2018-2017学年四川省资阳市雁江区七年级(下)期末数学试卷
- 格式:doc
- 大小:282.50 KB
- 文档页数:23
2018-2019学年四川省资阳市七年级(下)期末数学试卷一、选择题(本大题10个小题,每小题4分,共40分.请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里.)1.(4分)若代数式x+3的值为2,则x等于()A.1B.﹣1C.5D.﹣52.(4分)观察如图的图案,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(4分)下列不等式一定成立的是()A.2x<5B.﹣x>0C.|x|+1>0D.x2>04.(4分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形5.(4分)三元一次方程组的解是()A.B.C.D.6.(4分)下列说法中不正确的是()A.内角和是1080°的多边形是八边形B.六边形的对角线一共有8条C.三角形任一边的中线把原三角形分成两个面积相等的三角形D.一个多边形的边数每增加一条,这个多边形的内角和就增加180°7.(4分)如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.8.(4分)已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1D.<k<19.(4分)在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树10.(4分)如图,∠ABC=∠ACB,BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,BE平分外角∠MBC交DC的延长线于点E.以下结论:①∠BDE=∠BAC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠BAC+2∠BEC=180°.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题6个小题,每小题4分,共24分.请把答案直接填在题中的横线上.)11.(4分)若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为.12.(4分)如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是.13.(4分)如图,将△ABC沿BC方向平移4cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为cm.14.(4分)若关于x的不等式组的解集为3≤x<4,则a﹣2b=.15.(4分)四边形ABCD中,∠A=100°,∠C=70°.点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠D=°.16.(4分)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种袋装粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A、B、C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为71.5元,利润率为30%,乙种粗粮利润率为20%,则乙种粗粮每袋的售价为元.(利润率=×100%)三、解答题(本大题共9个小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(10分)解下列方程(组):(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)18.(8分)解不等式组,把解集在数轴上表示出来,并求不等式组的整数解.19.(8分)如图,方格纸中每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上.(1)画出与△ABC关于直线MN成轴对称的△A1B1C1;(2)画出将△ABC绕点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴.20.(8分)若关于x的方程=+1与方程x﹣3(x﹣1)=5﹣x的解互为相反数,求k的值.21.(9分)如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC 交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.22.(10分)如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).23.(10分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)24.(11分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(315),F(746);(2)若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y 都是正整数),当F(s)+F(t)=17时,求x、y的值.25.(12分)将两块全等的含30°角的直角三角形按图1的方式放置,已知∠BAC=∠B1A1C1=30°,则AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB 与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.2018-2019学年四川省资阳市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题10个小题,每小题4分,共40分.请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里.)1.(4分)若代数式x+3的值为2,则x等于()A.1B.﹣1C.5D.﹣5【分析】根据题意,列出关于x的一元一次方程x+3=2,通过解该方程可以求得x的值.【解答】解:由题意,得x+3=2,移项,得x=﹣1.故选:B.【点评】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.2.(4分)观察如图的图案,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)下列不等式一定成立的是()A.2x<5B.﹣x>0C.|x|+1>0D.x2>0【分析】利用不等式的基本性质判断即可.【解答】解:A、2x不一定小于5,不符合题意;B、﹣x不一定大于0,不符合题意;C、|x|+1≥1>0,符合题意;D、x2≥0,不符合题意,故选:C.【点评】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.4.(4分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正六边形D.正八边形【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正八边形.故选:D.【点评】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.5.(4分)三元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:2x+y=﹣2④,④﹣③得:x=﹣2,把x=﹣2代入④得:y=2,把x=﹣2,y=2代入①得:z=1,则方程组的解为,故选:C.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.(4分)下列说法中不正确的是()A.内角和是1080°的多边形是八边形B.六边形的对角线一共有8条C.三角形任一边的中线把原三角形分成两个面积相等的三角形D.一个多边形的边数每增加一条,这个多边形的内角和就增加180°【分析】依据多边形的内角和、三角形的中线以及多边形的对角线进行判断即可.【解答】解:A、内角和是1080°的多边形是八边形,本选项正确;B、六边形的对角线一共有9条,本选项错误;C、三角形任一边的中线把原三角形分成两个面积相等的三角形,本选项正确;D、一个多边形的边数每增加一条,这个多边形的内角和就增加180°,本选项正确;故选:B.【点评】本题主要考查了多边形的内角和、三角形的中线以及多边形的对角线,n边形从一个顶点出发可引出(n﹣3)条对角线,从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:n(n﹣3)(n≥3,且n为整数).7.(4分)如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x,宽为y,则依据题意可得二元一次方程组为()A.B.C.D.【分析】设每一个小长方形的长为x,宽为y,根据大长方形的宽为15及小长方形的长与宽之间的关系,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设每一个小长方形的长为x,宽为y,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1D.<k<1【分析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.【解答】解:第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1k的取值范围为<k<1.故选:D.【点评】要求k的取值范围可以通过解方程组,得到关于k的不等式组解决.9.(4分)在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树【分析】设这条路长x米,共有y棵数,根据“每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设这条路长x米,共有y棵数,依题意,得:,解得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.(4分)如图,∠ABC=∠ACB,BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,BE平分外角∠MBC交DC的延长线于点E.以下结论:①∠BDE=∠BAC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠BAC+2∠BEC=180°.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据三角形的内角和定理、三角形的外角的性质判断即可.【解答】解:①∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDE=∠BAC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=∠ABC+∠MBC=×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=∠BAC,∵∠BAC+2∠ABC=180°,∴∠BAC+∠ABC=90°,∴∠BDC+∠ABC=90°,故③正确,④∵∠BEC=180°﹣(∠MBC+∠NCB)=180°﹣(∠BAC+∠ACB+∠BAC+∠ABC)=180°﹣(180°+∠BAC),∴∠BEC=90°﹣∠BAC,∴∠BAC+2∠BEC=180°,故④正确,故选:D.【点评】本题考查的是三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,三角形的内角和定理,熟记各性质并综合分析,理清图中各角度之间的关系是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分.请把答案直接填在题中的横线上.)11.(4分)若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为﹣1.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:4+3m﹣1=0,解得:m=﹣1,故答案为:﹣1【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.(4分)如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是18或21cm.【分析】题目给出等腰三角形有两条边长为5cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)当腰是5cm时,三角形的三边是:5cm,5cm,8cm,能构成三角形,则等腰三角形的周长=5+5+8=18cm;(2)当腰是8cm时,三角形的三边是:5cm,8cm,8cm,能构成三角形,则等腰三角形的周长=5+8+8=21cm.因此这个等腰三角形的周长为18或21cm.故答案为:18或21cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(4分)如图,将△ABC沿BC方向平移4cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为28cm.