2020最新高考数学复习题整体策略与换元法
- 格式:doc
- 大小:437.62 KB
- 文档页数:14
高考数学复习之导数题涉及到的换元思想
换元法就是通过引入一个或几个新的变量来替换原来某些变量的解题方法,是一种变量代换,其本质是用一种变量形式去取代另一种变量形式,从而把一个函数变为简单函数,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的.常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用是极为广泛的.
换元法的目的:
一、化简运算过程;
二、转化函数的形式,化生为熟.
目录:
一、构造函数证明数列不等式----------------------------2页
二、整体换元减少未知数个数----------------------------3页
三、换元解决函数中的多变量问题---------------------10页
一、构造函数证明数列不等式
这样我们就得到了式子的证明,这里的做法是将换元法作为我们整个证明过程中的一个操作步骤,这个步骤的证明思路就是将复杂的数列形式化为了可证的函数式,进而整个过程得到了证明.
二、整体换元减少未知数个数
三、换元解决函数中的多变量问题
▼
总结
上述方法是解决此类问题的常规策略,其思路是通过消元、换元不断减少变量的个数,是指转化为我们熟悉的一元函数,最后利用导数证明不等式.实践证明,消元、换元在此类题型中具有奇妙的效果,它能快速准确的化简问题,为接下来的构造函数铺平道路.当然,问题的最终仍需利用导数来破解.。
高考数学答题策略与技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
假如前问是证明,即使可不能证明结论,该结论在后问中也能够使用。
因此,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一样来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
因此,关于不同的学生来说,有的简单题目也可能是自己的难题,因此题目的难易只能由自己确定。
一样来说,小题摸索1分钟还没有建立解答方案,则应采取“临时性舍弃”,把自己可做的题目做完再回头解答;2.选择题有其专门的解答方法,第一重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,依照题目的已知条件与问题的联系写出可能用到的公式、方法、或是判定。
尽管不能完全解答,然而也要把自己的方法与做法写到答卷上。
多写可不能扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直截了当摸索后建立三者的联系。
第一考虑定义域,其次使用“三合一定理”。
2.假如在方程或是不等式中显现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有阻碍到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中显现不等式的题目,优选专门值法;5.求参数的取值范畴,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,假如明白曲线的形状,则可选择待定系数法,假如不明白曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的专门点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范畴;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种专门数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问假如是为建系服务的,一定用传统做法完成,假如不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练把握它们之间的三角函数值的转化;锥体体积的运算注意系数1/3,而三角形面积的运算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”制造直角三角形解题;13.导数的题目常规的一样不难,但要注意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该舍弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目假如出解答题,应该先设事件,然后写出使用公式的理由,因此要注意步骤的多少决定解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时能够测量;16.遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范畴,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
第48练 整体策略与换元法[题型分析·高考展望] 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径.换元法又称辅助元素法、变量代换法,通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起来;或者变为熟悉的形式,把复杂的计算和推证简化.高考必会题型题型一 整体策略例1 (1)计算(1-12-13-14-…-12 014)×(12+13+14+15+…+12 015)-(1-12-13-14-15-…-12 014-12 015)×(12+13+14+…+12 014); (2)解方程(x 2+5x +1)(x 2+5x +7)=7. 解 (1)设12+13+14+…+12 014=t ,则原式=(1-t )(t +12 015)-(1-t -12 015)t =t +12 015-t 2-12 015t -t +t 2+12 015t =12 015.(2)设x 2+5x =t ,则原方程化为(t +1)(t +7)=7, ∴t 2+8t =0,解得t =0或t =-8,当t =0时,x 2+5x =0,x (x +5)=0,x 1=0,x 2=-5; 当t =-8时,x 2+5x =-8,x 2+5x +8=0, Δ=b 2-4ac =25-4×1×8<0, 此时方程无解;即原方程的解为x 1=0,x 2=-5.点评 整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决. 变式训练1 计算:(1-12-13-14)×(12+13+14+15)-(1-12-13-14-15)×(12+13+14).解 令12+13+14=t ,则原式=(1-t )(t +15)-(1-t -15)t =t +15-t 2-15t -45t +t 2=15.题型二 换元法例2 (1)已知函数f (x )=4x -2x t +t +1在区间(0,+∞)上的图象恒在x 轴上方,则实数t 的取值范围是________________.(2)已知点A 是椭圆x 225+y 29=1上的一个动点,点P 在线段OA 的延长线上,且OA →·OP →=48,则点P 的横坐标的最大值为________. 答案 (1)(-∞,2+22) (2)10解析 (1)令m =2x (m >1),则问题转化为函数f (m )=m 2-mt +t +1在区间(1,+∞)上的图象恒在x 轴上方,即Δ=t 2-4(t +1)<0或⎩⎪⎨⎪⎧Δ≥0,t2<1,1-t +t +1>0,解得t <2+22,即实数t 的取值范围是(-∞,2+22). (2)当点P 的横坐标最大时, 射线OA 的斜率k >0, 设OA :y =kx ,k >0,与椭圆x 225+y 29=1联立解得x =159+25k 2,又OA →·OP →=x A x P +k 2x A x P =48, 解得x P =48(1+k 2)x A =1659+25k 21+k 2=1659+25k 2(1+k 2)2,令9+25k 2=t >9,即k 2=t -925,则x P =165t (t +1625)2=165×25tt 2+162+32t=801t +162t+32≤80×164=10, 当且仅当t =16,即k 2=725时取等号,所以点P 的横坐标的最大值为10.