高中理科数学知识网络(2011新课标版) (1)
- 格式:doc
- 大小:346.00 KB
- 文档页数:7
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
学例2 (2009江西卷已知全集江西卷已知全集中有m 江西卷已知全集U=A∪B中有∪中有个元素,中有n个元素个元素,( UA∪( UB中有个元素若∪中有个元素.若A∩B非空,则A∩B的元素个数为 D 非空,的元素个数为( 非空的元素个数为 A. mn B. m+n C. n-m D. m-n 结合韦恩图可知,分析结合韦恩图可知,两个集合的交集的补集等于两个集合的补集的并集,补集等于两个集合的补集的并集,可利用这个知识点直接解决本题. 利用这个知识点直接解决本题 41解析(方法一)因为U(A∩B=( UA∪( 方法一)∪ A∩B共有共有m-n个元素,故选个元素,共有个元素故选D. 方法二)可以通过举例解决. (方法二)可以通过举例解决 U={0,1,2,3,4,5},A={0,1,3,4} , B={1,2,3,4,5} ,那么 UA={2,5},UB={0},U=A∪B的元素个,,∪的元素个数为6个的元素个数为3个数为个,( UA∪( UB的元素个数为个,∪的元素个数为A∩B的元素个数为个,答案选的元素个数为3个答案选D. 的元素个数为 42 , UB,所以(方法三)利用韦恩图的方法解决,如图所方法三)利用韦恩图的方法解决,可以发现A∪示,可以发现∪B=( UA∪( UB∪(A∩B,可以发现∪∪,的元素的个数为n+m-2n=m-n. 故A∩B的元素的个数为的元素的个数为方法四)(方法四)利用数字的特征直接筛选得答案 D.解法是:首先交集中的元素不会超出并解法是:解法是集中的元素个数,所以答案A、是错误的是错误的,集中的元素个数,所以答案、B是错误的, ( UA∪( UB中的元素个数不多于全集中的元素个数n不多于全集∪中的元素个数 A∪B的元素个数,所以选项是负值,的元素个数m,所以选项C是负值是负值,∪的元素个数不合题意,故答案为D. 不合题意,故答案为 43本节完,谢谢聆听立足教育,立足教育,开创未来 44。
2011年普通高等学校招生全国统一考试理科数学答案解析1.解析:212i i+-=(2)(12),5i i i ++=共轭复数为C 2.解析:由图像知选B3.解析:框图表示1n n a n a -=⋅,且11a =所求6a =720选B4.解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A 5.解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B6.解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D7.解析:通径|AB|=224b a a=得2222222b a a c a =⇒-=,选B 8.解析:1.令x=1得a=1.故原式=511()(2)x x x x+-. 512x x ⎛⎫- ⎪⎝⎭的通项51552155(2)()(1)2r r r r r r rr T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x.故常数项=223322335353111(2)()()(2)X C X C C C X X X X⋅⋅-+⋅-⋅=-40+80=40 9.解析;用定积分求解43242002116(2)(2)|323s x x dx x x x =-+=-+=⎰,选C10.解析:222cos 22cos 1a b a b a b θθ+=++=+>得, 1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭.由222cos 22cos 1a b a b a b θθ-=++=->得1cos 2θ< ,3πθπ⎛⎤⇒∈ ⎥⎝⎦. 选A11.解析:()2sin()4f x x πωϕ=++,所以2ω=,又f (x )为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,()2sin(2)2cos22f x x x π∴=+=,选A12.解析:图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x , 则182736452x x x x x x x x +=+=+=+=,所以选D 13.解析:画出区域图知, 当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-(14.解析:由22416c a a ⎧=⎪⎨⎪=⎩得a=4.c=22,从而b=8,221168x y ∴+=为所求. (15.解析:设ABCD 所在的截面圆的圆心为M,则AM=221(23)6232+=, OM=224(23)2-=,16232833O ABCD V -=⨯⨯⨯=. 16.解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC AC BC A A B==⇒= 022sin 2sin(120)3cos sin sin sin AB ACAB C A A A C B==⇒==-=+; 2AB BC ∴+=3cos 5sin 28sin()27sin()A A A A ϕϕ+=+=+,故最大值是2717.解析:(Ⅰ)设数列{a n }的公比为q,由23269a a a =得32349a a =所以219q =. 由条件可知a>0,故13q =. 由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为a n =13n . (Ⅱ )31323n log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21nn -+ 18.解析1:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD;又PD ⊥底面ABCD ,可得BD ⊥PD所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P .(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=-uu u v uu v uu u v设平面PAB 的法向量为n =(x,y,z ),则0n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即 3030x y y z -+=-=因此可取n =(3,1,3)设平面PBC 的法向量为m ,则 0m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩可取m=(0,-1,3-) 427cos ,727m n -==- 故二面角A-PB-C 的余弦值为 277-(19.