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=4+AB+BC+4+AC即可得出答案.【解答】解:根据题意,将周长为20cm的△ABC沿BC方向平移4cm得到△DEF,∴AD=CF=4cm,BF=BC+CF,DF=AC;又∵AB+BC+AC=20cm,∴四边形ABFD的周长=AD+AB+BF+DF=4+AB+BC+4+AC=28cm.故答案为28cm.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.14.(4分)若关于x的不等式组的解集为3≤x<4,则a﹣2b=﹣9.【分析】分别求出每一个不等式的解集,根据不等式组的解集得到关于a、b的方程组,解方程组可得a、b的值,再代入代数式求值即可.【解答】解:解不等式2x﹣a≥5得:x≥,解不等式3x﹣2<2b得x,∵不等式组解集为3≤x<4∴,解得:,则a﹣2b=1﹣2×5=1﹣10=﹣9,故答案为﹣9.【点评】本题主要考查解一元一次不等式组、二元一次方程组、代数式的代入求值能力,正确求出不等式组的解集及解方程组是前基础,根据解集确定方程组是解题的关键.15.(4分)四边形ABCD中,∠A=100°,∠C=70°.点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠D=95°.【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,∴∠D=360°﹣100°﹣70°﹣95°=95°.故答案为:95.【点评】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.16.(4分)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种袋装粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A、B、C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为71.5元,利润率为30%,乙种粗粮利润率为20%,则乙种粗粮每袋的售价为96元.(利润率=×100%)【分析】设B粗粮每千克的成本价为x元,C粗粮每千克的成本价为y元,乙种粗粮每袋售价为z元,根据利润=售价﹣成本,即可得出关于x,y,z的三元一次方程组,解之即可得出结论.【解答】解:设B粗粮每千克的成本价为x元,C粗粮每千克的成本价为y元,乙种粗粮每袋售价为z元,依题意,得:,解得:.故答案为:96.【点评】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题(本大题共9个小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(10分)解下列方程(组):(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)方程组整理得:,①+②×4得:17x=17,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.(8分)解不等式组,把解集在数轴上表示出来,并求不等式组的整数解.【分析】先求出不等式组的解集,再在数轴上表示出不等式组的解集,最后求出整数解即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x≥﹣1,∴不等式组的解集是﹣1≤x<2,在数轴上表示为:,∴不等式组的整数解是﹣1,0,1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集和不等式组的整数解等知识点,能求出不等式组的解集是解此题的关键.19.(8分)如图,方格纸中每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上.(1)画出与△ABC关于直线MN成轴对称的△A1B1C1;(2)画出将△ABC绕点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)成轴对称图,有两条对称轴.【解答】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)成轴对称图,对称轴是直线l或直线l′,如图所示.【点评】本题考查旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)若关于x的方程=+1与方程x﹣3(x﹣1)=5﹣x的解互为相反数,求k的值.【分析】先解出方程x﹣3(x﹣1)=5﹣x的解,从而可得出另外一个方程的解,将该解代入原方程即可求出答案.【解答】解:由x﹣3(x﹣1)=5﹣x,可得:x=﹣2,所以方程=+1的解为x=2,将x=2代入=+1,∴=+1,解得:k=﹣2【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.21.(9分)如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC 交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.【分析】(1)由在△ABC中,∠B=32°,∠C=70°,根据三角形内角和定理,可求得∠BAC的度数,由AE平分∠BAC,根据角平分线的定义,可求得∠BAE的度数;(2)由AD⊥BC,根据直角三角形的性质,可求得∠CAD的度数,继而求得∠DAE的度数,则可求得∠ADF的度数.【解答】解:(1)∵在△ABC中,∠B=32°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=78°,∵AE平分∠BAC,∴∠BAE=∠CAE=39°;(2)∵AD⊥BC,∴∠CAD=20°∴∠DAE=39°﹣20°=19°∵DF⊥AE,∴∠ADF=90°﹣∠DAE=71°【点评】此题考查了三角形内角和定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用22.(10分)如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).【分析】(1)利用角平分线的性质求得∠DBC和∠DCB的度数,然后利用三角形内角和求解;(2)首先根据邻补角的概念求得:∠BDC=180°﹣50°=130°,再根据三角形的内角和定理以及角平分线的性质,即可分析得到:∠BDC=90°+∠A,从而求出∠A.(3)根据上题的数据得到∠A与∠BDC之间的数量关系即可.【解答】解:(1)∵点D是∠ACB与∠ABC的角平分线的交点,∴∠CBD=∠ABC,∠BCD=∠ACB,∴∠CBD+∠BCD=(∠ABC+∠ACB)=×(180°﹣80°)=50°,∴∠BDC=180°﹣50°=130°;(2)∵∠EDC=40°,∴∠BDC=180°﹣40°=140°,∴∠DBC+∠DCB=180°﹣140°=40°,又∵D是∠ACB与∠ABC的角平分线的交点,∴∠ABC+∠ACB=40°×2=80°,∴∠A=100°.(3)∵点D是∠ACB与∠ABC的角平分线的交点,∴∠CBD=∠ABC,∠BCD=∠ACB,∴∠CBD+∠BCD=(∠ABC+∠ACB),∴∠BDC=180°﹣∠CBD﹣∠BCD=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A∴∠BDC=90°+∠A.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及角平分线的定义,熟记性质并用∠A表示出∠EDC是解题的关键.23.(10分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)【分析】(1)设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组,解方程组即可得到甲材料每千克15元,乙材料每千克25元;(2)设生产A产品m件,生产B产品(50﹣m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50﹣m)+25×20(50﹣m)=﹣100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到﹣100m+40000≤38000,根据生产B产品不少于28件得到50﹣m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W元,加工费为:200m+300(50﹣m),根据成本=材料费+加工费得到W=﹣100m+40000+200m+300(50﹣m)=﹣200m+55000,根据一次函数的性质得到W随m的增大而减小,然后把m=22代入计算,即可得到最低成本.【解答】解:(1)设甲材料每千克x元,乙材料每千克y元,则,解得,所以甲材料每千克15元,乙材料每千克25元;(2)设生产A产品m件,生产B产品(50﹣m)件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50﹣m)+25×20(50﹣m)=﹣100m+40000,由题意:﹣100m+40000≤38000,解得m≥20,又∵50﹣m≥28,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案,如下表:A(件)202122B(件)302928(3)设总生产成本为W元,加工费为:200m+300(50﹣m),则W=﹣100m+40000+200m+300(50﹣m)=﹣200m+55000,∵W随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低.答:选择22件A和28件B,总成本最低.【点评】本题考查了一次函数的应用:通过实际问题列出一次函数关系,然后根据一次函数的性质解决问题.也考查了二元一次方程组以及二元一次不等式组的应用.24.(11分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(315),F(746);(2)若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y 都是正整数),当F(s)+F(t)=17时,求x、y的值.【分析】(1)按照题目规则,分别调换数字,求出三个数字,求和然后除以111,即可求出;(2)通过已知规律,列出方程即可.【解答】解:(1)n=315,对调百位与十位上的数字得到135,对调百位与个位上的数字得到513,对调十位与个位上的数字得到351,这三个新三位数的和为135+513+351=999,999÷111=9,所以F(315)=9.n=746,对调百位与十位上的数字得到476,对调百位与个位上的数字得到647,对调十位与个位上的数字得到764,这三个新三位数的和为476+647+764=1887,1887÷111=17,所以F(746)=17.(2)s=100x+42,对调百位与十位上的数字得到402+10x,对调百位与个位上的数字得到240+x,对调十位与个位上的数字得到100x+24,这三个新三位数的和为402+10x+240+x+100x+24=666+111x,(666+111x)÷111=6+x,所以F(s)=6+x.t=160+y,对调百位与十位上的数字得到610+y,对调百位与个位上的数字得到100y+61,对调十位与个位上的数字得到106+10y,这三个新三位数的和为610+y+100y+61+106+10y =777+111y,(777+111y)÷111=7+y,所以F(t)=7+y.∵F(s)+F(t)=17,∴6+x+7+y=17,x+y=4,又∵1≤x≤9,1≤y≤9,x、y都是正整数,∴x=1,y=3;x=2,y=2,;x=3,y=1【点评】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答此题的关键.25.(12分)将两块全等的含30°角的直角三角形按图1的方式放置,已知∠BAC=∠B1A1C1=30°,则AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB 与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=160度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.【分析】(1)①根据旋转的性质可得∠ACA1=20°,再根据直角三角形两锐角互余求出∠BCD,然后根据∠BCB1=∠BCD+∠A1CB1进行计算即可得解;②根据直角三角形两锐角互余求出∠A1DE,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACA1,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出∠ADC=90°,再根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AC,根据旋转的性质可得A1C=AC,然后求出解即可.【解答】解:(1)①由旋转的性质得,∠ACA1=20°,∴∠BCD=∠ACB﹣∠ACA1=90°﹣20°=70°,∴∠BCB1=∠BCD+∠A1CB1,=70°+90°,=160°;②当AB与A1B1垂直时,∠AED=90°,∴∠A1DE=90°﹣∠A1=90°﹣30°=60°,∴∠BDC=∠A1DE=60°,由已知易得∠B=60°,∴∠DCB=180°﹣∠BDC﹣∠B=60°,∴∠ACA1=30°,即当旋转角等于30°时,AB与A1B1垂直.(2)∵AB∥CB1,∴∠ADC=180°﹣∠A1CB1=180°﹣90°=90°,∵∠BAC=30°,∴CD=AC,又∵由旋转的性质得,A1C=AC,∴A1D=CD.【点评】本题考查了旋转的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,平行线的性质,熟记各性质是解题的关键.。
