电动力学 第2章 2-6
- 格式:pdf
- 大小:251.04 KB
- 文档页数:18
第二章静电场1 一个半径为R 的电介质球,极化强度为,电容率为计算: (1)束缚电荷的体密度和面密度; (2)自由电荷体密度; (3)球外面和球内的电势; (4) 该带电介质球产生的静电场的总能量。
解:问题有球对称,故由叨=蛭+ R=茂得介质球内的电场强度 瓦=—^- = -^4,(尸 VR)£ _ £()£ _ % 广极化过程遵从电荷守恒,球内与球面总的束缚电荷必定等值异 号,且有球形对称,在球外面电场互相抵消,故球外面电场相当 f " 4 展 KR于总的自由电荷心=L PjdV =——集中于球心时产生的电6 6()场4密0sKR r .必 £°(£ — £())户,r> &Q 卜里,=甲=室一坚罗 。
' a4花 r 4 展"上式用级数展开其结果跟用分离变量法的结果一致。
解的必=自由电荷体密度:自由电荷体密度:9接地空心导体球内、外半径为&和R?,在球内离球心为。
(。
<&)处置一点电荷。
,试用镜像法求电势。
导体球上的感应电荷有多少?分布在内表面还是在外表面?解:由于接地导体球的屏蔽作用,球壳及外部空间的电势为零,求解区域为球腔内。
以球心为坐标原点,令4位于Z =。
处。
问题有轴对称,球内电势的全部定解条件为:vV = --^(z-^z);8加项T有限,此书=。
在z=b处放一假想电荷必,则球内任意一点的电势"Q I Q'4筋°尸4茏(/,其中,是点电荷&到场点的距离,/是点电荷必到场点的距离,1_ 1] ]即•尸^R I即•尸^R II + a1 -2Racos0,r』+ a2— 2Rd COS0Q必Q r由边界条件切得:[; + >]=0,即~^ = ~ 二0r r R=R}H ' R=R]n R2解的。
=-*" = 土aaI , QQRJan(p =——[/*__% ]4密。
第二章静电场本章我们把电磁场的基本理论应用到最简单的情况:电荷静止,相应的电场不随时间而变化的情况本章研究的主要问题是:在给定的自由电荷分布以及周围空间介质和导体分布的情况下,求解静电场本章内容:1.静电场的标势及其微分方程2. 唯一性定理3. 分离变量法4. 镜像法5. 格林函数法6. 电多级矩⎩⎨⎧=⋅∇=×∇ρD E 0麦克斯韦方程组的电场部分为:(1.1)(1.2)这两个方程连同介质的电磁性质方程是解决静电问题的基础●静电场的无旋性是它的一个重要特性●由于无旋性,电场强度E 可以用一个标量场的梯度来表示,和力学中用势函数描述保守力场的方法一样讨论:(a) 只有两点的电势差才有物理意义(b) 在实际计算中,常常选取某个点为参考点,规定其上的电势为零,这样全空间的电势就完全确定了(d) 一个具体问题中只能选一个零势点∫∞⋅=PP l E d )(ϕ(c) 零势点的选择是任意的,在电荷分布于有限区域的情况下,常常选取无穷远的电势为零0)(=∞ϕ(2)给定电荷分布所激发的电势根据电势和电场强度的关系:●当已知电场强度时,可以由积分公式求出电势●已知电势时,通过求梯度就可以求出电场强度由以上讨论可知:①若空间中所有电荷分布都给定,则电场强度和电势均可求出②但实际情况往往并不是所有电荷都能预先给定,因此,必须找出电荷与电场相互作用的微分方程P 2,由于电场强度时,将电荷从P 1 移到P 2,电场σ−§2.2 唯一性定理一、静电问题的唯一性定理下面研究可以均匀分区的区域V :iV iε电容率2314L)(x ρ自由电荷分布2 1342 134二、有导体存在时的唯一性定理当有导体存在时,为了确定电场,所需条件有两种类型:①一类是给定每个导体上的电势ϕi②另一类是给定每个导体上的总电荷Qi给定时,即给出了V’所有值,因而由唯一性定理可设区域V 内有一些导体,给定导体之外的电荷分布,给定各导体上的总电荷Q i 以及V 的边界S 上的ϕ或∂ϕ/∂n 值,则V 内的电场唯一地确定.