解析:(Ⅰ)由试验结果知,用A 配方生产的产品中优质的平率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入区间[)[)[]90,94,94,102,102,110的z xPCBA Dy频率分别为0.04,,054,0.42,因此X 的可能值为-2,2,4P (X=-2)=0.04, P (X=2)=0.54, P (X=4)=0.42, 即X 的分布列为X 的数学期望值EX=-2×0.04+2×0.54+4×0.42=2.6820.解析; (Ⅰ)设M (x,y ),由已知得B (x,-3),A (0,-1).所以MA uuu r=(-x,-1-y ), MB uuu r =(0,-3-y ), AB uu u r =(x,-2).再由题意可知(MA uuu r +MB uuur )• AB uu u r =0, 即(-x,-4-2y )• (x,-2)=0.所以曲线C 的方程式为y=14x 2-2. (Ⅱ)设P (x 0,y 0)为曲线C :y=14x 2-2上一点,因为y '=12x,所以l 的斜率为12x 0 因此直线l 的方程为0001()2y y x x x -=-,即2000220x x y y x -+-=. 则o 点到l 的距离20020|2|4y x d x -=+.又200124y x =-,所以 2020220014142(4)2,244x d x x x +==++≥++当20x =0时取等号,所以o 点到l 距离的最小值为2.21.解析:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--.X -2 2 4P 0.04 0.54 0.42考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=.(i )设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,h (x )递减.而(1)0h =故当(0,1)x ∈时, ()0h x >,可得21()01h x x>-; 当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk.(ii )设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x -h (x )<0,与题设矛盾.(iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x )>0,可得211x- h (x )<0,与题设矛盾. 综合得,k 的取值范围为(-∞,0]点评;求参数的范围一般用离参法,然后用导数求出最值进行求解.若求导后不易得到极值点,可二次求导,还不行时,就要使用参数讨论法了.即以参数为分类标准,看是否符合题意.求的答案.此题用的便是后者. 22.解析:(I )连接DE,根据题意在△ADE 和△ACB 中,AD AB mn AE AC ⨯==⨯ 即ABAEAC AD =.又∠DAE=∠CAB,从而△ADE ∽△ACB 因此∠ADE=∠ACB 所以C,B,D,E 四点共圆.(Ⅱ)m=4, n=6时,方程x 2-14x+mn=0的两根为x 1=2,x 2=12.故 AD=2,AB=12.取CE 的中点G,DB 的中点F,分别过G,F 作AC,AB 的垂线,两垂线相交于H 点,连接DH.因为C,B,D,E 四点共圆,所以C,B,D,E 四点所在圆的圆心为H,半径为DH. 由于∠A=900,故GH ∥AB, HF ∥AC. HF=AG=5,DF= 21(12-2)=5. 故C,B,D,E 四点所在圆的半径为52 23.解析:(I )设P (x,y ),则由条件知M (,22x y).由于M 点在C 1上,所以2cos ,222sin 2x y αα⎧⎫=⎪⎪⎪⎪⎨⎬⎪⎪=+⎪⎪⎩⎭即 4c o s 44s i n x y αα=⎧⎫⎨⎬=+⎩⎭从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数) (Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=.所以21||||23AB ρρ-==.24.解析:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥. 由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-. ( Ⅱ) 由()0f x ≤ 得 30x a x -+≤此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x aa x x ≤⎧⎨-+≤⎩即 4x a a x ≥⎧⎪⎨≤⎪⎩ 或2x aa x ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2ax x ≤-由题设可得2a-= 1-,故2a =2019高中教师读书心得体会作为教师,在教授知识的提示,也应该利用空暇时刻渐渐品读一些好书,吸收书中的精华。
高中数学应记必记1、每章节概念、定理、公理、公式;2、常见结论3、各类型题目解题通法及注意事项。
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,().A B A x B y f B A B x y x f y y x y f x →=映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义按照某个对应关系都有唯一确定的值和它对应。
20XX 年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2xy -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120(B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A )2 (B 3(C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40 (9)由曲线y x =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,PP (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数xy -=11的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 (A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。