国内随钻测井解释
- 格式:docx
- 大小:12.40 KB
- 文档页数:1
石油勘探开发中的随钻测井技术探究摘要:随钻测井技术是一种高科技手段,是指在进行钻井作业的同时进行地层的测定和监测,为石油勘探和开发工作提供了非常有力的技术支持。
总之,随钻测井技术在我国石油勘探开发中具有重要的应用价值,可以提高勘探和开发的效率和成果,同时也可以降低勘探和开发成本。
随着技术的不断发展和完善,随钻测井技术的应用前景将会变得更加广阔。
关键词:石油勘探;随钻测井技术;地质前言在石油勘探开发的工作中,随钻测井技术已经成为一项十分重要的技术,可以获得钻井过程中的实时数据,方便开展钻井的控制工作。
本文分析随钻测井技术的技术特点和发展状况,然后研究该技术如何在石油勘探开发中应用。
通过研究,帮助技术人员深入了解该技术的特点和关键技术,有效应用在石油勘探和开发中,提升石油的开发效率,满足国家对油气资源的需求。
1随钻测井技术随钻测井技术是指在进行钻井过程中,在钻进的同时进行地层测定和监测,通过测量地质参数来了解井筒和地层情况,包括测量井筒内外径、地层压力、井段的物性、电性、成分等多种参数。
随钻测井技术的主要设备包括测井仪、数据采集器、计算机控制系统等。
随钻测井技术的优点是实时性高,能够及时提供地层、井壁等信息,支持即时决策;连续性好,即实时收集和传送信息,能够在钻井过程中持续提供实时信息;安全性高,避免了人工进井测井所带来的危险性;测井质量可靠,避免了人工测井中带来的误差和不确定性。
同时,随钻测井技术可进行多参数、多地层测量,大大提高了勘探和采油的效率。
随钻测井技术在石油勘探和生产中广泛应用,可以实时掌握井筒和地层的物性、成分、流体条件等信息,有助于提高探气、采油效率;并可依据测量数据调整钻头尺寸、钻进速度等参数,提高钻井效率及钻井质量。
此外,随着随钻测井技术的深入研究,它可与其他技术结合进行分层定位、储层精准预测、油田开采模拟等工作,实现现场实时数据流和模型流的结合提供更全面的数据分析,进一步提高了勘探效率和生产效益。
随钻测井介绍-图文2022-9-1摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。
通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。
通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。
主题词:随钻测井;钻井;钻井液;侵入深度;技术一、引言LWD随钻记录的中子—密度(μN-ρb)与电缆测井值存在一定的系统误差(不同厂商的仪器均存在差别)。
但LWD的ρb测井值由于少受扩径的影响,其岩性值域区间远比后者清晰(图1-b、c,图2)。
三、实例分析LWD随钻测量的电阻率是在钻头破岩后1~2h开始测量(中等硬度的碎屑岩),此时的井壁破损率和钻井液径向侵入都非常小,所以,基本是“原状”地层的测井值。
1.实例一D井是一口直井(图3),为欠平衡钻井,CWR的测量点距钻头5.1in,钻速4m/h,钻头破岩后1.25h就可以记录到地层的电阻率,图中实时记录的所有4条电阻率曲线,不同岩性参数处均为重合状,说明地层几乎未被钻井液侵入。
起钻时,又进行重复测量(破岩42h之后),除泥岩段外,所有砂质岩层都受到了增阻侵入的影响。
但R55A并未发生变化,据计算,此时侵入深度达55in。
2.实例二B井是一口定向井的导眼段(近似直井,图2),该段使用了LWD,上部的砂岩段中实时记录的电阻率基本为水层特征(负差异或重合),泥岩段4条曲线则完全重合。
但顶部某740.5~某742.0m电阻率呈正差异(R55A>R25A),R55A=1.3Ω2m,为油层特征。
该井完井后,此段地层已浸泡了24d,这时又进行了电缆测井(双感应、中子、密度、自然伽马、井径等)。
内容摘要摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。
随钻测井(LWD)技术的萌芽只比电缆测井晚10年。
由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。
其业务收入和工作量快速增长。
勘探开发生产的需要仍是随钻测井继续发展的强劲动力。
作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。
关键词:随钻测井 LWD 研究进展第一章随钻测井技术现状迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。
有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。
1.1随钻测井数据传输技术多年来,数据传输是制约随钻测井技术发展的“瓶颈”。
泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。
泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。
电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。
哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。
此外,声波传输和光纤传输方法还处于研究和实验阶段。
1.2随钻电阻率测井与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。
侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。
GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。
随着钻井技术的不断发展,定向井工艺技术的出现推动了随钻测量技术的不断发展。