(3)已知函数f (x )=ax -ln(1+x 2).①当a =45时,求函数f (x )在(0,+∞)上的极值;②证明:当x >0时,ln(1+x 2)<x ;③证明(1+124)(1+134)…(1+1n 4)<e(n ∈N *,n ≥2,e 为自然对数的底数).①解 当a =45时,f (x )=45x -ln(1+x 2),f ′(x )=45-2x1+x 2=4x 2-10x +45(1+x 2)=0,x =2或x =12.f (x )和f ′(x )随x 的变化情况如下表:f (x )极大值=f (12)=25-ln 54,f (x )极小值=f (2)=85-ln 5.②证明 令g (x )=x -ln(1+x 2), 则g ′(x )=1-2x1+x 2≥0,∴g (x )在(0,+∞)上为增函数,g (x )>g (0)=0, ∴ln(1+x 2)<x .③证明 由②知,ln(1+x 2)<x ,令x 2=1n 4得,ln(1+1n 4)<1n 2<1n (n -1)=1n -1-1n ,∴ln(1+124)+ln(1+134)+…+ln(1+1n 4)<1-12+12-13+13-14+…+1n -1-1n =1-1n <1,∴(1+124)(1+134)…(1+1n4)<e.点评 换元法是解数学题时,把某个式子看成一个整体,用一个变量去代替它,使问题得到简化, 变得容易处理,换元法的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是通过换元变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,可以把分散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起来;或者变为熟悉的形式,把复杂的计算和推证简化.主要考查运用换元法处理以函数、三角函数、不等式、数列、解析几何为背景的最值、值域或范围问题,通过换元法把不熟悉、不规范、复杂的典型问题转化为熟悉、规范、简单的典型问题,起到化隐形为显性、化繁为简、化难为易的作用,以优化解题过程. 变式训练2 (1)已知函数f (x )=1x -1+2x (x >1),则f (x )的最小值为________. 答案 2+2 2解析 f (x )=1x -1+2(x -1)+2,令x -1=t ,则f (t )=1t +2t +2(t >0),∴f (t )≥21t×2t +2=2+2 2. 当且仅当1t =2t 时等号成立,故f (x )的最小值为2+22, 当且仅当1x -1=2(x -1),即x =22+1时等号成立. (2)已知在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n⎝⎛⎭⎫S n -12. ①求S n 的表达式;②设b n =S n 2n +1,数列{b n }的前n 项和为T n ,证明T n <12.①解 ∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n , (*)由题意得S n -1·S n ≠0,(*)式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1, ∴S n =12n -1.②证明 ∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n 2n +1<12,∴T n <12.高考题型精练1.已知长方体的表面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( )A.2 3B.14C.5D.6 答案 C解析 设长方体长,宽,高分别为x ,y ,z , 由已知“长方体的表面积为11, 其12条棱的长度之和为24”,得⎩⎪⎨⎪⎧2(xy +yz +xz )=11,4(x +y +z )=24, 长方体所求对角线长为x 2+y 2+z 2=(x +y +z )2-2(xy +yz +xz )=62-11=5, 故选C.2.设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3,那么mx +ny 的最大值是______. 答案3解析 设x =sin α,y =cos α,m =3sin β,n =3cos β, 其中α,β∈(0°,180°),∴mx +ny =3sin βsin α+3cos βcos α=3cos(α-β), 故最大值为 3.3.函数y =3x +2-42-x 的最小值为________. 答案 -8解析 由⎩⎪⎨⎪⎧x +2≥0,2-x ≥0,解得-2≤x ≤2,所以函数的定义域为[-2,2]. 因为(x +2)2+(2-x )2=4,故可设⎩⎨⎧x +2=2sin θ,2-x =2cos θ(θ∈[0,π2]),则y =3×2sin θ-4×2cos θ=6sin θ-8cos θ =10sin(θ-φ)(φ∈(0,π2),cos φ=35,sin φ=45),因为θ∈[0,π2],所以θ-φ∈[-φ,π2-φ],所以当θ=0时,函数取得最小值 10sin(-φ)=10×(-45)=-8.4.已知不等式x >ax +32的解集是(4,b ),则a =______,b =________.答案 1836解析 令x =t ,则t >at 2+32,即at 2-t +32<0,其解集为(2,b ),故⎩⎨⎧2+b =1a,2·b =32a,解得a =18,b =36.5.已知y =f (x )为偶函数,当x ≥0时,f (x )=-x 2+2x ,则满足f (f (a ))=12的实数a 的个数为________. 答案 8解析 由题意知,f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,-x 2-2x ,x <0,其图象如图所示,令t =f (a ),则t ≤1,令f (t )=12,解得t =1-22或t =-1±22,即f (a )=1-22或f (a )=-1±22, 由数形结合得,共有8个交点.6.设f (x 2+1)=log a (4-x 4)(a >1),则f (x )的值域是________. 答案 (-∞,log a 4] 解析 设x 2+1=t (t ≥1), ∴f (t )=log a [-(t -1)2+4], ∴值域为(-∞,log a 4].7.已知m ∈R ,函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -1),x >1,g (x )=x 2-2x +2m -1,若函数y =f (g (x ))-m有6个零点,则实数m 的取值范围是________. 答案 (0,35)解析 函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -1),x >1的图象如图所示,令g (x )=t ,y =f (t )与y =m 的图象最多有3个交点,当有3个交点时,0<m <3,从左到右交点的横坐标依次t 1<t 2<t 3, 由于函数有6个零点,t =x 2-2x +2m -1, 则每一个t 的值对应2个x 的值,则t 的值不能为最小值,函数t =x 2-2x +2m -1的对称轴为x =1,则最小值1-2+2m -1=2m -2, 由图可知,2t 1+1=-m ,则t 1=-m -12,由于t 1是交点横坐标中最小的,满足-m -12>2m -2,①又0<m <3,② 联立①②得0<m <35.8.已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y -x 的最大值和最小值; (2)求x 2+y 2的最大值和最小值解 方程x 2+y 2-4x +1=0变形为(x -2)2+y 2=3, 表示的图形是圆. (1)设x -2=3cos θ,则y =3sin θ,故x =2+3cos θ, y =3sin θ,则y -x =3sin θ-3cos θ-2 =6sin(θ-π4)-2,∴当θ-π4=2k π-π2(k ∈Z )时,y -x 有最小值-6-2,当θ-π4=2k π+π2(k ∈Z )时,y -x 有最大值6-2.