四川省资阳市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·宣化期中) 下列各数中,是负数的是()A . -(-5)B . |-5|C . (-5)2D . -522. (2分)在下列式子中,与2a是同类项的是()A .B . a2C . 2abD . -2a3. (2分) (2016七上·端州期末) 要用钉子在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A . 1枚B . 2枚C . 3枚D . 任意多枚4. (2分) (2019八下·涡阳期末) 实数a,b在数轴上的位置如图所示,则化简 - +b 的结果是()A . 1B . b+1C . 2aD . 1-2a5. (2分) (2019八下·罗湖期末) 如图,将一个含有角的直角三角板的直角顶点放在一张宽为的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成角,则三角板最长的长是()A .C .D .6. (2分)一个数的算术平方根等于它本身,则这个数应是()A . 1B . ﹣1C . 1或﹣1D . 1或07. (2分) (2019七下·光明期末) 如图,直线a和b被直线c所截,下列条件中不能判断a∥b的是()A . ∠1=∠3B . ∠2=∠5C . ∠2+∠4=180°D . ∠2+∠3=180°8. (2分) (2020七下·上饶期中) 二元一次方程组的解是()A .B .C .D .9. (2分)(2016·孝义模拟) 下列说法中错误的有()(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角A . 1个C . 3个D . 4个10. (2分) (2017八上·滕州期末) 早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2020八下·惠东期中) 若,则 ________ .12. (1分) (2019八上·贵阳期末) 比较大小: ________3(填:“>”或“<”或“=”)13. (1分) (2019八下·海口期中) 若点P(2,a)在正比例函数y= x的图象上,则点Q(a,3a-5)位于第________象限.14. (1分) (2017八上·涪陵期中) 如图,已知OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为________,理论根据为________15. (1分) (2020七下·南京期中) 完成下列的推理说明:已知:如图,BE//CF,、分别平分和 .求证:AB//CD.证明:、分别平分和(已知)________. ________(________)BE//CF(________)(________)(________)(等式的性质)AB//CD(________)16. (1分) (2017七下·兴隆期末) 不等式组的整数解________.三、解答题 (共7题;共51分)17. (20分)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.18. (5分)(2018·遵义模拟) 解不等式组,并求出它的所有整数解.19. (1分) (2015七上·莆田期末) 如果一个角的余角是30°,那么这个角是________.20. (6分) (2020八上·汾阳期末) 如图,在平面直角坐标系中,已知的三个顶点坐标分别是、、.(1)请画出关于轴对称的 .(2)请画出将向上平移4个单位长度得到的 .(3)请写出、的坐标.21. (7分) (2019七下·通城期末) 某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如下两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了________调查方式,样本容量是________.(2)图2中C的圆心角度数为▲度,补全图1的频数分布直方图.(3)该校有900名学生,估计该校学生平均每天的课外阅读时间不少于50min的人数.22. (10分)某次篮球联赛中,大海队与高山队要争夺一个出线权(获胜场数多的队出线;两队获胜场数相等时,根据他们之间的比赛结果确定出线队),大海队目前的战绩是14胜10负(其中有1场以3分之差负于高山队),后面还要比赛6场(其中包括再与高山队比赛1场);高山队目前的战绩是12胜13负,后面还要比赛5场.讨论:(1)为确保出线,大海队在后面的比赛中至少要胜多少场?(2)如果大海队在后面对高山队1场比赛中至少胜高山队4分,那么他在后面的比赛中至少胜几场就一定能出线?(3)如果高山队在后面的比赛中3胜(包括胜大海队1场)2负,那么大海队在后面的比赛中至少要胜几场才能确保出线?(4)如果大海队在后面的比赛中2胜4负,未能出线,那么高山队在后面的比赛中战果如何?23. (2分) (2020七下·上饶期中) 如图,直线PQ∥MN ,点C是PQ、MN之间(不在直线PQ , MN上)的一个动点.(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D , E , F是三角尺的边与平行线的交点,若∠AEN=∠A ,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG ,且有∠CEG=∠CEM ,求值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共51分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
资阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)方程的解是()A .B .C .D .2. (2分)如果a>b,c<0,那么下列不等式成立的是()A . a+c>b+cB . c-a>c-bC . ac>bcD .3. (2分) (2015九上·丛台期末) 现有五张分别画有等边三角形、平行四边形、矩形、正五边形和圆的五个图形的卡片,它们的背面相同,小梅将它们的背面朝上,从中任意抽出一张,下列说法中正确的是()A . “抽出的图形是中心对称图形”属于必然事件B . “抽出的图形是六边形”属于随机事件C . 抽出的图形为四边形的概率是D . 抽出的图形为轴对称图形的概率是4. (2分) (2019七下·莲湖期末) 已知三角形三边分别为2,a-1,4,那么a的取值范围是()A . 1<a<5B . 2<a<6C . 3<a<7D . 4<a<65. (2分)如图所示,若△ABE≌△ACF,且AB=5,AE=3,则EC的长为()A . 2B . 3C . 5D . 2.56. (2分) (2019八下·奉化期末) 下列边长相等的正多边形的组合中,不能镶嵌平面的是()A . 正三角形和正方形B . 正三角形和正六边形C . 正方形和正八边形D . 正五边形和正方形7. (2分) (2020七上·合川期末) 下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②两个三次多项式的和一定是三次多项式;③若xyz<0,则 + + + 的值为0或﹣4;④若a,b互为相反数,则=﹣1;⑤若x=y,则=.其中正确的个数有()A . 1个B . 2个C . 3个D . 4个8. (2分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A . 第一次右拐50°,第二次左拐130°B . 第一次左拐50°,第二次右拐50°C . 第一次左拐50°,第二次左拐130°D . 第一次右拐50°,第二次右拐50°9. (2分) (2017七下·大同期末) 不等式组的解集是,则的取值范围是().A . ≤0B . ≤1C .D .10. (2分) (2019八下·潘集期中) 如图,将矩形沿折叠,使顶点恰好落在的中点上.若,,则的长为()A . 4B .C . 4.5D . 5二、填空题 (共5题;共7分)11. (1分) (2019七下·北京期末) 若关于x , y的方程组的解是,则|m+n|的值是________.12. (1分) (2018八上·海曙期末) 若不等式组的解集是x<4,则m的取值范围是________13. (2分)如图,直线a与直线c交于点A,∠1=50°,将直线a向上平移后与直线c交于点B,则∠2=________度.14. (2分) (2018九上·京山期末) 如图,将△OAB绕点O逆时针连续旋转两次得到△OA″B″ ,每次旋转的角度都是50°,若∠B″OA=124°,则∠AOB=________.15. (1分) (2019八上·陇西期中) 三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为________;三、解答题 (共8题;共67分)16. (10分)用代入消元法解方程组(1);(2);(3);(4).17. (10分)(2019·港口模拟) 求下列不等式组的解集18. (10分)(2016·新化模拟) 资江风光带绿化提质改造工程正如火如荼地进行,某施工队计划购买甲乙两种树苗共400棵对某段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?19. (5分)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).(1)画出关于点O成中心对称的,并写出点B1的坐标;(2)求出以点B1为顶点,并经过点B的二次函数关系式20. (10分) (2019七下·江阴期中) 初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC=________°.(2)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD 也平分∠ODC的理由.(3)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.21. (2分)(2017·资中模拟) 某地2015年为做好“精准扶贫”,投入资金1500万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1440万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励9元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?22. (5分) (2019八上·下陆月考) 如图,在△ABC中,∠B=30°,∠ACE=35°,CE平分∠ACB,求∠A的度数23. (15分)(2020·南昌模拟) 如图,已知AB为半圆O的直径,过点B作PB⊥OB,连接AP交半圆O于点C,D为BP上一点,CD是半圆O的切线.(1)求证:CD=DP.(2)已知半圆O的直径为,PC=1,求CD的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共7分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共67分)16-1、16-2、16-3、16-4、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、。
