医学杂志论文中常见统计学错误分析及对策
- 格式:ppt
- 大小:554.50 KB
- 文档页数:38
常见医学论文统计错误分析1.将配对设计的资料按成组设计的格式列表整理(资料整理错误)某临床医生比较B超与CT检测结果是否一致的研究论文中,对94例某病患者同时用B超与CT检查,将结果分为“正常、轻度、中度、重度”,列表如下:B超与CT检查结果比较检查方法例数检查结果正常轻度中度重度合计B超70 18 3 3 94CT 46 38 7 3 94 合计116 56 10 6 188使原来只有94例的患者资料,变成了188位患者资料,人为将样本量扩大了1倍。
表格应整理成配对设计定性资料表格,如下B超例数CT 正常轻度中度重度合计正常f11 f12 f13 f14 70轻度f21 f22 f23 f24 18中度f31 f32 f32 f32 3重度f41 f42 f42 f42 3如果按照第一种方式列表,统计方法只能够用秩和检验,来回答两种方法之间的差别是否有统计学意义,而不能回答两种方法的结果是否一致。
如果按照第二种方式列表,可以选用一致性检验kappa检验,可以正确回答设计者想要的答案。
2 错用t检验例子1:采用RT-PCR(逆转录聚合酶链反应)和实时PCR(荧光定量pcr)两种方法检测foxp3 mRNA和mosc1 mRNA,得到定量资料如下表,采用t检验比较两组差异。
是否正确哮喘患儿与正常儿童foxp3 mR NA和mosc1 mRNA PCR检测结果(x+-s)分组nRT-PCR 实时PCRfoxp3 mosc1 foxp3 mosc1哮喘组正常对照组20200.24+-0.082.37+-0.590.38+-0.131.86+-0.450.12+-0.0566.32+-9.250.39+-0.1930.78+-4.56表格正确的列表方式应该为:哮喘患儿与正常儿童foxp3 mR NA和mosc1 mRNA PCR检测结果(x+-s)分组nfoxp3 mosc1RT-PCR 实时PCR RT-PCR 实时PCR哮喘组正常对照组20200.24+-0.082.37+-0.590.12+-0.0566.32+-9.250.38+-0.131.86+-0.450.39+-0.1930.78+-4.56可以看出这里有一个重复测量,两组中的每一位样品都被两种方法个检验了一次,实际上是一个具有重复测量的两因素设计,应该用重复测量的两因素设计定量资料方差分析。
医学论文中统计学处理常见问题及应对措施1存在问题1)统计软件名称和版本不全。
最常见的问题是作者只写统计软件名称而漏掉了统计软件版本。
2)统计数据描述含糊不清。
如笼统说“用-x±s 表示”,而不分定量资料或定性资料。
3)误用统计学方法并且统计方法描述不详细。
例如:对定量资料盲目套用t检验,多组均数比较没有采用方差分析和q检验;对定性资料,盲目套用χ2检验;非参数检验资料没有采用秩和检验或Ridit检验; 对回归分析没有结合专业知识和散点图选用合适的回归类型,而盲目套用简单直线回归分析;在逻辑上无明显相关的2个或2个以上指标检测结果勉强进行相关性分析等;对随访资料没有使用生存分析等。
另一个问题是统计学方法的描述不详细。
例如: 使用t检验,没有说明是完全随机设计资料的t检验, 还是配对设计资料的t检验;使用方差分析时,没有说明是完全随机设计资料的方差分析,还是随机区组设计资料的方差分析,或是巢式设计资料的方差分析;对于四格表资料,没有交代是一般四格表资料χ2检验, 还是四格表资料的校正的χ2检验。
4)假设检验结果的表达和解释中存在的问题。
假设检验的结果表达没有根据不同的统计分析方法, 给出相应的检验统计量的实际值及相应的值,如t检验的t值、方差分析的F值、卡方检验的χ2值、相关分析的相关系数及相应的r值等。
此外,统计结果的解释存在如下问题:假设检验是在“无效假设”正确(比如2种药物的疗效没有差异) 的前提下,用P值大小说明实际观察结果是否符合“无效假设”。
P值小(如P<0·05或P<0. 01)则怀疑“无效假设”的正确性,应得2种药物疗效的差异有统计学意义或差异有高度统计学意义的结论,而不应得差异显著或差异非常显著的结论;P值大(如P> 0·05),则不能拒绝“无效假设”,应得2种药物疗效的差异无统计学意义的结论,而不应得无差异的结论。
这是典型地把统计结论作为专业结论而犯的错误。
医学论文中常用统计分析方法错误大全在医学研究领域,准确合理地运用统计分析方法对于得出可靠的研究结论至关重要。
然而,在实际的医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差,甚至得出错误的结论。
下面,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、数据类型判断错误数据类型的正确判断是选择合适统计分析方法的基础。
