割成小区域,计算每个小区域的贡献,然后将贡献进行累加来得到曲面积分的结果。
常见的例子包括曲面的通量计算和曲面的旋度计算等。
5. 曲面积分的应用曲面积分在物理学和工程学等领域有广泛的应用。
例如,在电动力学中,曲面积分可以用来计算电场通过曲面的总通量。
在流体力学中,曲面积分可以用来计算流体通过曲面的总流量。
在声学中,曲面积分可以用来计算声波通过曲面的总能量等。
总结起来,空间曲面与曲面积分是数学分析和几何学的重要研究内容。
通过曲面的定义与性质的理解,我们可以深入探讨曲面积分的概念和计算方法。
曲面积分在物理学和工程学等应用中起着至关重要的作用。
空间曲面方程总结空间曲面方程是描述三维空间中的曲面形状的数学方程。
它们可以表示为解析形式或参数形式,用于描述物体的外形、表面特征等。
一、解析形式的空间曲面方程1. 平面方程:平面可以用一般式方程 Ax + By + Cz + D = 0 来表示,其中 ABC 是平面的法向量的分量,D 是平面的距离常数。
2. 球面方程:球面的一般式方程为 (x - a)^2 + (y - b)^2 + (z -c)^2 = r^2,其中 (a,b,c) 是球心的坐标,r 是球的半径。
3. 圆柱面方程:圆柱面可以用方程 (x - a)^2 + (y - b)^2 = r^2 来表示,其中 (a,b) 是圆柱面在 xy 平面上的圆心坐标,r 是圆柱面的半径。
4. 锥面方程:锥面可以用方程 (x/a)^2 + (y/b)^2 - (z/c)^2 = 0 来表示,其中 a、b、c 是常数。
5. 双曲面方程:双曲面可以用方程 (x/a)^2 + (y/b)^2 - (z/c)^2 =1 或 (x/a)^2 - (y/b)^2 - (z/c)^2 = 1 来表示,其中 a、b、c 是常数。
二、参数形式的空间曲面方程1. 曲线的参数方程:曲线可以用参数方程 x = f(t),y = g(t),z= h(t) 来表示,其中 t 是参数,f(t)、g(t)、h(t) 是与 t 有关的函数。
2. 曲面的参数方程:曲面可以用参数方程 x = f(u, v),y = g(u, v),z = h(u, v) 来表示,其中 u、v 是参数,f(u, v)、g(u, v)、h(u, v) 是与 u、v 有关的函数。
参数方程常用于描述比较复杂的曲面。
三、参考内容1. 《高等数学》(上、下册),朱大岩、霍建华、赵承全编著,高等教育出版社。
2. 《线性代数与解析几何》(第四版),邓西亮、朱复进编著,高等教育出版社。
3. 《解析几何与线性代数》(第三版),王力编著,高等教育出版社。
解析几何中的曲线与曲面的性质在解析几何中,曲线与曲面是重要的概念。
曲线是由一系列点组成的连续的曲线,而曲面是由一系列曲线组成的连续的曲面。
曲线与曲面的性质对于理解几何图形的特征和性质至关重要。
本文将从曲线和曲面的定义、性质和应用等方面进行探讨。
一、曲线的性质曲线的性质是指某一曲线所具备的特征和规律。
曲线的性质可以从不同的角度进行分类和描述。
下面将从几何性质和数学性质两个方面对曲线的性质进行探讨。
(1)几何性质在几何学中,曲线的性质主要包括弯曲程度、曲率、斜率和切线方程等。
曲线的弯曲程度可以通过曲率来描述,曲率越大则曲线越弯曲。
斜率则表示曲线上某一点的切线与水平线之间的夹角,可以用来判断曲线的斜率情况。
切线方程则是通过求解曲线上一点的切线斜率和切点坐标得到的一条直线方程,可以用来描述曲线在该点附近的几何特征。
(2)数学性质在数学中,曲线的性质主要包括方程、参数方程和极坐标方程等。
方程是指以曲线上的点满足某种关系的数学式子,可以用于描述曲线的几何特征。
参数方程是通过引入参数来表示曲线上的点,可以方便地表示曲线的形状和位置。
极坐标方程是以极坐标系中的点满足某种关系的数学式子,可以用来描述曲线在极坐标系中的几何特征。
二、曲面的性质曲面是由一系列曲线组成的连续的曲面。
曲面的性质可以从不同的角度进行分类和描述。
下面将从几何性质和数学性质两个方面对曲面的性质进行探讨。
(1)几何性质在几何学中,曲面的性质主要包括形状、曲率、切平面和法向量等。
曲面的形状可以通过曲率和曲率半径来描述,曲率越大则曲面越弯曲。
切平面是指曲面上的一个点与该点的切线所确定的平面,可以用于判断曲面的取向和切平面的性质。
法向量是指曲面上某一点的法线与该点的位置有关的向量,可以用来描述曲面在该点附近的几何特征。
(2)数学性质在数学中,曲面的性质主要包括方程、参数方程和隐函数方程等。
方程是指以曲面上的点满足某种关系的数学式子,可以用于描述曲面的几何特征。
高中数学教案空间解析几何与曲面方程教案:空间解析几何与曲面方程1. 引言空间解析几何与曲面方程是高中数学中的重要内容之一。
它是研究空间中点、直线、曲面等几何元素的位置关系和性质的数学分支。
本教案主要介绍空间解析几何的基本概念和曲面方程的求解方法。
2. 直线和平面的方程2.1 点、直线和平面的坐标表示在空间解析几何中,我们使用坐标来表示点的位置。
对于三维空间中的点,我们采用直角坐标系,其中三个坐标分别表示点在x、y、z轴上的投影。
2.2 直线的方程直线在空间中可以由一点和一个方向向量唯一确定。
我们可以通过点向式、参数方程和一般式等形式来表示直线的方程。
2.3 平面的方程平面在空间中可以由一个点和两个不共线的方向向量唯一确定。
平面的方程可以通过点法式和一般式来表示。
3. 点、直线和平面的位置关系3.1 点和直线的位置关系在空间解析几何中,点和直线的位置关系有三种情况:点在直线上、点在线段上和点在直线外。
3.2 点和平面的位置关系点和平面的位置关系有四种情况:点在平面上、点在平面内但不在平面上、点在平面外和点在平面上的投影。
4. 曲面方程的求解4.1 二次曲面的方程二次曲面是指在空间中以二次方程为方程的曲面。
常见的二次曲面包括球面、椭球面、抛物面和双曲面等。
我们可以通过给定的条件和几何性质来确定二次曲面的方程。
4.2 曲面的投影曲面的投影是指将曲面上的点在平面上的投影。
求解曲面的投影需要考虑曲面方程和投影平面的方程,通过求解二者的交点来确定曲面在平面上的投影曲线。
5. 实际应用空间解析几何与曲面方程在实际应用中具有广泛的意义。
例如,在工程设计中,我们可以利用空间解析几何的知识来确定建筑物的结构稳定性;在物理学中,我们可以利用曲面方程来研究物体的运动轨迹。
6. 总结空间解析几何与曲面方程是高中数学中的重要内容,掌握这一知识点对于深入理解几何概念和解决实际问题具有重要意义。
通过本教案的学习,我们对空间解析几何和曲面方程的基本概念和求解方法有了更深入的理解。