四川省资阳市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·黔东南模拟) 实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A . ﹣2a+bB . 2a﹣bC . ﹣bD . b2. (2分)(2019·台州模拟) 目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为()A . 0.4×108B . 4×108C . 4×10﹣8D . ﹣4×1083. (2分) (2019八下·鼓楼期末) 若等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,则这个三角形的周长是()A . 16B . 18C . 16或18D . 214. (2分) (2019九上·鼓楼期中) 下列事件是必然事件的是()A . 明年一共有367天B . 旋转后的图形与原图形全等C . 随机抛掷一枚质地均匀的硬币,落地后正面朝上D . -a是负数5. (2分)已知∠α=35°,那么∠α的余角等于()A . 35°B . 55°C . 65°D . 145°6. (2分)(2019·无锡) 下列图案中,是中心对称图形但不是轴对称图形的是()A .B .C .D .7. (2分) (2017七下·兴隆期末) 如图,AD,BE都是△ABC的高,则与∠CBE一定相等的角是()A . ∠ABEB . ∠BADC . ∠DACD . ∠C8. (2分) (2019七下·长安期末) 如图,在长方形ABCD中,AB=5,第一次平移将长方形ABCD沿AB方向向右平移4个单位长度,得到长方形A1B1C1D1 ,第二次平移将长方形A1B1C1D1沿A1B1方向向右平移4个单位长度,得到长方形A2B2C2D2 ,……,第n次平移将长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1方向向右平移4个单位长度,得到长方形AnBnCnDn(n>2).若ABn的长为45,则n=()A . 10B . 11C . 16D . 99. (2分)下列运算正确的是()A . (﹣3mn)2=﹣6m2n2B . 4x4+2x4+x4=6x4C . (xy)2÷(﹣xy)=﹣xyD . (a﹣b)(﹣a﹣b)=a2﹣b210. (2分)(2019·肥城模拟) 一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;其中正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共7分)11. (1分)(xn)2+(x2)n﹣xn•x2=________.12. (1分) (2016八上·通许期末) 已知am=2,an=3,则a2m﹣3n=________.13. (1分)(2019·辽阳模拟) 如图,一次函数的图象与轴、轴分别交于点,点在轴上,要使是以AB为腰的等腰三角形,那么点的坐标是________.14. (1分)(2013·河池) 袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,这个球为白球的概率是________.15. (1分)(2019·靖远模拟) 一个等腰三角形的两边长分别为4cm和9cm,则它的周长为________cm.16. (1分) (2019八上·亳州月考) 某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表:质量x(千克)1234…售价y(元) 3.60+0.207.20+0.2010.80+0.2014.40+0.2…由上表得y与x之间的关系式是________.17. (1分)(2019·临海模拟) 如图,在一张直径为20cm的半圆形纸片上,剪去一个最大的等腰直角三角形,剩余部分恰好组成一片树叶图案,则这片树叶的面积是________cm2.三、解答题 (共8题;共50分)18. (5分)(2012·盐城)(1)计算:|﹣ |﹣20120﹣sin30°;(2)化简:(a﹣b)2+b(2a+b).19. (5分)(2020·常州) 先化简,再求值:,其中 .20. (2分) (2017七下·晋中期末) 如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.21. (5分) (2019九上·高州期中) 如图,在菱形ABCD中,CE=CF.求证:AE=AF.22. (10分) (2019七下·罗湖期末) 如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为________千米/小时;汽车的速度为________千米/小时;(2)汽车比摩托车早________小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.23. (5分) (2020八下·临江期末) 图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.24. (7分) (2017七上·静宁期中) 已知某船顺水航行3小时,逆水航行2小时.(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?25. (11分) (2019九上·海淀月考) 在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,4)、B(﹣4,0)、C(0,﹣4)、D(4,0),对于图形M ,给出如下定义:点P为图形M上任意一点,点Q为正方形ABCD边上任意一点,如果P、Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,2),G(﹣1,﹣1).①如图1,直接写出d(点E),d(点G)的值;②如图2,扇形EOF圆心角∠EOF=45°,将扇形EOF绕点O顺时针旋转α角(0<α<180°)得到扇形E'OF',当d(扇形E'OF')取最大值时,求α角的取值范围;(2)点P为平面内一动点,且满足d(点P)=6,直接写出OP长度的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共50分)18-1、18-2、19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
四川省资阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·淮滨月考) -8的立方根是()A . -2B . -4C . 2D . ±22. (2分) (2019七下·临洮期中) 判断两角相等,错误的是()A . 对顶角相等B . 两条直线被第三条直线所截,内错角相等C . 两直线平行,同位角相等D . ∵∠1=∠2,∠2=∠3,∴∠1=∠33. (2分) (2017七下·通辽期末) 下列调查中,调查方式选择正确的是()A . 了解100个灯泡的使用寿命,选择全面调查B . 了解某公园全年的游客流量,选择抽样调查C . 了解生产的50枚炮弹的杀伤半径,选择全面调查D . 了解一批袋装食品是否含有防腐剂,选择全面调查4. (2分)不等式x+1>2x-4的解集是()A . x<5B . x>5C . x<1D . x>15. (2分)下列二次根式中与是同类二次根式的是().A .B .C .D .6. (2分)(2018·日照) 如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1的度数是()A . 30°B . 25°C . 20°D . 15°7. (2分)在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则()A . y=5x-3B . y=-x-3C . y=5x+3D . y=-5x-38. (2分) (2018八上·佳木斯期中) 点P(-2,1)在平面直角坐标系中所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分) (2017七下·德州期末) 已知x,y满足方程组,则x﹣y等于()A . 9B . 3C . 1D . ﹣110. (2分) (2017七下·抚顺期中) 下列运算中,正确的是()A . =±3B . =2C . ± =3D . =4二、填空题 (共6题;共6分)11. (1分) (2019七上·江苏期中) 比较大小-π________-4;(填“>”或“<”)12. (1分)经调查,某校学生上学所用的交通方式中.选择“自行车”、“公交车”、“其他”的比例为7:3:2,若该校学生有1200人,则选择“公交车”的学生人数是________ .13. (1分) (2017七下·卢龙期末) 不等式﹣x+3>0的最大整数解是________.14. (1分) (2017七下·个旧期中) 已知是二元一次方程5x﹣my=1的一个解,则m=________.15. (1分)(2017·江阴模拟) 如图,在Rt△A BC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M 作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是________.16. (1分) (2019七下·翁牛特旗期中) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是________.三、解答题 (共9题;共82分)17. (5分) (2018八上·南山期中) 计算:(1);(2)(3)(3+ )( -2)18. (5分)(2018·洪泽模拟) 解方程和解不等式组(1)解方程(2)解不等式组19. (6分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.20. (5分) (2019七下·侯马期中) 如图,把一个长26cm、宽14m的长方形分成五块,其中两个大正方形相同两个长方形相同,求中间小正方形的面积.21. (10分) (2015七下·宜兴期中) 如图,已知∠ABC+∠ECB=180°,∠P=∠Q,(1) AB与ED平行吗?为什么?(2)∠1与∠2是否相等?说说你的理由.22. (11分)(2017·兰山模拟) 为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛.赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.分数段(分数为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=________,b=________;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是多少?23. (15分) (2017七下·永春期末) 在边长为1的小正方形组成的方格纸中,若多边形的每个顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为,边界上的格点数为,则格点多边形的面积可表示为,其中,为常数.(1)在下面的两张方格纸中各有一个格点多边形,依次为、正方形 .认真数一数:内的格点数是________,正方形边界上的格点数是________;(2)利用(1)中的两个格点多边形确定,的值;(3)现有一张方格纸共有110个格点,画有一个格点多边形,它的面积,若该格点多边形外的格点数为 .①填空:若,则=________;24. (15分) (2017七下·防城港期中) 如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论;(2)当点P移动到图(2)、图(3)的位置时,∠P、∠A、∠C又有怎样的关系?请分别写出你的结论.25. (10分) (2019八上·太原期中) 如图,在中, .点在轴的正半轴上,边AB在轴上(点A在点B的左侧).(1)求点C的坐标.(2)点D是BC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共82分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
四川省资阳市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共36分) (共12题;共36分)1. (3分) (2017八上·高安期中) 下列图形中,是轴对称图形的是()A .B .C .D .2. (3分) (2018七上·鄞州期中) 下列各组代数式中,属于同类项的是()A . 与B . 与C . 与D . 与3. (3分)下列从左边到右边的变形,是因式分解的是()A . (a﹣1)(a﹣2)=a2﹣3a+2B . a2﹣3a+2=(a﹣1)(a﹣2)C . (a﹣1)2+(a﹣1)=a2﹣aD . a2﹣3a+2=(a﹣1)2﹣(a﹣1)4. (3分) (2017七下·磴口期中) 已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的个数为()A . 3个B . 2个C . 1个D . 0个5. (3分) (2017七下·郯城期中) 如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于()A . 8B . 10C . 12D . 146. (3分) (2018八下·邗江期中) 如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE,BE,则∠AEB的度数是()A . 120°B . 135°C . 150°D . 45°7. (3分)(2019·长沙) 如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E , D是线段BE上的一个动点,则的最小值是()A .B .C .D . 108. (3分)如图,已知AB∥CD,O是∠ACD和∠BAC的平分线的交点,若AC=6,S△AOC=6则AB与CD之间的距离是()A . 1cmB . 2cmC . 3cmD . 4cm9. (3分)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A . 30°B . 35°C . 40°D . 