(2)由(1)知x 2+y 2=(2+3cos θ)2+(3sin θ)2=7+43cos θ. ∴当θ=2k π(k ∈Z )时,x 2+y 2有最大值7+43, 当θ=2k π+π(k ∈Z )时, x 2+y 2有最小值7-4 3.9.平面内动点P 与两定点A (-2,0),B (2,0)连线的斜率之积等于-14,若点P 的轨迹为曲线E ,直线l 过点Q (-65,0)交曲线E 于M ,N 两点.(1)求曲线E 的方程,并证明:∠MAN 是一定值; (2)若四边形AMBN 的面积为S ,求S 的最大值. 解 (1)设动点P 坐标为(x ,y ),当x ≠±2时,由条件得:y x -2·y x +2=-14,化简得x 24+y 2=1(x ≠±2),曲线E 的方程为x 24+y 2=1(x ≠±2),由题意可设直线l 的方程为x =ky -65,联立方程组可得⎩⎨⎧x =ky -65,x24+y 2=1,化简得(k 2+4)y 2-125ky -6425=0,设M (x 1,y 1),N (x 2,y 2),则y 1y 2=-6425(k 2+4),y 1+y 2=12k5(k 2+4). 又A (-2,0),则AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2)=(k 2+1)y 1y 2+45k (y 1+y 2)+1625=0,所以∠MAN =90°, 所以∠MAN 的大小为定值.(2)S =12|AB |·|y 1-y 2|=12·|2+2|·(y 1+y 2)2-4y 1y 2=2⎣⎡⎦⎤12k 5(k 2+4)2+4×6425(k 2+4)=8525k 2+64(k 2+4)2,令k 2+4=t (t ≥4), ∴k 2=t -4,∴S =8525t -36t 2. 设f (t )=25t -36t 2,∴f ′(t )=25t 2-2t (25t -36)t 4=-25t +72t 3,∵t ≥4,∴f ′(t )<0,∴y =f (t )在[4,+∞)上单调递减. ∴f (t )≤f (4)=100-3616=4,由t =4,得k =0,此时S 有最大值165.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。
专题04 整体代换法【方法指导】整体代换思想就是在研究和解决数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法。
从整体上去认识问题、思考问题,常常能化繁为简,同时又能培养学生思维的灵活性。
所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。
【例题解读】【典例1】 (2021·辽宁铁岭市·高三一模)已知()112g x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,()()1101n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,n *∈N ,则数列{}n a 的一个通项公式为( ). A .1n a n =+B .31n a n =+C .33n a n =+D .223n a n n =-+【典例2】(2021·陕西宝鸡市·高三二模(文))已知函数())222sin cos sin cos f x x x x x =-,判断下列给出的四个命题,其中错误的命题有( )个.①对任意的x ∈R ,都有()23f x f x π⎛⎫-=-⎪⎝⎭; ②将函数()y f x =的图象向右平移12π个单位,得到偶函数()g x ;③函数()y f x =在区间7,1212ππ⎛⎫⎪⎝⎭上是减函数; ④“函数()y f x =取得最大值”的一个充分条件是“12x π=” A .0B .1C .2D .3【典例3】(2021·陕西宝鸡市·高三二模(文))已知{}n a 是等差数列,满足()()153693218a a a a a ++++=,则该数列前8项和为( )A .36B .24C .16D .12【典例4】(2021·内蒙古呼和浩特市·高三一模(理))在平面直角坐标系xOy 中,直线()0y kx k =≠与双曲线22221x y a b-=(0a >,0b >)交于A ,B 两点,F 是该双曲线的焦点,且满足2AB OF =,若ABF 的面积为24a ,则双曲线的离心率为( ) A .3B .5C .22D .3【专题训练】一、单选题1.(2021·江西高三月考(理))已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值为3ω,则实数ω的取值个数最多为( )A .1B .2C .3D .42.(2021·全国高三专题练习)设k 、b R ∈,若关于x 的不等式()ln 1x x k x b +≤++在()0,∞+上恒成立,则221k b k +--的最小值是( )A .2e -B .11e -+ C .1e -+ D .1e --3.(2021·天津和平区·高三一模)设函数()sin 2cos2f x x x =+,给出下列结论: ①()f x 的最小正周期为π; ②()f x 在区间,88ππ⎛⎫-⎪⎝⎭内单调递增; ③将函数()y f x =的图象向左平移4π个单位长度,可得到函数cos 2y x =的图象.其中所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③4.(2021·全国高三其他模拟)已知sin 2cos 0αα+=,则2cos2sin 2cos ααα=-( )A .1-B .2C .23D .355.(2021·全国高三专题练习)若数列{}n a 满足1120n na a +-=,则称{}n a 为“梦想数列”,已知正项数列1nb ⎧⎫⎨⎬⎩⎭为“梦想数列”,且1231b b b ++=,则678b b b ++=( ) A .4B .8C .16D .326.(2021·全国高三专题练习)n S 为正项等差数列{}n a 的前n 项和,3579a a a tS ++=,则t =( ) A .3B .13C .2D .237.(2021·广东肇庆市·高三二模)已知1F ,2F 分别为双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,O 为坐标原点,在双曲线C 存在点M ,使得122OM F F =,设12F MF ∆的面积为S .若()21216MF S MF +=,则该双曲线的离心率为( )ABC .32D8.(2021·广东湛江市·高三一模)已知椭圆2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆C 于A ,B 两点,若2BA BF ⋅=0,且|BF 2|,|AB |,|AF 2|成等差数列,则C 的离心率为( ) A.2B.2C.3D .129.(2021·全国高三专题练习)已知函数3()log (91)xf x x =-++,则使得()2311log 10f x x -++<成立的x 的取值范围是( )A.⎛ ⎝⎭B .()(),01,-∞⋃+∞C .0,1D .(),1-∞二、多选题10.(2021·山东烟台市·高三一模)已知双曲线()22:17x y C m R m m -=∈+的一条渐近线方程为430x y -=,则( ) A.为C 的一个焦点 B .双曲线C 的离心率为53C .过点()5,0作直线与C 交于,A B 两点,则满足15AB =的直线有且只有两条D .设,,A B M 为C 上三点且,A B 关于原点对称,则,MA MB 斜率存在时其乘积为16911.(2021·山东青岛市·高三一模)若实数a b <,则下列不等关系正确的是( )A .223555b a a⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .若1a >,则log 2a ab >C .若0a >,则2211b a a b>++ D .若53m >,a ,()1,3b ∈,则()()3322103a b m a b a b ---+-> 三、填空题12.