医学研究中常见的数据类型包括计量资料、计数资料和等级资料。
然而,很多研究者在数据类型判断上出现失误。
例如,将原本应该是计数资料的数据(如疾病的治愈、好转、无效等)当成计量资料进行分析,错误地使用了均值和标准差等统计指标,而应该使用频率和百分比等指标,并采用卡方检验等方法。
二、样本量计算不合理样本量的大小直接影响到研究结果的可靠性和准确性。
一些医学论文在研究设计阶段没有充分考虑样本量的计算,导致样本量过小或过大。
样本量过小,可能会使研究结果缺乏统计学意义,无法检测出真实存在的差异;样本量过大,则会造成资源的浪费,同时增加研究的难度和成本。
正确的样本量计算应该综合考虑研究的设计类型、预期效应大小、检验水准和检验效能等因素。
三、选择错误的统计方法这是医学论文中常见的错误之一。
例如,对于两组独立样本的均数比较,应该使用 t 检验,但如果两组数据的方差不齐,就需要使用校正的 t 检验或者非参数检验方法(如 Wilcoxon 秩和检验)。
然而,很多研究者在这种情况下仍然使用了普通的 t 检验,导致结果不准确。
再比如,对于多组均数的比较,如果方差分析结果有统计学意义,还需要进一步进行多重比较。
但有些研究在这一步没有进行恰当的多重比较方法选择,导致结论不够准确。
四、忽视数据的正态性检验在进行某些统计分析(如 t 检验、方差分析等)时,要求数据服从正态分布。
然而,很多研究者在使用这些方法之前,没有对数据进行正态性检验。
如果数据不服从正态分布,却仍然使用基于正态分布假设的统计方法,就会得出错误的结论。
医学论文撰写中常见的统计学问题及其处理绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。
如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。
显然,经正确统计处理的结果可信度高,论文的质量也高。
据不完全统计,在难以发表的、巳凝聚着作者心血并花费较长时间与较大财力撰写的研究论文中,约半数以上是由于统计错误致其结果与原文主要结论相违背。
如一文采用某新药引产,96例足月孕妇的产后出血与新生儿低Apgar评分率均为2.1%(各2例),明显低于应用原药引产的19例,其产后出血与新生儿低Apgar评分发生率均为15.8%(各3例,x2=7.164, P?.001)。
故认为采用新药引产是一更安全的措施。
原药引产组例数偏少暂且不谈,该资料比较应采用精确法分析,结果是与原结果恰恰相反(P>0.05),这样上述的主要结论就欠可靠而难以发表,否则论文可起误导作用。
类似问题文稿中还常有出现。
现就文稿中常见的统计问题及其相应的处理方法简述如下。
一、常用的统计术语统计学中常用的概念有总体与样本、随机化与概率、计量与计数、等级资料及正态与偏态分布资料、标准差与标准误等。
如某研究采用经会阴途径测定宫颈长度,以探讨不同宫颈长度与临产时间的关系。
结果显示35例宫颈长度为25〜34 mm者与32例宫颈长为15〜24 mm者临产时间的均值士标准差(士s)各为57.6±58.1与47.3±49.1小时。
该计量资料,经t检验显示t=0.780, P>0.05,并未提示不同宫颈长度的临产时间差异有显著意义;从标准差大于均值,显示各变量值离散程度大,呈偏态分布,故不能采用士,这一算术均数法计算均数。
经偏态转换成近似正态分布资料后结果是:35例与32例的临产时间各为34.5±4.1 与26.7±4.1小时,(t=7.778, P?.001),两组差异有极显著意义。
医学论文中常用统计分析方法错误大全在医学研究领域,准确和恰当的统计分析是得出可靠结论的关键。
然而,在众多医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差甚至错误解读,从而影响医学研究的质量和临床实践的指导价值。
接下来,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、样本量计算错误样本量的合理计算对于研究的可靠性和有效性至关重要。
许多研究在设计阶段未能充分考虑研究的主要目的、预期效应大小、检验效能以及显著性水平等因素,导致样本量过小或过大。
样本量过小可能使研究无法检测到真实存在的差异,从而得出假阴性结论;样本量过大则会造成资源浪费,同时可能增加研究的复杂性和误差。
例如,在一项比较新药物与传统药物疗效的临床试验中,如果预期的疗效差异较小,而研究者没有充分考虑这一点,计算出的样本量不足,那么即使新药物实际上更有效,也可能由于样本量的限制而无法得出有统计学意义的结果。
二、数据类型错误医学研究中数据类型多样,包括计量资料(如身高、体重、血压等)、计数资料(如疾病的发生例数、治愈例数等)和等级资料(如疾病的严重程度分为轻、中、重)。
错误地判断数据类型会导致选择错误的统计分析方法。
