电动力学-第二章静电场
- 格式:ppt
- 大小:1.29 MB
- 文档页数:68
第二章一、选择题1、 静电场的能量密度等于( ) A ρϕ21 B E D ⋅21 C ρϕ D E D ⋅ 2、下列函数(球坐标系a 、b 为非零常数)中能描述无电荷区电势的是( )A a 2rB a b r +3C ar(2r +b)D b ra + 3、真空中两个相距为a 的点电荷1q 和2q ,它们之间的相互作用能是( ) A a q q 0218πε B a q q 0214πε C a q q 0212πε D aq q 02132πε 4、电偶极子p 在外电场e E 中所受的力为( )A (∇⋅P )e EB —∇(⋅P e E )C (P ⋅∇)e ED (eE ⋅∇)P5、电导率为1σ和2σ,电容率为1ε和2ε的均匀导电介质中有稳恒电流,则在两导电介质面上电势的法向微商满足的关系为( ) A n n ∂∂=∂∂21ϕϕ B σϕεϕε-=∂∂-∂∂n n 1122 C nn ∂∂=∂∂2211ϕσϕσ D n n ∂∂=∂∂122211σσϕσ 6. 用点像法求接静电场时,所用到的像点荷___________ 。
A) 确实存在;B) 会产生电力线;C) 会产生电势;D) 是一种虚拟的假想电荷。
7.用分离变量法求解静电场必须要知道__________ 。
A) 初始条件;B) 电场的分布规律;C) 边界条件;D) 静磁场。
8.设区域V 内给定自由电荷分布)(x ρ,S 为V 的边界,欲使V 的电场唯一确定,则需要给定( )。
A. S φ或S n ∂∂φB. S QC. E 的切向分量D. 以上都不对9.设区域V 内给定自由电荷分布()ρx ,在V 的边界S 上给定电势s ϕ或电势的法向导数s n ϕ∂∂,则V 内的电场( )A . 唯一确定 B. 可以确定但不唯一 C. 不能确定 D. 以上都不对10.导体的静电平衡条件归结为以下几条,其中错误的是( )A. 导体内部不带电,电荷只能分布于导体表面B. 导体内部电场为零C. 导体表面电场线沿切线方向D. 整个导体的电势相等11.一个处于x ' 点上的单位点电荷所激发的电势)(x ψ满足方程( )A. 2()0x ψ∇=B. 20()1/x ψε∇=-C. 201()()x x x ψδε'∇=-- D. 201()()x x ψδε'∇=-12.对于均匀带电的球体,有( )。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ⨯∇=⨯∇证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。
静电场的性质可以通过电场强度、电势和电荷分布来描述。
电场强度表示单位正电荷所受到的力,并且是一个向量量。
在任意一点的电场强度可以通过库仑定律计算。
电势是单位正电荷所具有的势能,它是一个标量量。
电势可以通过电势差来定义,电势差是两点之间的电势差别。
1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。
它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。
1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。
它可以通过电势差来定义,电势差是两点之间的电势差别。
电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。
1.4 静电场中的导体在静电场中,导体内部的电场强度为零。
当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。
静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。
电动力学答案第一章电磁现象的普遍规律1. 根据算符的微分性与向量性,推导下列公式:2. 设是空间坐标的函数,证明:,,证明:3. 设为源点到场点的距离,的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:;;;,。
(2)求,,,,及,其中、及均为常向量。
4. 应用高斯定理证明,应用斯托克斯(Stokes)定理证明5. 已知一个电荷系统的偶极矩定义为,利用电荷守恒定律证明p的变化率为:6. 若m是常向量,证明除点以外,向量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为和的空心介质球,介质的电容率为,使介质球内均匀带静止自由电荷,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为,求磁感应强度和磁化电流。
9. 证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。
10. 证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律11. 平行板电容器内有两层介质,它们的厚度分别为和,电容率为和,今在两板接上电动势为E 的电池,求:(1)电容器两极板上的自由电荷面密度和;(2)介质分界面上的自由电荷面密度。
(若介质是漏电的,电导率分别为和当电流达到恒定时,上述两物体的结果如何?12.证明:(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足其中和分别为两种介质的介电常数,和分别为界面两侧电场线与法线的夹角。
(2)当两种导电介质内流有恒定电流时,分界面上电场线的曲折满足其中和分别为两种介质的电导率。
13.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(A A ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d duu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,u u u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明f S f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ证明p 的变化率为:⎰=VV t t d ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内r r fr KRr Ve e D E 200200)(4d εεεεπερε-===⎰外外rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R r rr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。
第二章静电场一、填空题1、若一半径为/?的导体球外电势为为非零常数,球外为真空,则球面上的电荷密度为 __________ .答案:辛2、若一半径为/?的导体球外电势为妇-%COS&+如E COS8,瓦为非零厂常数,球外为真空,则球面上的电荷密度为 _____________ •球外电场强度为 _______ ./?3答案:3^0E0 cos0 , E =-E{)[cos3e r+(\ )sin00』3、均匀各向同性介质中静电势满足的微分方程是 ___________ ;介质分界面上电势的边值关系是___________ 和________ ;有导体时的边值关系是和_____ O答案:VV = - —=0,,馮竿一斫学=一60 = 6£姜=£on on on4、设某一静电场的电势可以表示为</> = ax2y-b Z,该电场的电场强度是答案:- laxye - cix2e + be5、 真空中静场中的导体表面电荷密度 ___________ °答案:b = Y 器on6、 均匀介质內部的体极化电荷密度P P 总是等于体自由电荷密度P . _____ 的倍O 答案:-(1-包)£7、电荷分布p 激发的电场总能量W = 土 J 小j “⑴严的适用于 情形. 答案:全空间充满均匀介质8、无限大均匀介质中点电荷的电场强度等于 --------------9、接地导体球外距球心a 处有一点电荷q,导体球上的感应电荷在球心处产生的电势为等于 ___________ •10、无电荷分布的空间电势 __________ 极值•(填写“有”或''无”) 答案:无1K 镜象法的理论依据是 ____________ ,象电荷只能放在 ___________ 区域。
答案:唯一性定理,求解区以外空间12、 当电荷分布关于原点对称时,体系的电偶极矩等于 ______________ 。