(2021·天津南开区·高三一模)已知0a >,0b >,1a b c ++=,则2221a b c ++-的最大值是______.13.(2021·全国高三专题练习(文))已知311()(1)22x x f x x x e e --=--++-,其中e 是自然对数的底数,若(ln )(1)0f a f a ++<,则实数a 的取值范围是_________.整体代换法解析【典例1】 (2021·辽宁铁岭市·高三一模)已知()112g x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,()()1101n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,n *∈N ,则数列{}n a 的一个通项公式为( ).A .1n a n =+B .31n a n =+C .33n a n =+D .223n a n n =-+【答案】A 【分析】 由()112F x f x ⎛⎫=+- ⎪⎝⎭在R 上为奇函数,知11222f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则112x t +=-,得到()()12f t f t +-=.由此能够求出数列{}n a 的通项公式. 【详解】由题已知()112g x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数, 故()()g x g x -=-, 代入得:11222f x f x ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 关于点112⎛⎫ ⎪⎝⎭,对称, 令12t x =-, 则112x t +=-, 得到()()12f t f t +-=, ∵()()1101n n a f f f f n n -⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,倒序相加可得()221n a n =+, 即()1=+n a n , 故选:A . 【点睛】思路点睛:利用函数的性质以及倒序相加法求数列的通项公式问题.先利用函数的奇偶性得到函数的对称中心,再用换元法得到()()12f t f t +-=,最后利用倒序相加法求解数列的通项公式.【典例2】(2021·陕西宝鸡市·高三二模(文))已知函数())222sin cos sin cos f x x x x x =-,判断下列给出的四个命题,其中错误的命题有( )个.①对任意的x ∈R ,都有()23f x f x π⎛⎫-=-⎪⎝⎭; ②将函数()y f x =的图象向右平移12π个单位,得到偶函数()g x ;③函数()y f x =在区间7,1212ππ⎛⎫⎪⎝⎭上是减函数; ④“函数()y f x =取得最大值”的一个充分条件是“12x π=” A .0 B .1C .2D .3【答案】B 【分析】根据题意,求得()f x 的解析式,根据正弦型函数的性质,逐一分析①②③④,即可求得答案. 【详解】由题意得())222sin cos sin cos sin 222sin 23f x x x x x x x x π⎛⎫=-=+=+⎪⎝⎭对于①:对任意的x ∈R ,225sin 2sin 23333f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ sin 22sin 2()33x x f x πππ⎡⎤⎛⎫⎛⎫=-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故①正确;对于②:将函数()y f x =的图象向右平移12π个单位,可得()sin 2sin 21236g x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,不是偶函数,故②错误;对于③:因为7,1212x ππ⎛⎫∈⎪⎝⎭,所以32,232x πππ⎛⎫+∈ ⎪⎝⎭,因为sin y x =在3,22ππ⎛⎫⎪⎝⎭上单调递减, 所以()2sin 23f x x π⎛⎫=+⎪⎝⎭在区间7,1212ππ⎛⎫⎪⎝⎭上是减函数,故③正确 对于④:当12x π=时,232x ππ+=, 所以2sin 2122f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,即函数()y f x =在12x π=处取得最大值,充分性成立, 所以函数()y f x =取得最大值的一个充分条件是12x π=,故④正确. 所以错误的命题为②,共1个. 故选:B 【点睛】解题的关键是熟练掌握正弦型函数的图象与性质、二倍角公式、辅助角公式,并灵活应用,考查分析理解,计算求值的能力,整体性的思想,属中档题.【典例3】(2021·陕西宝鸡市·高三二模(文))已知{}n a 是等差数列,满足()()153693218a a a a a ++++=,则该数列前8项和为( )A .36B .24C .16D .12【答案】D 【分析】根据等差数列的性质,可得369615332,a a a a a a a ++==+,化简整理,结合等差数列前n 项和公式,即可求得答案. 【详解】由等差数列性质可得369615332,a a a a a a a ++==+, 所以36331822a a +⨯⨯=,即363a a +=, 所以886138()8()1222a a a a S ===++. 故选:D【典例4】(2021·内蒙古呼和浩特市·高三一模(理))在平面直角坐标系xOy 中,直线()0y kx k =≠与双曲线22221x y a b-=(0a >,0b >)交于A ,B 两点,F 是该双曲线的焦点,且满足2AB OF =,若ABF 的面积为24a ,则双曲线的离心率为( ) A .3 B .5C .22D .3【答案】B 【分析】设双曲线的左焦点为1F ,则可得四边形1AF BF 为矩形,由双曲线的定义和勾股定理结合三角形面积可得222(2)(2)16a c a =-,即可求出离心率. 【详解】不妨设F 是该双曲线的右焦点,设左焦点为1F ,则F ,1F 在以AB 为直径的圆上,根据双曲线和圆的对称性,圆过双曲线的左右焦点,如图,连接11,AF BF ,则四边形1AF BF 为矩形,则可得12AF AF a -=,()2222112AF AF F F c +==,所以()222211111||22AF AF AF AF AF AF F F AF AF -=-⋅+=-⋅, 又因为121142ABFAF FSSAF AF a ==⋅=, 所以222(2)(2)16a c a =-,得5c a =, 所以5ce a==故选:B.【专题训练】一、单选题1.(2021·江西高三月考(理))已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值为3ω,则实数ω的取值个数最多为( )A .1B .2C .3D .4【答案】B 【分析】 根据0,4x π⎡⎤∈⎢⎥⎣⎦,得到6646x ππππωω-≤-≤-,再由03ω<≤,分462πππω-≤, 462πππω->,由最大值为3ω求解.【详解】因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值为3ω,所以013ω<≤,解得03ω<≤,因为0,4x π⎡⎤∈⎢⎥⎣⎦, 所以6646x ππππωω-≤-≤-,当462πππω-≤,即803ω<≤时,()max sin 463f x ππωω⎛⎫=-=⎪⎝⎭,令()()sin ,463g h ππωωωω⎛⎫=-=⎪⎝⎭,在同一坐标系中作出图象:令()sin 463F ππωωω⎛⎫=--⎪⎝⎭,因为()188100,102399F F ⎛⎫=-<=-=> ⎪⎝⎭, 所以存在唯一ω,使得sin 463ππωω⎛⎫-= ⎪⎝⎭,当462πππω->,即833ω<≤时,()max 1f x =,即13ω=, 解得 3ω=,所以实数ω的取值个数最多为2. 故选:B 【点睛】关键点点睛:本题关键是根据()f x 的最大值为3ω,由013ω<≤,得到03ω<≤,从而7(,]46612ππππω-∈-,才能分462πππω-≤,462πππω->讨论求解.2.