50°10. (3分)(2019·凤庆模拟) 昆明市高新区某厂今年新招聘一批员工,他们中同文化程度的人数见下表:关于这组文化程度的人数数据,以下说法正确的是()文化程度高中大专本科硕士博士人数9172095A . 众数是20B . 中位数是17C . 平均数是12D . 方差是2611. (3分)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A . 25°B . 50°C . 60°D . 30°12. (3分) (2017七下·滦南期末) 下列命题正确的是()A . 有且只有一条直线与已知直线垂直B . 同位角相等C . 两条平行线间的距离处处相等D . 有公共顶点且相等的角是对顶角二、填空题(共6小题,每小题2分,满分12分) (共6题;共12分)13. (2分)(2019·贺州) 计算a3•a的结果是________.14. (2分)分解因式:3x2﹣12x+12=________ .15. (2分) (2019八上·海安期中) 如果9x2-axy+4y2是完全平方式,则a的值是________.16. (2分)(2017·衢州) 如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________17. (2分)(2018·南宁模拟) 在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为________.(1+28)…(1+2n),且x+1=2128 ,则n=________.18. (2分) (2018七下·宝安月考) 记x=(1+2)(1+22)(1+24)三、解答题(共52分) (共7题;共48分)19. (6分) (2015九下·郴州期中) 解方程组.20. (6分)(2018·洛阳模拟) 先化简再求值(a+2b)(a-2b)-(a-b)2+5b(a+b),其中a=2-,b=2+ .21. (8分) (2019七下·阜阳期中) 如图,∠E= 50°∠BAC= 50° ∠D= 110°,求∠ABD的度数.22. (6分) (2018七上·泰州月考)(1)如图,正方形网格中的每个小正方形边长都是1,任意连接这些小正方形的顶点,可得到一些线段;请在图中画出AB= ,CD= ,EF= 这样的线段;(2)如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90°后的图形△A¹B¹C¹;并计算对应点B和B¹之间的距离?(3)如图是由5个边长为1的小正方形拼成的.①将该图形分成三块(在图中画出),使由这三块可拼成一个正方形;②求出所拼成的正方形的面积S.23. (6分)(2019·岐山模拟) 某中学为了帮助贫困学生读书,由校团委向全校2400名学生发起了“脱贫攻坚我在行”爱心捐款活动,为了解捐款情况,校团委随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为________,图①中m的值是________;(2)请补全条形统计图;(3)求本次调查获取的样本数据的众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. (6分) (2015七下·衢州期中) 我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B 型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材________张,B型板材________张;②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:礼品盒板材竖式无盖(个)横式无盖(个)x yA型(张)4x3yB型(张)x________③做成的竖式和横式两种无盖礼品盒总数最多是________个;此时,横式无盖礼品盒可以做________个.(在横线上直接写出答案,无需书写过程)25. (10分) (2018七下·市南区期中) 问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。
资阳市七年级数学下册期末测试卷及答案一、选择题1.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 2.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能 3.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b 4.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 5.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 7.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( )A .1B .-1C .4D .-4 8.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .9.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .10.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b >的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题11.计算:m 2•m 5=_____.12.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14.已知22a b -=,则24a b ÷的值是____.15.已知2m+5n ﹣3=0,则4m ×32n 的值为____16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.17.若29x kx -+是完全平方式,则k =_____.18.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.19.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.20.若等式0(2)1x -=成立,则x 的取值范围是_________. 三、解答题21.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.22.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?23.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.24.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.25.己知关于,x y的方程组4325x y ax y a-=-⎧⎨+=-⎩,(1)请用a的代数式表示y;(2)若,x y互为相反数,求a的值.26.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x⊥轴于B,点C在直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.27.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .28.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.2.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D .【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.3.A解析:A【分析】根据多项式与多项式相乘知(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,据此可以求得k 的值.【详解】解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ),∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab ,∴﹣k =b ﹣a ,k =a ﹣b ,故选:A .【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.4.D解析:D根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x 2-4xy+4y 2-x 2-4xy-4y 2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.5.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A .【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x ,∴k=12=1,故选A .本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.8.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A 、B 、C 选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D .【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.9.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.10.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.二、填空题11.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值.13.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.15.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.16.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值.【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式,熟练掌握完全平方公式解析:6【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键18.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键. 19.4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc8a2b2c2的各项公因式是4a2bc . 故答案为:4a2bc解析:4a 2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a 3bc +8a 2b 2c 2的各项公因式是4a 2bc .故答案为:4a 2bc .【点睛】本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式. 20.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.三、解答题21.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可;(2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.22.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.23.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为:224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=,∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.24.68︒【分析】根据已知首先求得∠BAD 的度数,进而可以求得∠BAE ,而∠CAE=∠BAE ,在△ACD 中利用内角和为180°,即可求得∠C .【详解】解:∵AD 是△ABC 的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.25.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =-再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =- . 故答案为12a =-. 【点睛】本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.26.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=, ∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4,所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1, ∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.27.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECDDCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.28.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2 x+1)-(4x2-9) =4x2-8 x+4-4x2+9=-8 x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.。