对于第二种类型的问题,唯一性定理表述如下:)∫′∇+V V V d d 2ϕϕ例:两同心导体球壳之间充以两种介质,左半部电容率为ε1,右半部电容率为ε2,设内球壳带总电荷Q ,外球壳接地,求电场和球壳上的电荷分布.解:设两介质内的电势、电场强度和电位移矢量分别为由于左右两半是不同介质,因此一般不同于只有一种均匀介质时的球对称解,,,,,,222111D E D E ϕϕ§2.3 拉普拉斯方程分离变量法静电学的基本问题是求满足给定边界条件的泊松方程只有在界面形状是比轻简单的几何曲面时,这类问题的解才能以解析形式给出本节和以下几节我们研究几种求解的解析方法一、拉普拉斯方程在许多实际问题中,静电场是由带电导体决定的例如:①电容器内部的电场是由作为电极的两个导体板上所带电荷决定的②电子光学系统的静电透镜内部,电场是由分布于电极上的自由电荷决定的这些问题的特点是:自由电荷只出现在一些导体的表面上,在空间中没有其他自由电荷分布二、分离变量法①将场量的函数表达式中不同坐标相互分离,即将场量分解为单一坐标函数的乘积的形式,求出通解不同坐标系中拉普拉斯方程的通解不同分离变量法就是:②然后再根据给定的边界条件求出实际问题的解)()()(y x y x,υψu =。
第二章静电场1.一个半径为 R 的电介质球,极化强度为 PKr / r 2 ,电容率为。
( 1)计算约束电荷的体密度和面密度:( 2)计算自由电荷体密度;( 3)计算球外和球内的电势;( 4)求该带电介质球产生的静电场总能量。
解:( 1) p P K(r / r 2 )K [(1/ r 2 ) r r (1/ r 2 )]K / r 2pn ( P 2P 1 ) e rPr RK / R( 2) D 内0 E P P/()fD 内P /()K /(0 )r2( 3) E 内D 内 / P /()E 外 D 外f dVKR e r4 0 r 2 e r(20 )r外E 外 drKR(0 )rrRE 外 drK(ln R )内E 内 drrrR( 4) W1 1K 2R4 r 2 dr12K 2 R 24 r 2drD E dV222 R422 ()r 2( 0)r2 R(1)( K) 22.在平均外电场中置入半径为R 0 的导体球,试用分别变量法求以下两种状况的电势: ( 1)导体球上接有电池,使球与地保持电势差 0 ;( 2)导体球上带总电荷 Q解:( 1)该问题拥有轴对称性, 对称轴为经过球心沿外电场E 0 方向的轴线, 取该轴线为极轴,球心为原点成立球坐标系。
当 RR 0 时,电势知足拉普拉斯方程,通解为(a n R nb n 1 )P n (cos )n R n因为无量远处 E E 0 ,E 0 R cosE 0 RP 1 (cos )所以a 00 , a1E 0 , a n0, (n 2)当RR 0 时,所以E 0 R 0 P 1 (cos )b nP n (cos )n 1nR 0即: 0b 0 / R 0 0,b 1 / R 02 E 0 R 0所以b 0 R 0 (0 ), b 1 E 0 R 03, b n 0, (n 2)0 E 0 R cos R 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )(2)设球体待定电势为0 ,同理可得0 E 0 R cosR 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )当RR 0 时,由题意,金属球带电量Qn R RdS2Q(E 0 cosR 02E 0 cos ) R 0 sin d d4R 0 ()所以 (0 ) Q / 4R0 E 0 R cos Q / 4 0 R(E 0 R 03 / R 2 ) cos (RR 0 )Q / 4 0 R ( R R 0 )3. 平均介质球的中心置一点电荷Q f ,球的电容率为,球外为真空, 试用分别变量法求空间电势,把结果与使用高斯定理所得结果比较。