(2021·全国高三专题练习)设k 、b R ∈,若关于x 的不等式()ln 1x x k x b +≤++在()0,∞+上恒成立,则221k b k +--的最小值是( )A .2e -B .11e -+ C .1e -+ D .1e --【答案】C 【分析】令()()ln 1f x x x k x =+-+,分析得出()max b f x ≥,分1k ≤、1k >两种情况讨论,可得出()()max ln 11f x k k =----,进而可得出()ln 1222111k k b k k -++-≥---,令10t k =->,利用导数求出函数()ln 21t g t t+=-的最小值,即可得解. 【详解】令()()ln 1f x x x k x =+-+,则()f x b ≤对任意的()0,x ∈+∞恒成立,所以,()max b f x ≥.①当1k ≤时,()110f x k x'=+->,函数()f x 在()0,∞+上单调递增,函数()f x 无最大值,不合乎题意;②当1k >时,令()0f x '=,可得11x k =-. 当101x k <<-时,()0f x '>,此时函数()f x 单调递增, 当11x k >-时,()0f x '<,此时函数()f x 单调递减, 所以,()()max 1111ln 1ln 111111f x f k k k k k k k ⎛⎫⎛⎫==+-+=----⎪⎪----⎝⎭⎝⎭, 即()ln 11b k k ≥----,()()ln 11ln 12222211111k k k k b bk k k k -++-++-∴=+≥-=-----, 设10t k =->,令()ln 21t g t t +=-,则()2ln 1t g t t+'=, 当10<<t e时,()0g t '<,此时函数()g t 单调递减, 当1t e>时,()0g t '>,此时函数()g t 单调递增. 所以,()min 11g t g e e ⎛⎫==- ⎪⎝⎭,因此,221k b k +--的最小值是1e -.故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3.(2021·天津和平区·高三一模)设函数()sin 2cos2f x x x =+,给出下列结论: ①()f x 的最小正周期为π; ②()f x 在区间,88ππ⎛⎫-⎪⎝⎭内单调递增; ③将函数()y f x =的图象向左平移4π个单位长度,可得到函数cos 2y x =的图象. 其中所有正确结论的序号是( ) A .①② B .①③C .②③D .①②③【答案】A 【分析】先将()sin 2cos2f x x x =+,变形为())4f x x π=+,再根据函数的性质,三角函数的周期性,单调性,诱导公式可以直接判断. 【详解】由()sin 2cos 2)4f x x x x π=+=+,所以()f x 的最小正周期为22ππ=,故①正确;要求()f x 的单调增区间,即3222()42288k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈,而3,[,]()8888k k k Z ππππππ⎛⎫-⊆-++∈ ⎪⎝⎭故②正确;将()sin 2cos2))]48y f x x x x x ππ==+=++的图象向左平移4π个单位长度,得到)]))84cos 4422y x x x x πππππ=++=++=+≠,故③错误.故选:A .4.(2021·全国高三其他模拟)已知sin 2cos 0αα+=,则2cos2sin 2cos ααα=-( )A .1-B .2C .23D .35【答案】D 【分析】根据三角函数的基本关系式,求得tan 2α,再结合余弦的倍角公式和基本关系式,化简为“齐次式”,即可求解. 【详解】由题意值sin 2cos 0αα+=,即sin 2cos αα=-,可得tan 2α,又由22222cos2cos sin 1tan 3sin 2cos 2sin cos cos 2tan 15αααααααααα--===---. 故选:D.5.(2021·全国高三专题练习)若数列{}n a 满足1120n na a +-=,则称{}n a 为“梦想数列”,已知正项数列1nb ⎧⎫⎨⎬⎩⎭为“梦想数列”,且1231b b b ++=,则678b b b ++=( )A .4B .8C .16D .32【答案】D 【分析】利用等比数列的定义可推导出“梦想数列”{}n a 是公比为12的等比数列,进而结合题意可知数列{}n b 是公比为2的等比数列,由此可得()56781232b b b b b b ++=++,即可得解. 【详解】由题意可知,若数列{}n a 为“梦想数列”,则1120n n a a +-=,可得112n n a a +=, 所以,“梦想数列”{}n a 是公比为12的等比数列, 若正项数列1n b ⎧⎫⎨⎬⎩⎭为“梦想数列”,则1112n nb b +=,所以,12n n b b +=, 即正项数列{}n b 是公比为2的等比数列,因为1231b b b ++=,因此,()5678123232b b b b b b ++=++=.故选:D. 【点睛】关键点点睛:本题考查数列的新定义“梦想数列”,解题的关键就是紧扣新定义,本题中,“梦想数列”就是公比为12的等比数列,解题要将这种定义应用到数列1n b ⎧⎫⎨⎬⎩⎭中,推导出数列{}n b 为等比数列,然后利用等比数列基本量法求解.6.(2021·全国高三专题练习)n S 为正项等差数列{}n a 的前n 项和,3579a a a tS ++=,则t =( ) A .3 B .13C .2D .23【答案】B 【分析】根据数列{}n a 为正项等差数列,且3579a a a tS ++=,利用等差数列的性质求解. 【详解】因为数列{}n a 为正项等差数列,且3579a a a tS ++=, 所以()19553992a a a t ta +==, 解得13t =, 故选:B7.(2021·广东肇庆市·高三二模)已知1F ,2F 分别为双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,O 为坐标原点,在双曲线C 存在点M ,使得122OM F F =,设12F MF ∆的面积为S .若()21216MF S MF +=,则该双曲线的离心率为( )A B C .32D 【答案】A 【分析】由122OM F F =,得122F MF π∠=,再利用勾股定理和结合已知条件及双曲线的定义可得222424a a c +=,从而可求出双曲线的离心率 【详解】由122OM F F =,得122F MF π∠=.设1MF m =,2MF n =. 由()21216MF S MF +=,得()()2228444mn m n m n mn a mn =+=-+=+,即2mn a =.又2224m n c +=,即()2224m n mn c -+=,所以222424a a c +=,所以6ce a , 故选:A.8.(2021·广东湛江市·高三一模)已知椭圆2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆C 于A ,B 两点,若2BA BF ⋅=0,且|BF 2|,|AB |,|AF 2|成等差数列,则C 的离心率为( )A .2B .2C .3D .12【答案】A 【分析】由向量知识得出290ABF ∠=︒,再由等差数列的性质、勾股定理、椭圆的定义得出a =,最后由离心率公式得出答案. 【详解】因为2BA BF ⋅,所以290ABF ∠=︒由|BF 2|,|AB |,|AF 2|成等差数列,设22,||,2BF x AB x d AF x d ==+=+ 在2Rt ABF 中,222()(2)x x d x d ++=+,解得3x d =即223,||4,5BF d AB d AF d ===由椭圆的定义得2ABF 的周长为1212224BF BF AF AF a a a +++=+= 即3454,3d d d a a d ++==在直角三角形12BF F 中,21BF a BF ==,122FF c =,则222(2)a a c +=,故2a c =即22c e a ==故选:A【点睛】关键点睛:解决本题的关键在于利用勾股定理、等差中项的性质、椭圆的定义得出,a c 的齐次方程,进而得出离心率.9.