四川省资阳市雁江区2018-2019学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程﹣3x=6的解是()A.x=2B.x=﹣3C.x=﹣2D.x=﹣182.(3分)若a>b,则下列不等式中,不成立的是()A.a+5>b+5B.a﹣5>b﹣5C.5a>5b D.﹣5a>﹣5b3.(3分)三条线段a,b,c分别满足下列条件,其中能构成三角形的是()A.a+b=4,a+b+c=9B.a:b:c=1:2:3C.a:b:c=2:3:4D.a:b:c=2:2:44.(3分)商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种5.(3分)一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种6.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°7.(3分)已知a=x+2,b=x﹣1,且a>3>b,则x的取值范围是()A.x>1B.x<4C.x>1或x<4D.1<x<48.(3分)一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是()千米/小时.A.35B.40C.45D.509.(3分)如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.3B.4C.5D.610.(3分)如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如果不等式组的解集是x>3,那么m的取值范围是.12.(3分)小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).13.(3分)如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD 的周长为cm.14.(3分)如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是.15.(3分)如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S=1cm2,△ABC =cm2.则S△BEF16.(3分)两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是.三、解答题(共8小题,满分72分)17.(6分)﹣=1.2.18.(6分)已知方程4x﹣3y﹣6z=0与方程x﹣3y﹣3z=0有相同的解,求x:y:z.19.(6分)在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.20.(10分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=度;(2)求∠EDF的度数.21.(10分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.22.(10分)如图,在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,点E是BC 上一个动点(点E与B、C不重合),连AE,若a、b满足,且c是不等式组的最大整数解.(1)求a,b,c的长;(2)若AE平分△ABC的周长,求∠BEA的大小;(3)是否存在线段AE将三角形ABC的周长和面积同时平分?若存在,求出BE的长;若不存在,请说明理由.23.(12分)将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.24.(12分)小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.参考答案一、选择题(共10小题,每小题3分,满分30分)1.解:﹣3x=6,系数化1得:x=﹣2.故选:C.2.解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.3.解:A、当a+b=4时,c=5,4<5,故该选项错误.B、设a,b,c分别为1X,2X,3X,则有a+b=c,不符合三角形任意两边大于第三边,故错误;C、正确;D、设a,b,c分别为2X,2X,4X,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.4.解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选:C.5.解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选:C.6.解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.7.解:∵a=x+2,b=x﹣1,且a>3>b,∴,解得:1<x<4,故选:D.8.解:设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,根据题意得:,解得:x=6y,∵xy为1﹣9内的自然数,∴;即两位数为16.即:第一次看到的两位数是16.第二次看到的两位数是61.第三次看到的两位数是106.则汽车的速度是:=45(千米/小时).故选:C.9.解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=18﹣12=6.故选:D.10.解:设规则瓶体部分的底面积为S平方厘米.倒立放置时,空余部分的体积为bS立方厘米,正立放置时,有墨水部分的体积是aS立方厘米,因此墨水的体积约占玻璃瓶容积的=.故选:A.二、填空题(共6小题,每小题3分,满分18分)11.解:在中由(1)得,x>3由(2)得,x>m根据已知条件,不等式组解集是x>3根据“同大取大”原则m≤3.故答案为:m≤3.12.解:设平路有xkm,山路有ykm.则(+)+(+)=2+12﹣9,解得x+y=10,故答案是:10.13.解:根据题意,将周长为15cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=15cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=19cm.故答案为:19.14.解:∵EF∥BC,∴∠γ=∠B,由三角形的外角性质得,∠α=∠B+∠BAD=∠γ+∠BAD,∠β=∠α+∠CAD,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∴∠α﹣∠β=∠γ﹣∠α,∴2∠α=∠β+∠γ.故答案为:2∠α=∠β+∠γ.15.解:∵由于D 、E 、F 分别为BC 、AD 、CE 的中点,∴△ABE 、△DBE 、△DCE 、△AEC 的面积相等,S △BEC =S △ABC =cm 2.S △BEF =S △BEC =×=cm 2.解法2:∵D 是BC 的中点∴S △ABD =S △ADC (等底等高的三角形面积相等),∵E 是AD 的中点,∴S △ABE =S △BDE ,S △ACE =S △CDE (等底等高的三角形面积相等),∴S △ABE =S △DBE =S △DCE =S △AEC ,∴S △BEC =S △ABC =cm 2.∵F 是CE 的中点,∴S △BEF =S △BCE ,∴S △BEF =S △BEC =×=cm 2.故答案为:.16.解:∵两个角的两边都平行,∴此两角互补或相等,设其中一个角为x °,∵其中一个角的度数是另一个角的3倍少20°,∴若两角相等,则x =3x ﹣20,解得:x =10,∴若两角互补,则x =3(180﹣x )﹣20,解得:x =130,两个角的度数分别是10°,10°或130°,50°.故答案为:10°,10°或130°,50°.三、解答题(共8小题,满分72分)17.解:原式即﹣=,去分母,得5(10x ﹣10)﹣3(10x +20)=18,去括号,得50x ﹣50﹣30x ﹣60=18,移项,得50x ﹣30x =18+50+60,合并同类项,得20x =128,系数化为1得x=6.4.18.解:联立得:,①﹣②得:3x=3z,即x=z,把x=z代入①得:y=﹣z,则x:y:z=z:(﹣z):z=3:(﹣2):3.19.解:∵∠ADB=100°,∠C=80°,∴∠DAC=∠ADB﹣∠C=100°﹣80°=20°,∵∠BAD=∠DAC,∴∠BAD=×20°=10°,在△ABD中,∠ABC=180°﹣∠ADB﹣∠BAD=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=∠ABC=×70°=35°,∴∠BED=∠BAD+∠ABE=10°+35°=45°.20.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.21.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.22.解:(1)解方程组得:,解不等式组,解得:﹣4≤x<11,∵满足﹣4≤x<11的最大正整数为10,∴c=10,∴a=8,b=6,c=10;(2)∵AE平分△ABC的周长,△ABC的周长为24,∴AB+BE=×24=12,∴EC=6,BE=2,∴AC=CE=6,∴△AEC为等腰直角三角形,∴∠AEB=45°,∠BEA=135°;(3)不存在.∵当AE将△ABC分成周长相等的△AEC和△ABE时,EC=6,BE=2,此时,△AEC的面积为:,△ABE的面积为:面积不相等,∴AE平分△ABC的周长时,不能平分△ABC的面积,同理可说明AE平分△ABC的面积时,不能平分△ABC的周长.23.解:(1)①由旋转的性质得,∠ACA1=20°,∴∠BCD=∠ACB﹣∠ACA1=90°﹣20°=70°,∴∠BCB1=∠BCD+∠A1CB1,=70°+90°,=160°;②∵AB⊥A1B1,∴∠A1DE=90°﹣∠B1A1C=90°﹣30°=60°,∴∠ACA1=∠A1DE﹣∠BAC=60°﹣30°=30°,∴旋转角为30°;(2)∵AB∥CB1,∴∠ADC=180°﹣∠A1CB1=180°﹣90°=90°,∵∠BAC=30°,∴CD=AC,又∵由旋转的性质得,A1C=AC,∴A1D=CD.24.解:设开始时,每队有x人在排队,2分钟后,B窗口排队的人数为:x﹣6×2+5×2=x﹣2,根据题意得:,去分母得3x=24+2(x﹣2)+6,去括号得3x=24+2x﹣4+6,移项得3x﹣2x=26,解得x=26.答:开始时,有26人排队.。