从上世纪50年代,随钻测量技术就已经开始使用,到上世纪70年代无线随钻测量技术研发并现场试验成功,引起了人们的关注,使其迅速发展。
伴随着水平井施工任务的不断增加,高难度井的数量也在不断增加,随钻测量技术也突破一个又一个难题发展到现在的随钻测井技术和旋转导向技术。
一、随钻测量技术的分类随钻测量技术就是指在钻进过程中通过井下测量仪器测量所需的井眼轨迹数据,然后利用各种不同的方式将数据传输至地面,地面系统接收后进行解码得到井下所测数据。
目前,随钻测量技术根据其功能可以分为随钻测井技术(LWD)、随钻测量技术(MWD)等,其中随钻测量技术主要是测量轨迹控制所需要的参数,如井斜角、方位角、工具面角等;而随钻测井技术除要提供上述参数外,还要测量所钻地层的地质参数,如自然伽马、电阻率、中子密度等。
随钻测量技术根据其采用的数据传输方式不同,可以分为有线随钻测量技术、无线随钻测量技术和其他方式。
有线随钻测量技术具有传输速率高,测量项目齐全等优势,但是其施工不方便,需要停止钻井作业才能施工,因此会耽误较多时间。
无线随钻测量技术又可以根据其传输介质分为泥浆脉冲方式、电磁波方式、声波方式;其中泥浆脉冲方式技术最为成熟,使用受限较小,所以其应用最为广泛,但是它受到泥浆性能的影响严重,比如在泡沫欠平衡钻井中就无法使用;电磁波传输方式不受钻井液性能的影响,所以适合于欠平衡钻井,但是它的传输深度受到地层电阻率的限制,所以其应用范围并不广泛,只能在某些区块应用较多;声波传输方式目前还处于研发阶段,最近也有报道该方式现场试验成功的案例,但是还没有形成商业规模;其他的无线随钻测量技术主要是指智能钻杆,其传输速率快,同时不受泥浆性能的限制,但是其生产成本高,现在只处于试验阶段,距离规模化商业应用还有一段时间。
二、随钻测量技术的研究现状近年来,国内外石油企业和高校对在不断的研发更加先进高效的随钻测量仪器,所以随钻测量技术也在不断的快速发展。
随钻测井一、随钻测井的引入在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。
一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量. 遇到的问题:1、某些情况下,如井的斜度超过65 度的大斜度井甚至水平井,用电缆很难将仪器放下去2、井壁状况不好易发生坍塌或堵塞3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层二、随钻测井的概念随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井):是在钻开地层的同时, 对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术.首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。
其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性.而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。
另外,近二十年来海洋定向钻井大量增加。
采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化(现代随钻测井技术大致可分为三代)●20 世纪80 年代后期以前属于第一代可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
●20 世纪90 年代初至90 年代中期属于第二代过地质导向精确地确定井眼轨迹;司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据发现目标位臵。
这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
2.2 LWD技术简介随钻测井(LWD——Logging While Drilling)是在随钻测量(MWD——Measurement While Drilling)基础上发展起来的、用于解决水平井和多分枝井地层评价及钻井地质导向而发展起来的一项新兴的测井综合应用技术。
随钻测井和随钻测量都是在钻井过程中同步进行的测量活动,实施随钻测井和随钻测量时都必须将测量工具装在接近钻柱底部的钻铤内,。
不同的是随钻测量主要测量井斜、井斜方位、井下扭矩、钻头承重等钻井工程参数,辅以测量自然伽马、电阻率等地球物理信息,用以导向钻井;而随钻测井则以测量钻过地层的地球物理信息为主,可以在钻井的同时获得电阻率、密度、中子、声波时差、井径、自然伽马等电缆测井所能提供的测井资料。
与MWD相比,LWD能提供更多、更丰富的地层信息。
2.2.1 L WD系统组成及工作方式随钻测井系统一般由井下仪器和井场信息处理系统两大部分组成。
前导模拟软件是井场信息处理系统的核心;井下仪器提供实时测量数据。
前导模拟软件完成大斜度井和水平井钻井设计、实时解释和现场决策,指导钻井施工。
随钻测井系统有实时数据传输方式和井下数据存储方式两种工作方式。
1)实时数据传输方式:将随钻测井仪在钻进时测量得到的信息实时传至驱动器,驱动器驱动脉冲发生器将这些信息采用特定的方式编码后传至地表压力传感器,地面信息处理与解码系统再将其转化为软件界面上可供显示或打印的数字化、图形化格式,为客户提供最终产品。
2)井下数据存储方式:将随钻测井仪器起下钻或钻进时采集到的信息存储于仪器的存储器内,待仪器的数据下载接口起至转盘面上约1.5米处,通过数据下载线将其传输到地表计算机内供处理、显示,一般可以在30min内提交处理好的数据磁盘并打印成图。
2.2.2 L WD主要功能及优点主要功能:测量井斜、方位、工具面等井眼几何参数。
随钻地质测井:采用实时和记忆方式同时进行地层参数的测量-- 电阻率、伽马、岩石密度、中子孔隙度。