(2021·全国高三专题练习)已知函数3()log (91)xf x x =-++,则使得()2311log 10f x x -++<成立的x 的取值范围是( )A .22⎛ ⎝⎭B .()(),01,-∞⋃+∞C .0,1D .(),1-∞【答案】C 【分析】令21t x x =-+,则3()1log 10f t +<,从而33log (91)1log 10tt -+++<,即可133log (91)log (91)1t t +-<+-,然后构造函数3()log (91)t g t t =+-,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】解:令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t +<,所以33log (91)1log 10tt -+++<, 所以133log (91)log (91)1tt +-<+-,令3()log (91)tg t t =+-,则'9ln92991()11(91)ln39191t t t t t t g t ⨯-=-+=-+=+++,因为34t ≥,所以910t ->,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增,所以由()(1)g t g <,得314t ≤<,所以23114x x ≤-+<,解得01x <<,故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t +-<+-,再构造函数3()log (91)tg t t =+-,利用函数的单调性解不等式二、多选题10.(2021·山东烟台市·高三一模)已知双曲线()22:17x y C m R m m -=∈+的一条渐近线方程为430x y -=,则( )A .为C 的一个焦点B .双曲线C 的离心率为53C .过点()5,0作直线与C 交于,A B 两点,则满足15AB =的直线有且只有两条D .设,,A B M 为C 上三点且,A B 关于原点对称,则,MA MB 斜率存在时其乘积为169【答案】BD 【分析】依题意求出双曲线方程,即可判断AB ;再由双曲线的对称性判断C ;设()11,A x y ,()11,B x y --,()00,M x y 利用点差法求出MA MB k k ⋅;【详解】解:因为双曲线()22:17x y C m R m m -=∈+的一条渐近线方程为430x y -=,所以2743m m +⎛⎫= ⎪⎝⎭,解得9m =,所以双曲线22:1916x y C -=,所以3a =,4b =,5c ==,所以则其焦点为()5,0-、()5,0,离心率53c e a ==,故A 错误,B 正确;过点()5,0作直线与C 交于,A B 两点,因为()5,0为双曲线的焦点坐标,当直线的斜率不存在时2232153b AB a ==<,当直线的斜率为0时,2615AB a ==<,所以由双曲线的对称性得,满足15AB =的直线有4条,故C 错误; 设()11,A x y ,()11,B x y --,()00,M x y ,所以1010MA y y k x x -=-,10101010MB y y y y k x x x x --+==--+,因为,,A B M 在双曲线上,所以22111916x y -=,22001916x y -=,两式相减得222210100916x x y y ---=,所以()()()()2210101022101010169MA MB y y y y y y k k x x x x x x -+-===⋅--+,故D 正确; 故选:BD11.(2021·山东青岛市·高三一模)若实数a b <,则下列不等关系正确的是( )A .223555b a a⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .若1a >,则log 2a ab >C .若0a >,则2211b a a b>++ D .若53m >,a ,()1,3b ∈,则()()3322103a b m a b a b ---+-> 【答案】BCD 【分析】对A ,由指数函数以及幂函数的单调性即可判断;对B ,由对数的运算以及对数函数的单调性即可判断;对C ,利用做差法即可比较大小;对D ,利用分析法即可证明. 【详解】解:对A ,25xy ⎛⎫= ⎪⎝⎭在R 上单调递减, 又a b <,2255ab⎛⎫⎛⎫∴> ⎪ ⎪⎝⎭⎝⎭, y x α=,当0α>时,y x α=在()0,∞+上单调递增; 当0α<时,y x α=在()0,∞+单调递减;故无法判断25a ⎛⎫ ⎪⎝⎭与35a⎛⎫ ⎪⎝⎭大小,故A 错误; 对B ,当1a >时,1a b <<,log log 1a a b a ∴>=,log log log 2a a a ab a b =+>,故B 正确;对C ,当0a >时,0a b <<,()()()()()()33222232320111111b a b a b a b b a b a b a b a b -+-+---==>++++++ 2211b a a b∴>++,故C 正确; 对D ,要证()()3322103a b m a b a b ---+->, 即证()()()3322330a b m a b a b ---+->,即证()()()()()2233a ab ba b a b m a b a b ++-+->+-,a b <,即证2233a ab b m a b+++<+,a ,()1,3b ∈,令()2,6t a b =+∈,223a ab b a b++++()()223a a t a t a t+-+-+=223a at t t-++=232331136662a a t a a a a t ++=+-<+-=-+11396562<⨯-+=,又53m >, ()2233a ab b m a b ∴+++<+,即2233a ab b m a b+++<+,即原式得证,故D 正确. 故选:BCD . 【点睛】关键点点睛:本题解题的关键是利用函数的单调性比较大小,对于D 项可以利用分析法找出突破点. 三、填空题12.(2021·天津南开区·高三一模)已知0a >,0b >,1a b c ++=,则2221a b c ++-的最大值是______. 【答案】2- 【分析】根据已知的等式得出1()c a b -=-+代入等式2221a b c ++-中,运用基本不等式进行求解即可. 【详解】因为1a b c ++=,所以1()c a b -=-+,代入2221a b c ++-中,得222222()a b a b a b a b++++=--++, 由22222222212222()2a b ab a b ab a b a b a b +≥⇒+≥++⇒+≥+(当且仅当a b =时取等号), 于是有22212()22a b a b ++≥++(当且仅当a b =时取等号), 因为0a >,0b >,所以0a b +>, 因此有2221()222a b a b a b a b++++≥++(当且仅当a b =时取等号),21()2122()22a b a b a b a b ++=++≥=++,(当12()2a b a b +=+时取等号,即2a b +=时,取等号), 所以有2221()2222a b a b a b a b ++++≥≥++(当且仅当1a b ==时取等号), 即2222a b a b ++≥+(当且仅当1a b ==时取等号),因此有2222a b a b++-≤-+(当且仅当1a b ==时取等号),所以2221a b c ++-的最大值是2-. 故答案为:2-【点睛】 关键点睛:本题的关键一是通过已知等式对代数式2221a b c ++-进行消元变形;二是通过重要不等式222a b ab +≥,得到2221()2a b a b +≥+,进而应用基本不等式进行解题. 13.(2021·全国高三专题练习(文))已知311()(1)22x x f x x x e e --=--++-,其中e 是自然对数的底数,若(ln )(1)0f a f a ++<,则实数a 的取值范围是_________.【答案】(0,1)【分析】由已知可得()f x 关于点()1,0对称,即(ln )(2ln )f a f a =--,由导数可得()f x 为增函数,利用单调性可得答案.【详解】1111222()3(1)23(1)223(1)x x x x f x x e e x e e x ----'=--++--+-≥⨯=,当且仅当11x x e e --=,即1x =时等号成立,此时23(1)0x -=,所以()0f x '≥, 所以()f x 是单调递增函数,令()1t x t R =-∈,则3()2t t g t t t e e -=-+-,3()2()t t g e g t t t e t --=-++=--,所以()g t 是R 上的奇函数,所以()f x 的图象关于点()1,0对称,得()()2f x f x =--,由(ln )(1)0f a f a ++<得(ln )(1)f a f a <-+,又(ln )(2ln )f a f a =--,所以(2ln )(1)f a f a --<-+,即(2ln )(1)f a f a ->+,所以02ln 1a a a >⎧⎨->+⎩即01ln a a a >⎧⎨->⎩, 由图得01a <<.故答案为:()0,1.【点睛】本题考查了函数的奇偶性及单调性,关键点是利用函数的性质解不等式,属中档题.。