例如,将原本属于计数资料的数据(如疾病的治愈与未治愈),错误地当作计量资料进行 t 检验,这样得出的结果是不准确的。
反之,将计量资料当作计数资料处理,也会造成同样的问题。
三、选择错误的统计检验方法不同的研究问题和数据类型需要相应的统计检验方法。
常见的错误包括:在多个组间比较时,错误地使用 t 检验而不是方差分析;在非正态分布的数据中使用参数检验方法;在不符合独立性假设的情况下使用独立样本检验等。
比如,在比较三种不同治疗方法对患者生存率的影响时,应该使用方差分析或非参数的KruskalWallis 检验,而不是多次进行两两t 检验,因为这样会增加一类错误(即假阳性)的概率。
四、忽视方差齐性检验在进行 t 检验和方差分析时,通常需要先进行方差齐性检验。
医学统计论文15篇医学科技论文统计学误用分析医学统计论文摘要:医学统计学是医学与统计学的交叉学科,是一门运用统计学的原理和方法,研究医学中有关数据的收集、整理和分析的应用科学[1]。
随着现代医疗信息化,大量的医疗数据及生命现象,均需要借助统计学和计算机去探寻规律。
因此,医学统计学在医疗大数据和循证医学中发挥着越来越重要的作用。
为了应对大数据时代的挑战,医学各专业学生都应培养统计学思维,掌握一些统计学方法及应用技能。
关键词医学统计统计论文统计医学统计论文:医学科技论文统计学误用分析1统计学应用中存在的常见问题1.1单因素方差分析(ANOVA)两两比较误用独立样本t检验单因素方差分析设计3组以上的均数比较,如果总体比较有差异,需进行两两比较,一般用SNK法或LSD法。
但部分研究者却将资料进行拆分,应用独立样本t检验进行两两比较,导致第Ⅰ类统计学错误发生率(假阳性率)增加,从而掉进了一个常见的“统计陷阱”,使所得结论可信度大大降低甚至得出错误结论。
SNK法与LSD法虽然并非等价,实质是一致的。
SNK法一般用于经方差分析结果具有统计学意义时才决定进行的两两事后比较,而LSD法可用于方差分析不足以具有统计学意义时也能进行两两比较[1]。
比较两种方法在SPSS的输出结果形式,SNK是“分堆”比较,一目了然,对于组别数较多的研究更为好用,但没有具体P值,而LSD是在进行“两两”比较时,能给出具体的P值。
1.2两两比较时检验水准的重新调定χ2检验或秩和检验3组以上整体比较有差异时,需应用分割法进行两两比较,这时检验水准应由原0.05调定为0.0167,否则会增加第Ⅰ类统计学错误的发生率。
特别当P值处于0.0167~0.05时,按照P<0.0167的标准,差异无统计学意义,而按照P<0.05的标准,却有意义,与事实相悖,出现假阳性,很容易得出错误结论。
这种分割法有时很保守,当行列表资料分组多且为有序时可用Mantel-Haenszel卡方检验,也称线性趋势检验(testforlineartrend)或定序检验(Linear-by-Lineartest)[2]。
医学论文中常用统计分析方法误用辨析医学统计学的地位◆医学统计学如今是热门科学。
美国食物和药品管理局(Food and Drug Administration, FDA )和欧盟法规要求实验研究、临床研究、药物开发、医学杂志审稿、流行病学探索,以及政府制定有关政策的民意调查、数据分析、决策预测等都需要统计学家的直接参与。
由统计学家指导研究设计、数据分析乃至准备呈递给FDA的报告。
◆在我国,医学统计学也越来越受到学术界和有识之士的重视。
医学统计学的地位医学论文中统计分析的应用现状在医学事业迅速发展的今天,医学研究论文已成为主要的交流方式。
但医学论文中尚存在各种统计分析方法应用上的问题,统计学缺陷涉及面:国外约50%,国内80%以上。
主要有:研究设计不合理(设计水平低下);分析方法选用不得当(方法使用错误);应用条件不遵循;样本含量不满足统计学要求;结果解释不合理(推断过于肯定);统计报告(报告项目不全)。
由于计算机应用的普及和统计分析软件的发展,统计分析的过程和步骤主要由统计软件实现,随之普遍出现乱用计算机统计软件现象。
①不管统计分析方法的前提条件是否満足,将数据直接代入计算机软件中,使得出的结果与实际相差甚远。
②现有的统计软件使用不太方便,造成用户的误用。
作为医学学术刊物的主要读者一定要正确地评价、参考和利用这些发表的医学论著。
中国医学杂志的调查结果◆中国医学杂志近800种,其中代表医学最高水平的中华、中国系列杂志近百种。
◆据统计:中华系列医学杂志发表的论文中有统计问题或错误的达到70%。
国际著名医学杂志有统计问题或错误也达50%。
----<医学统计学基础与典型错误辨析>(胡良平主编军事医科院出版2003年)国外权威医学期刊调查结果•Glantz调查了1977年《Circulation Research》和《Circulation》杂志中发表的文章,在使用统计学方法的文章中具有统计学问题或错误的分别有61%和44%。