资阳市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 25的算术平方根是()A . 5B . -5C . ±5D .2. (2分) (2017九下·江阴期中) 下列各数中,属于无理数的是()A . ()0B .C .D .3. (2分) (2018七下·来宾期末) 下列图形中可由其中的部分图形经过平移得到的是()A .B .C .D .4. (2分)若a>0,b<0,c<0,则下列各式中错误的是()A . -3a<-3B . bc>aC . a-3>b-3D . -2a>2bc5. (2分)如果(x2+px+q)(x2+7)的展开式中不含x2与x3的项,那以p,q的值是()A . p=1,q=7B . p=0,q=﹣7C . p=2,q=1D . p=0,q=76. (2分)如图,AB∥DE,∠ABC=25°,∠BCD=75°,则∠CDE=()A . 100°B . 70°C . 60°D . 50°7. (2分)在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:∵∠1=∠2(已知),∴AC∥DF(A.同位角相等,两直线平行),∴∠3=∠5(B.内错角相等,两直线平行).又∵∠3=∠4(已知)∴∠5=∠4(C.等量代换),∴BC∥EF(D.内错角相等,两直线平行).上述过程中判定依据错误的是()A . AB . BC . CD . D8. (2分) (2020九上·南岗期末) 方程的解为()A .B .C .D .9. (2分) (2017八下·金堂期末) 分式方程的解为()A .B .C .D .10. (2分)(2017·莒县模拟) 为了进一步落实“节能减排”工作,某单位决定对3600平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标.比较两个工程队的标书发现:乙队每天完成的工程量是甲队的2倍,这样乙队单独干比甲队单独干能提前10天完成任务.设甲队每天完成x平方米,可列方程为()A . ﹣ =10B . ﹣ =10C . + =10D . 10(2x+x)=3600二、填空题 (共5题;共5分)11. (1分) (2019七下·江门月考) 的整数部分是a,小数部分是b,则a﹣b=________.12. (1分)已知函数y=(m-1) +3是一次函数,则m= ________ .13. (1分)(2018·东莞模拟) 因式分解:9x2﹣4=________.14. (1分) (2015八下·开平期中) 当x________时,分式有意义.15. (1分) (2020七上·大冶期末) 古希腊数学家把数1,3,6,10,15,21,……叫三角形数,它有一定的规律性,若把第一个三角形数记为a1 ,第二个三角形数记为a2…第n个三角形数记为an ,则an=________.三、解答题 (共7题;共60分)16. (10分)(2016·荆门)(1)计算:|1﹣|+3tan30°﹣( -5)0﹣(﹣)﹣1.(2)解不等式组.17. (10分) (2014·盐城)(1)计算: +|﹣1|﹣(﹣1)0(2)解方程: = .18. (5分) (2019七下·北京期中) 关于x的不等式组恰有两个整数解,求a的取值范围.19. (5分)(2017·潮安模拟) 课堂上,张老师给大家出了一道题:当x=5﹣2 ,7+ 时,求代数式÷ 的值,小明一看,“太复杂了,怎么算呢?”你能帮小明解决问题吗?请你写出具体过程.20. (5分)如图,线段AB=CD,AB与CD相交于O,且AC与BD不平行,∠AOC=60°,判断AC+BD与AB的大小关系,并说明理由.21. (10分)(2017·邵阳模拟) 从邵阳市到长沙的高铁列车里程比普快列车里程缩短了75千米,运行时间减少了4小时,已知邵阳市到长沙的普快列车里程为306千米,高铁列车平均时速是普快列车平均时速的3.5倍.(1)求高铁列车的平均时速;(2)某日刘老师从邵阳火车南站到长沙市新大新宾馆参加上午11:00召开的会议,如果他买到当日上午9:20从邵阳市火车站到长沙火车南站的高铁票,而且从长沙火车南站到新大新宾馆最多需要20分钟.试问在高铁列车准点到达的情况下他能在开会之前赶到吗?22. (15分) (2017八下·宜兴期中) 解下列方程(1)=(2)+ =(3)先化简,再求值(﹣)÷ ,其中a=1,b=2.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共60分)16-1、16-2、17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、22-3、。
四川省资阳市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·东城模拟) 已知实数a,b在数轴上的位置如图所示,下列结论中正确是()A . a>bB . |a|<|b|C . ab>0D . ﹣a>b2. (2分) (2017七下·乌海期末) 下列说法不正确的是()A . 的平方根是B . -9是81的一个平方根C . 0.2的算术平方根是0.04D . -27的立方根是-33. (2分) (2013八下·茂名竞赛) 在平面直角坐标系中,点P(+1,-2)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分) (2018七下·昆明期末) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分) (2017八下·邵阳期末) 为了了解某地八年级男生的身高情况,从某学校选取了60名男生统计身高情况,60名男生的身高(单位: cm)分组情况如下表所示,则表中a,b的值分别为()分组147.5~157.5157.5~167.5167.5~177.5177.5~187.5频数1026a频率0.3bB . 0.3,6C . 18,0.1D . 0.3,0.16. (2分) (2017八上·西湖期中) 如图在中,,分别是、上的点,作,,垂足分别是,,,,下面三个结论:① ;② ;③≌ .其中正确的是().A . ①②B . ②③C . ①③D . ①②③7. (2分)(2018·丹棱模拟) 下列计算中,正确的是()A .B .C .D .8. (2分) (2017九上·鄞州月考) 如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A . 25°B . 50°C . 60°9. (2分) (2019八下·赵县期中) 若2<a<3,则等于()A . 5-2aB . 1-2aC . 2a-1D . 2a-510. (2分)如图所示,直角三角形ABO的周长为100,在其内部有n个小直角三角形周长之和为()A . 90B . 100C . 110D . 12011. (2分) (2016八上·杭州期中) 不等式3(x﹣2)≤x+4的非负整数解有()个.A . 4B . 5C . 6D . 无数12. (2分) (2015七下·汶上期中) 方程2x+3y=8的正整数解的个数是()A . 4B . 3C . 2D . 1二、填空题 (共6题;共7分)13. (2分) (2017七下·潮阳期中) 已知的整数部分为a,小数部分为b,则a=________,b=________.14. (1分)已知2a+2b+ab=,且a+b+3ab=,那么a+b+ab的值________.15. (1分)某校初中三个年级学生总人数为3000人.三个年级学生人数所占比例如图所示,则九年级学生人数为________.16. (1分)(2019·双柏模拟) 如图,AB⊥CD于点B,BE是∠ABD的平分线,则∠CBE的度数为________度.17. (1分)不等式1<x<4的整数解为________.18. (1分) (2019七下·洛宁期中) 对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.三、解答题 (共7题;共60分)19. (10分)计算(1)﹣﹣ +2 ﹣3(2)• ﹣(π﹣2016)0﹣3 ﹣|1﹣ |20. (5分) (2016九上·凯里开学考) 解不等式组,并将它的解集在数轴上表示出来.21. (8分)(2016·武汉) 某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了________名学生,其中最喜爱戏曲的有________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是________.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.22. (10分) (2019七下·漳州期中) 如图,点,在线段上,点,分别在线段和上,,.(1)判断与的位置关系,并说明理由;(2)若是的平分线,,且,试说明与有怎样的位置关系?23. (10分)(2017·黑龙江模拟) 已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC 方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)已知tanB= ,AB=5,若四边形ABFG是菱形,求平行四边形ABCD的面积.24. (10分) (2016七下·马山期末) 为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少了购买乙种树苗的金额,则至少应购买甲种树苗多少棵?25. (7分) (2017七下·苏州期中) 如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。
资阳市雁江区2017-2018学年七年级下期末数学试卷含答案解析2017-2018学年四川省资阳市雁江区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.方程﹣3x=6的解是()A.x=2 B.x=﹣3 C.x=﹣2 D.x=﹣182.若a>b,则下列不等式中,不成立的是()A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b3.三条线段a,b,c分别满足下列条件,其中能构成三角形的是()A.a+b=4,a+b+c=9 B.a:b:c=1:2:3C.a:b:c=2:3:4 D.a:b:c=2:2:44.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种5.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种6.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°7.已知a=x+2,b=x﹣1,且a>3>b,则x的取值范围是()A.x>1 B.x<4 C.x>1或x<4 D.1<x<48.一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是()千米/小时.A.35 B.40 C.45 D.509.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.3 B.4 C.5 D.610.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A. B. C. D.二、填空题(共6小题,每小题3分,满分18分)11.如果不等式组的解集是x>3,那么m的取值范围是______.12.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了______千米(途中休息时间不计).13.如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD的周长为______cm.14.如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是______.15.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=1cm2,则S△BEF=______cm2.16.两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是______.三、解答题(共8小题,满分72分)17.﹣=1.2.18.已知方程4x﹣3y﹣6z=0与方程x﹣3y﹣3z=0有相同的解,求x:y:z.19.在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC 交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.21.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.22.如图,在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,点E是BC上一个动点(点E与B、C不重合),连AE,若a、b满足,且c是不等式组的最大整数解.(1)求a,b,c的长;(2)若AE平分△ABC的周长,求∠BEA的大小;(3)是否存在线段AE将三角形ABC的周长和面积同时平分?若存在,求出BE的长;若不存在,请说明理由.23.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=______度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.24.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.2015-2016学年四川省资阳市雁江区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.方程﹣3x=6的解是()A.x=2 B.x=﹣3 C.x=﹣2 D.x=﹣18【考点】一元一次方程的解.【分析】直接将原方程系数化1,即可求得答案.【解答】解:﹣3x=6,系数化1得:x=﹣2.故选C.2.若a>b,则下列不等式中,不成立的是()A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.【解答】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.3.三条线段a,b,c分别满足下列条件,其中能构成三角形的是()A.a+b=4,a+b+c=9 B.a:b:c=1:2:3C.a:b:c=2:3:4 D.a:b:c=2:2:4【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、当a+b=4时,c=5,4<5,故该选项错误.B、设a,b,c分别为1X,2X,3X,则有a+b=c,不符合三角形任意两边大于第三边,故错误;C、正确;D、设a,b,c分别为2X,2X,4X,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选C.4.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.5.