随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
随钻测量随钻测井技术现状及研究随钻测量(measure while drilling,MWD)技术可以在钻进的同时监测一系列的工程参数以控制井眼轨迹,提高钻井效率。
随钻测井(logging while drilling,LWD)技术可以不中断钻进监测一系列的地质参数以指导钻井作业,提高油气层的钻遇率[1-5]。
近年来,油气田地层状况越来越复杂,钻探难度越来越大。
在大斜度井、大位移井和水平井的钻进中,MWD/LWD是监控井眼轨迹的一项关键技术[6-8],是评价油气田地层的重要手段[9],是唯一可用的测井技术[3],而常规的电缆测井无法作业[10]。
国外的MWD/LWD技术日趋完善,而国内起步较晚,技术水平相对落后,国际知识产权核心专利较少[9],与国外的相关技术有一段差距。
本文介绍国内外MWD/LWD相关产品的技术特点和市场应用等情况,分析国内技术落后的原因以及应对措施。
1 国外MWD/LWD技术现状20世纪60年代前,国外MWD的尝试都未能成功。
60年代发明了在钻井液柱中产生压力脉冲的方法来传输测量信息。
1978年Teleco公司开发出第一套商业化的定向MWD系统,1979年Gearhart Owen公司推出NPT定向/自然伽马井下仪器[10]。
80年代初商用的钻井液脉冲传输LWD 才产生,例如:1980年斯伦贝谢推出业内第一支随钻测量工具M1,但仅能提供井斜、方位和工具面的测量,应用比较受限,不能满足复杂地质条件下的钻井需求[11]。
1996年后,MWD/LWD技术得到了快速的发展。
国际公认的三大油服公司:斯伦贝谢、哈里伯顿、贝克休斯,其MWD/LWD技术实力雄厚,其仪器耐高温耐高压性能好、测量精度高、数据传输速率高,几乎能满足所有油气田的钻采,在全球油气田均有应用。
斯伦贝谢经过长期的技术及经验积累,其技术特点为高、精、尖、专,业内处于绝对的领先地位[12-15],是全球500强企业。
LWD的技术主要体现在智能性、高效性、安全性[10]。
内容摘要摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。
随钻测井(LWD)技术的萌芽只比电缆测井晚10年。
由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。
其业务收入和工作量快速增长。
勘探开发生产的需要仍是随钻测井继续发展的强劲动力。
作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。
关键词:随钻测井 LWD 研究进展第一章随钻测井技术现状迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。
有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。
1.1随钻测井数据传输技术多年来,数据传输是制约随钻测井技术发展的“瓶颈”。
泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。
泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。
电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。
哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。
此外,声波传输和光纤传输方法还处于研究和实验阶段。
1.2随钻电阻率测井与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。
侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。
GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。
1国内随钻测井解释现状及发展
在国内现有的技术条件下,开展大斜度井和水平井测井资料的可视化解释能在很大程度上提高测井解释识别地质目标的精度,通过实时解释、实时地质导向有助于提高钻井精度、降低钻井成本、及时发现油气层。
未来的勘探地质目标将更加复杂,以地质导向为核心的定向钻井技术的应用会越来越多。
伴随新的随钻测井仪器的出现,应该有新的集成度高的配套解释评价软件,以充分挖掘新的随钻测井资料中包含的信息,使测井资料的应用从目前的单井和多井评价发展为油气藏综合解释评价。
因此,定向钻井技术的发展及钻井自动化程度的提高必将使随钻测井技术的应用领域更加关泛。
2 提高薄油层钻遇率
提高薄油层水平井油层钻遇率必须加强方案研究及现场调整、实施两方面研究。
方案设计包括对油层的构造、沉积相、储层物性、电性特征、油气显示特征综合研究。
现场调整、实施包括对定向工具的认识及现场地质资料综合分析、重新调整轨迹后而实施的设计。
一口水平井的实施是一个系统工程,包括地质、钻井工程两方面的因素。
地质设计及现场提出的方案要充分考虑工程的可行性。
只有加强综合研究,根据油藏的变化情况及时调整轨迹,才能提高油层钻遇率。
目前,在石油、天然气等钻井勘探开发技术领域,水平井作业中,使用随钻测井工具、随钻测量工具和现场综合录井工具。
随钻测量工具、随钻测井工具位于离钻头不远的地方,在钻机钻进的同时获取地层的各种资料和井眼轨迹资料,包括井斜、方位、自然伽马、深浅侧向电阻率等。
现场综合录井工具获取钻时、岩屑、荧光、气测录井等,这样利用随钻测量工具、随钻测井工具测得的钻井参数、地层参数和现场综合录井资料推导出目的层实际海拔深度和钻头在目的层中实际位置,并及时调整钻头轨迹,使之顺着目的层沿层钻进,尽量提高砂岩钻遇率。