换元法专题11【方法储备】对一个数学问题,如果直接求解有困难,或不易下手,或由问题的条件难以直接得出结论时,常将一个或几个式子分别看成整体,用一个或几个新“元”代换它们,使得以新元为基础的问题求解比较简易,解决以后将结果倒回去恢复原来的元,即可得原问题的结果.【典例精讲】(2023··)对于函数f x),若在定义域内存在..实数x,满足f(−x)=−f(x),称f x)为“局部奇函数”.若f(x)=4x−m·2x+1+m2−3为定义域R上的“局部奇函数”,则实数m的取值范围是()A.1−3≤m≤1+3B.1−3≤m≤22C.−22≤m≤22D.−22≤m≤1−3由“局部奇函数”可得:4x−2m⋅2x+m2−3+4−x−2m⋅2−x+m2−3=0,整理可得:(4x+4−x)−2m(2x+2−x)+2m2−6=0,考虑到4x+4−x=(2x+2−x)2−2,从而可将2x+2−x视为整体,方程转化为:(2x+2−x)2−2m(2x+2−x)+2m2−8=0,利用换元设t=2x+2−x(t⩾2),则问题转化为只需让方程t2−2mt+2m2−8=0存在大于等于2的解即可,故分一个解和两个解来进行分类讨论.设g(t)=t2−2mt+2m2−8.(1)若方程有一个解,则g(t)与横轴相切(切点的横坐标m大于等于2)或相交(其中交点在点(2,0)的两侧),即△m02或g(2)⩽0,解得:m=22或1−3⩽m⩽1+3.则g 2,解得:1<m 3<或2m ⩽21−3,⇒1+3⩽m <22,综上所述:1−3⩽m⩽22,故选:B .【拓展提升】用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f'x 是f(x)的导函数,f''x 是f ˈ(x )的导函数,则曲线y =f(x)在点(x,f(x ))处的曲率k =,则曲线f(x)=x 在(1,1)处的曲率为;正弦曲线(1+[f(x)]2)2g(x)=sinx(x ∈R)曲率的平方k 2的最大值为.(1)由题意得f'(x)=,f ″(x)=x,则f'1=,f''1=,则k =1+f'f ''112=,(2)由题意得,g '(x)=Cosx ,g ''(x)=−sinx ,∴k 2=(1sin 2+cos x2x)3=(2in 2xsin 2x)3,令t =2−sin 2x ∈[1,2],则k 2=2t ,令p(t)=2t,则p '(t)=−t 3−3t2t 6(2−t)=26,显然当t ∈[1,2]时,p '(t)<0,p(t)单调递减,所以p(t)max =p(1)=1,∴k 2的最大值为1.故答案为:;1.设椭圆+=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,|PF 1|=λ|PF 2|(⩽λ⩽2),∠F 1PF 2=,则椭圆离心率的取值范围为()A .0,B .,C .,D .[,1)设F 1(−C,0),F 2(C,0),由椭圆的定义可得,|PF 1|+|PF 2|=2a ,可设|PF 2|=t ,可得|PF 1|=λt ,即有(λ+1)t =2a①由∠F 1PF 2=,可得|PF 1|2+|PF 2|2=4C 2,即为(λ2+1)t 2=4C 2,②由②÷①2,可得e 2=,令m =λ+1,可得λ=m −1,即有=m2m 2+2=2()2+,(2)若方程有两解,由≤λ≤2,可得≤m≤3,即≤≤,则m=2时,取得最小值;m=或3时,取得最大值.即有≤e2≤,解得≤e≤.故选B.已知定义在1,+∞上的函数f x=x+lnx,若∀x≥1,f ax<f x2+9,则实数a的取值范围为()A.1,6B.1,6C.1,9D.2,9f(x)=x+lnx=x+lnx=e x−lnx−(x−lnx),令t=x−lnx(x≥1),则t'=x1≥0(x≥1),所以t=x−lnx在1,+∞上单调递增,则t⩾1,y=e t−t,y'=e t−1,显然y'恒大于0,即y=e t−t在1,+∞上单调递增,所以f(x)=x+lnx在1,+∞上单调递增,由∀x≥1,f(ax)<f(x2+9),所以1≤ax<x2+9,即∀x≥1,≤a<x+,而在[1,+∞)上的最大值为1,因为x·9=9,所以当且仅当x=9时,x+9⩾2x+9,即x+9⩾6x x x x x故1⩽a<6,所以实数a的取值范围为[1,6).故选B.【方法储备】圆锥曲线有一个特点,就是曲线上的点不易于直接表达(抛物线除外),例如椭圆+=1(a>b>0),为了表示椭圆上一点,需要引入两个参数x0,y0,此时会涉及到两个麻烦事:①开根号,②定符号,这样一来,会给后面的处理带来很多麻烦,而三角函数的出现正好弥补了这样的问题,因为三角函数本身就有降次和升次的功能,利用三角恒等式sin2θ+cos2θ=1,可以自然类比到椭圆中,那么椭圆上的点就可以表达成(acosθ,bsinθ),此时只含有一个参数θ,成功实现了减元、去根号和定符号的效果。
一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键。
二、解题策略选择1.先易后难是所有科目应该遵循的原则,而表现在数学试卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,旧高考解答题的20和21题是难题,22和23是二选一的题目,相对比较容易,新高考解答题的后两题是难题(一般是入口容易,拿高分难,所以也不能完全放弃,应该是争取多拿分)。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,有的难题却可能是自己的容易题。
所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。
2.选择题有其独特的解答方法,首先重点把握选择项也是已知条件,利用选择项之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答题卷上。
多写不会扣分,写了就可能得分。
(1)直接法直接法在选择题中的具体应用就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.由于填空题和选择题相比,缺少选择项的信息,所以常用到直接法进行求解.直接法是解决选择、填空题最基本的方法,适用范围广,只要运算正确必能得到正确答案,解题时要多角度思考问题,善于简化运算过程,快速准确得到结果.直接法具体操作起来就是要熟悉试题所要考查的知识点,从而能快速找到相应的定理、性质、公式等进行求解,比如,数列试题,很明显能看到是等差数列还是等比数列或是两者的综合,如果是等差数列或等比数列,那就快速将等差数列或等比数列的定义(或)、性质(若,则或)、通项公式(或)、前n 项和公式(等差数列、,等比数列)等搬出来看是否适用;如果不能直接看出,只能看出是数列试题,那就说明,需要对条件进行化简或转化了,也可快速进入状态.(2)排除法排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论。
2020最新高考数学复习题整体策略与换元法
[题型分析·高考展望] 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径.