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种【考点】一元一次不等式组的应用.【分析】关键描述语:某旅行团20人准备同时租用这三种客房共7间,每个房间都住满,可先列出函数关系式,再根据已知条件确定所求未知量的范围,从而确定租房方案.【解答】解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选C.6.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°【考点】旋转的性质.【分析】根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.【解答】解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.7.已知a=x+2,b=x﹣1,且a>3>b,则x的取值范围是()A.x>1 B.x<4 C.x>1或x<4 D.1<x<4【考点】一元一次不等式组的应用.【分析】根据题意可得不等式组,再解不等式组即可.【解答】解:∵a=x+2,b=x﹣1,且a>3>b,∴,解得:1<x<4,故选:D.8.一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是()千米/小时.A.35 B.40 C.45 D.50【考点】二元一次方程组的应用.【分析】设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,第一次看到的两位数为10y+x,行驶一小时后看到的两位数为10x+y,第三次看到的三位数为100y+x,由汽车均速行驶可得三段时间的路程相等,即可列出两个方程求解即可.由速度=求得答案.【解答】解:设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,根据题意得:,解得:x=6y,∵xy为1﹣9内的自然数,∴;即两位数为16.即:第一次看到的两位数是16.第二次看到的两位数是61.第三次看到的两位数是106.则汽车的速度是:=45(千米/小时).故选:C.9.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.3 B.4 C.5 D.6【考点】平行四边形的性质.【分析】设重叠部分面积为c,则a﹣b=(a+c)﹣(b+c)问题得解.【解答】解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=18﹣12=6.故选D.10.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A. B.C.D.【考点】列代数式(分式).【分析】设第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可.【解答】解:设规则瓶体部分的底面积为S.倒立放置时,空余部分的体积为bS,正立放置时,有墨水部分的体积是aS因此墨水的体积约占玻璃瓶容积的=,故选A.二、填空题(共6小题,每小题3分,满分18分)11.如果不等式组的解集是x>3,那么m的取值范围是m≤3.【考点】解一元一次不等式组.【分析】先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.【解答】解:在中由(1)得,x>3由(2)得,x>m根据已知条件,不等式组解集是x>3根据“同大取大”原则m≤3.故答案为:m≤3.12.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了10千米(途中休息时间不计).【考点】二元一次方程的应用.【分析】本题是求小明从上午到下午一共走的路程,也就是山路和平路往返各一次.在这些路程里有山路,有平路,都是未知的,所以要设它们未知数.本题只包含一个等量关系:走山路时间+走平路时间=2+12﹣9.(走山路时间包括上山所用时间和下山所用时间,走平路时间包括往返两次平路时间).【解答】解:设平路有xkm,山路有ykm.则(+)+(+)=2+12﹣9,解得x+y=10,故答案是:10.13.如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD的周长为19cm.【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为15cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=15cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=19cm.故答案为:19.14.如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是2∠α=∠β+∠γ.【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】根据两直线平行,同位角相等可得∠γ=∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠α、∠β,再根据角平分线的定义可得∠BAD=∠CAD,然后整理即可得解.【解答】解:∵EF∥BC,∴∠γ=∠B,由三角形的外角性质得,∠α=∠B+∠BAD=∠γ+∠BAD,∠β=∠α+∠CAD,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∴∠α﹣∠β=∠γ﹣∠α,∴2∠α=∠β+∠γ.故答案为:2∠α=∠β+∠γ.15.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=1cm2,则S△BEF=cm2.【考点】三角形的面积.【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC 的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【解答】解:∵由于D、E、F分别为BC、AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,S△BEC=S△ABC=cm2.S△BEF=S△BEC=×=cm2.解法2:∵D是BC的中点∴S△ABD=S△ADC(等底等高的三角形面积相等),∵E是AD的中点,∴S△ABE=S△BDE,S△ACE=S△CDE(等底等高的三角形面积相等),∴S△ABE=S△DBE=S△DCE=S△AEC,∴S△BEC=S△ABC=cm2.∵F是CE的中点,∴S△BEF=S△BCE,∴S△BEF=S△BEC=×=cm2.故答案为:.16.两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是10°,10°或130°,50°.【考点】平行线的性质.【分析】由两个角的两边都平行,可得此两角互补或相等,然后设其中一个角为x°,分别从两角相等或互补去分析,由其中一个角的度数是另一个角的3倍少20°,列方程求解即可求得答案.【解答】解:∵两个角的两边都平行,∴此两角互补或相等,设其中一个角为x°,∵其中一个角的度数是另一个角的3倍少20°,∴若两角相等,则x=3x﹣20,解得:x=10,∴若两角互补,则x=3﹣20,解得:x=130,两个角的度数分别是10°,10°或130°,50°.故答案为:10°,10°或130°,50°.三、解答题(共8小题,满分72分)17.﹣=1.2.【考点】解一元一次方程.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=6.4.18.已知方程4x﹣3y﹣6z=0与方程x﹣3y﹣3z=0有相同的解,求x:y:z.【考点】二元一次方程的解.【分析】联立两方程组成方程组,把z看做已知数表示出x与y,即可求出x:y:z的值.【解答】解:联立得:,①﹣②得:3x=3z,即x=z,把x=z代入①得:y=﹣z,则x:y:z=z:(﹣z):z=3:(﹣2):3.19.在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DAC,再求出∠BAD,然后根据三角形的内角和定理求出∠ABC,再根据角平分线的定义求出∠ABE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ADB=100°,∠C=80°,∴∠DAC=∠ADB﹣∠C=100°﹣80°=20°,∵∠BAD=∠DAC,∴∠BAD=×20°=10°,在△ABD中,∠ABC=180°﹣∠ADB﹣∠BAD=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=∠ABC=×70°=35°,∴∠BED=∠BAD+∠ABE=10°+35°=45°.20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC 交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.21.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.【考点】不等式的解集;解二元一次方程组.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解答】解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.22.如图,在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,点E是BC上一个动点(点E与B、C不重合),连AE,若a、b满足,且c是不等式组的最大整数解.(1)求a,b,c的长;(2)若AE平分△ABC的周长,求∠BEA的大小;(3)是否存在线段AE将三角形ABC的周长和面积同时平分?若存在,求出BE的长;若不存在,请说明理由.【考点】等腰直角三角形;解二元一次方程组;一元一次不等式组的整数解.【分析】(1)根据二元一次方程组的解法得出a,b的值,再利用不等式组的解法得出x的取值范围,进而得出c的值;(2)利用(1)中所求以及等腰直角三角形的性质得出AC=CE,进而得出答案;(3)分别根据AE平分三角形ABC的周长和平分面积时不能同时符合要求进而得出答案.【解答】解:(1)解方程组得:,解不等式组,解得:﹣4≤x<11,∵满足﹣4≤x<11的最大正整数为10,∴c=10,∴a=8,b=6,c=10;(2)∵AE平分△ABC的周长,△ABC的周长为24,∴AB+BE=×24=12,∴EC=6,BE=2,∴AC=CE=6,∴△AEC为等腰直角三角形,∴∠AEB=45°,∠BEA=135°;(3)不存在.∵当AE将△ABC分成周长相等的△AEC和△ABE时,EC=6,BE=2,此时,△AEC的面积为:,△ABE的面积为:面积不相等,∴AE平分△ABC的周长时,不能平分△ABC的面积,同理可说明AE平分△ABC的面积时,不能平分△ABC的周长.23.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=160度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.【考点】旋转的性质.【分析】(1)①根据旋转的性质可得∠ACA1=20°,再根据直角三角形两锐角互余求出∠BCD,然后根据∠BCB1=∠BCD+∠A1CB1进行计算即可得解;②根据直角三角形两锐角互余求出∠A1DE,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACA1,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出∠ADC=90°,再根据直角三角形30°角所对的直角边等于斜边的一半可得CD= AC,根据旋转的性质可得A1C=AC,然后求出解即可.【解答】解:(1)①由旋转的性质得,∠ACA1=20°,∴∠BCD=∠ACB﹣∠ACA1=90°﹣20°=70°,∴∠BCB1=∠BCD+∠A1CB1,=70°+90°,=160°;②∵AB⊥A1B1,∴∠A1DE=90°﹣∠B1A1C=90°﹣30°=60°,∴∠ACA1=∠A1DE﹣∠BAC=60°﹣30°=30°,∴旋转角为30°;(2)∵AB∥CB1,∴∠ADC=180°﹣∠A1CB1=180°﹣90°=90°,∵∠BAC=30°,∴CD=AC,又∵由旋转的性质得,A1C=AC,∴A1D=CD.24.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.【考点】一元一次方程的应用.【分析】“B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人”相当于B窗口前的队伍每分钟减少1人,题中的等量关系为:小李在A窗口排队所需时间=转移到B窗口排队所需时间+(30秒),设出未知数列出方程解答即可.【解答】解:设开始时,每队有x人在排队,2分钟后,B窗口排队的人数为:x﹣6×2+5×2=x﹣2,根据题意得:,去分母得3x=24+2(x﹣2)+6,去括号得3x=24+2x﹣4+6,移项得3x﹣2x=26,解得x=26.答:开始时,有26人排队.2016年9月25日。