电动力学教程第一章电动力学的基本概念和原理1.1 电动力学的起源和发展1.2 电荷、电场和电势1.3 静电场和电场线1.4 电荷的运动和电流1.5 电磁感应和法拉第定律1.6 安培环路定理和电磁场的旋度1.7 电磁波和辐射现象第二章电场和电势2.1 电场的定义和性质2.2 电势的概念和计算方法2.3 电势能和电场的关系2.4 点电荷和电偶极子的电势分布2.5 电势的叠加原理和电势的连续性2.6 电场和电势的能量密度第三章静电场和电荷分布3.1 静电场的高斯定律和电通量3.2 静电场的电势分布和电势差3.3 静电场的边界条件和电势的唯一性3.4 电介质中的静电场和极化效应3.5 静电场的能量和能量密度第四章电流和电阻4.1 电流的定义和电流密度4.2 电阻和欧姆定律4.3 导体中的电场和电势分布4.4 电阻的材料特性和电阻率4.5 稳恒电流和电源的内阻4.6 电流的连续性方程和电流的守恒定律第五章磁场和磁感应5.1 磁场的定义和性质5.2 安培定律和磁场的环路积分5.3 磁场的旋度和磁场的矢势5.4 磁场中的洛伦兹力和磁场的能量密度5.5 磁感应和磁通量的定义和计算方法5.6 磁场的连续性方程和磁场的守恒定律第六章电磁感应和法拉第定律6.1 电磁感应的基本原理和法拉第定律6.2 磁场的变化和电动势的产生6.3 磁通量的变化和楞次定律6.4 互感和自感的概念和计算方法6.5 电磁感应的应用和电磁感应现象第七章电磁波和辐射现象7.1 电磁波的产生和传播7.2 电磁波的性质和特点7.3 电磁波的传播速度和波长7.4 电磁波的能量和能量密度7.5 辐射现象和辐射场的特性7.6 电磁波的应用和辐射的危害以上是一份电动力学教程的大致内容,希望能够帮助读者理解电动力学的基本概念和原理。
通过对电场、电势、静电场、电荷分布、电流、磁场、电磁感应、电磁波等内容的介绍,读者能够全面了解电动力学的基础知识,为进一步学习和研究电动力学打下坚实的基础。
电动力学课件01.引言电动力学是物理学中的一个重要分支,主要研究电荷、电流、电磁场以及它们之间的相互作用规律。
电动力学的发展历程可以追溯到19世纪,当时的科学家们通过实验和理论研究,逐步揭示了电磁现象的本质和规律。
本课件旨在介绍电动力学的基本概念、理论框架和重要应用,帮助读者系统地了解电动力学的基本原理和方法。
2.麦克斯韦方程组麦克斯韦方程组是电动力学的基础,描述了电磁场的基本性质和演化规律。
麦克斯韦方程组包括四个方程,分别是:(1)高斯定律:描述了电荷分布与电场之间的关系,即电荷产生电场,电场线从正电荷出发,终止于负电荷。
(2)高斯磁定律:描述了磁场的无源性质,即磁场线是闭合的,没有磁单极子存在。
(3)法拉第电磁感应定律:描述了时变磁场产生电场的现象,即磁场的变化会在空间产生电场。
(4)安培环路定律:描述了电流和磁场之间的关系,即电流产生磁场,磁场线围绕电流线。
3.电磁波的传播(1)电磁波的传播速度:在真空中,电磁波的传播速度等于光速,即c=3×10^8m/s。
(2)电磁波的能量:电磁波传播过程中,电场和磁场交替变化,携带能量。
(3)电磁波的极化:电磁波的电场矢量在空间中的取向称为极化,可分为线极化、圆极化和椭圆极化。
(4)电磁波的反射、折射和衍射:电磁波在遇到边界时会发生反射和折射现象,同时还会产生衍射现象。
4.动态电磁场(1)电磁场的波动方程:描述了电磁波的传播规律,包括波动方程的推导和求解。
(2)电磁场的能量和动量:研究电磁场携带的能量和动量,以及它们与电荷、电流之间的相互作用。
(3)电磁场的辐射:研究电磁波在空间中的辐射现象,包括辐射源、辐射功率和辐射强度等。
5.电动力学应用(1)通信技术:电磁波的传播特性使其成为无线通信的理想载体,广泛应用于方式、电视、无线电等领域。
(2)能源传输:电磁感应原理使电能的高效传输成为可能,如变压器、发电机等。
(3)电子设备:电磁场的控制和应用是电子设备工作的基础,如电脑、方式、家用电器等。
1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ 3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。