换元法又称辅助元素法、变量代换法,通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起来;或者变为熟悉的形式,把复杂的计算和推证简化.
高考必会题型
题型一 整体策略
例 1 (1)计算(1-12-13-14-…-12 014)×(12+13+14+
1
5+…+12 015)-(1-12-13-14-15-…-12 014-12 015)×(
1
2+13+14+…+1
2 014
); (2)解方程(x 2+5x +1)(x 2+5x +7)=7. 解 (1)设12+13+14+…+12 014=t ,
则原式=(1-t )(t +12 015)-(1-t -1
2 015)t
=t +12 015-t 2-12 015t -t +t 2
+12 015t =12 015.
(2)设x 2+5x =t ,则原方程化为(t +1)(t +7)=7,
∴t2+8t=0,解得t=0或t=-8,
当t=0时,x2+5x=0,x(x+5)=0,x1=0,x2=-5;
当t=-8时,x2+5x=-8,x2+5x+8=0,
Δ=b2-4ac=25-4×1×8<0,
此时方程无解;
即原方程的解为x1=0,x2=-5.
点评整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决.
变式训练1 计算:(1-1
2-
1
3
-
1
4
)×(
1
2
+
1
3
+
1
4
+
1
5
)-(1-
1
2
-
1 3-
1
4
-
1
5
)×(
1
2
+
1
3
+
1
4
).
解令1
2
+
1
3
+
1
4
=t,
则原式=(1-t)(t+1
5)-(1-t-
1
5
)t=t+
1
5
-t2-
1
5
t-
4
5
t+t2=
1
5
.
题型二换元法
例2 (1)已知函数f(x)=4x-2x t+t+1在区间(0,+∞)上的图象恒在x轴上方,则实数t的取值范围是________________.
(2)已知点A是椭圆x2
25
+
y2
9
=1上的一个动点,点P在线段
OA 的延长线上,且OA →·OP →=48,则点P 的横坐标的最大值为________.
答案 (1)(-∞,2+22) (2)10
解析 (1)令m =2x (m >1),则问题转化为函数f (m )=m 2-
mt +t +1在区间(1,+∞)上的图象恒在x 轴上方,
即Δ=t 2-4(t +1)<0或⎩⎪⎨⎪⎧
Δ≥0,t
2
<1,1-t +t +1>0,
解得t <2+22,
即实数t 的取值范围是(-∞,2+22). (2)当点P 的横坐标最大时, 射线OA 的斜率k >0, 设OA :y =kx ,k >0,
与椭圆x 225+y 2
9=1联立解得x =15
9+25k 2, 又OA
→·OP →=x A x P +k 2x A x P =48, 解得x P =481+k 2x A =1659+25k 21+k 2=1659+25k 2
1+k
22, 令9+25k 2
=t >9,即k 2
=t -9
25
,
则x P =
165
t t +16
25
2
=16
5×25t t 2
+162
+32t
=80
1
t +162
t
+32
≤80×
1
64
=10, 当且仅当t =16,即k 2
=7
25
时取等号,
所以点P 的横坐标的最大值为10. (3)已知函数f (x )=ax -ln(1+x 2).
①当a =4
5时,求函数f (x )在(0,+∞)上的极值;
②证明:当x >0时,ln(1+x 2)<x ;
③证明(1+124)(1+134)…(1+1
n 4)<e(n ∈N *,n ≥2,e 为自然
对数的底数).
①解 当a =45时,f (x )=4
5x -ln(1+x 2),
f ′(x )=45-2x 1+x 2=4x 2-10x +4
51+x 2=0,
x =2或x =1
2
.
f (x )和f ′(x )随x 的变化情况如下表:
x (0,
12) 12 (12,2) 2 (2,+∞) f ′(x ) + 0 - 0 + f (x )
↗
极大值
↘
极小值
↗
f(x)极大值=f(12)=25-ln 54,
f(x)极小值=f(2)=85-ln 5.
②证明令g(x)=x-ln(1+x2),
则g′(x)=1-2x
1+x2
≥0,
∴g(x)在(0,+∞)上为增函数,g(x)>g(0)=0,∴ln(1+x2)<x.
③证明由②知,ln(1+x2)<x,
令x2=1
n4
得,ln(1+
1
n4
)<
1
n2
<
1
n n-1
=
1
n-1
-
1
n
,
∴ln(1+1
24
)+ln(1+
1
34
)+…+ln(1+
1
n4
)
<1-1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n-1
-
1
n
=1-
1
n
<1,
∴(1+1
24
)(1+
1
34
) (1)
1
n4
)<e.
点评换元法是解数学题时,把某个式子看成一个整体,用一个变量去代替它,使问题得到简化,变得容易处理,换元法的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是通过换元变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,可以把分散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起来;或者变为熟悉的形式,把复杂
的计算和推证简化.主要考查运用换元法处理以函数、三角函数、不等式、数列、解析几何为背景的最值、值域或范围问题,通过换元法把不熟悉、不规范、复杂的典型问题转化为熟悉、规范、简单的典型问题,起到化隐形为显性、化繁为简、化难为易的作用,以优化解题过程.
变式训练2 (1)已知函数f (x )=1x -1+2x (x >1),则f (x )的最
小值为________. 答案 2+2 2
解析 f (x )=1
x -1+2(x -1)+2,
令x -1=t ,则f (t )=1
t
+2t +2(t >0),
∴f (t )≥2
1
t
×2t +2=2+2 2.
当且仅当1
t
=2t 时等号成立,
故f (x )的最小值为2+22, 当且仅当1
x -1=2(x -1),
即x =2
2
+1时等号成立.
(2)已知在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足
S 2
n =a n ⎝
⎛⎭
⎪⎪⎫S n -12. ①求S n 的表达式;。