正弦交流电路的三种基本元件
- 格式:ppt
- 大小:1.86 MB
- 文档页数:73
二单元正弦交流电路引言正弦交流电的产生:正弦交流电路:含有正弦电源而且电路各部分所产生的电压和电流均按正弦规律变化的电路。
因为交流电可以利用变压器方便地改变电压、便于输送、分配和使用。
所以,在生产和生活中普遍应用正弦交流电。
着重讨论和分析交流电路的基本概念、基本规律和基本分析方法。
随时间按正弦规律变化的交流电压、电流、电动势称为正弦电压、电流、电动势。
正弦量:正弦电压、电流、电动势统称为正弦量。
Riab)sin(m i t I i ψω+=规定电流参考方向如图:iωtiψ正半周:电流实际方向与参考方向相同负半周:电流实际方向与参考方向相反+-最大值角频率初相角正弦量的三要素课题1正弦交流电的基本概念一、正弦量的三要素表达式:波形:用带有下标m 的大写字母表示:I m 、U m 、E m有效值:一个交流电流的做功能力相当于某一数值的直流电流的做功能力,这个直流电流的数值就叫该交流电流的有效值。
用大写字母表示:I 、U 、 E1. 最大值描述正弦量变化范围的参数。
tiT最大值I m⎰=Tdti TI 021正弦量最大值与有效值的关系EE m 2=II m 2=UU m 2=2. 角频率ω描述正弦量变化快慢的参数。
单位:rad/s周期(T ): 变化一个循环所需要的时间,单位(s)。
频率( f ): 单位时间内的周期数单位(Hz)。
三者间的关系示为:=2π/T =2πfωTωt 2ππtiTT/2我国和大多数国家采用50Hz 作为电力工业标准频率(简称工频),少数国家采用60Hz 。
iωt)sin(i m t I i ψω+=iψt =0 时的相位角称为初相角或初相位。
i ψ同频率正弦量的相位角之差,用ϕ表示。
二、相位差:180±取值范围:相位差可反映同频率正弦量超前滞后关系。
180±相位差的取值范围:3. 初相iψ影响初相得因素:项前负号(±180°)Cos (90 °))sin(1m ψtωU u +=如:)()(21ψωψωϕ+-+=t t 21ψψ-=若21>-=ψψϕ电压超前电流ϕ或电流滞后电压ϕuiu iϕωtO)2ψ+=t ωI i sin(m电流超前电压︒-=-=9021ψψϕ︒90电压与电流同相021=-=ψψϕ电流超前电压ϕ021<-=ψψϕ电压与电流反相︒=-=18021ψψϕu iωt ui ϕOu iωtui 90°O u i ωtui Oωtui u i O一、复数1. 复数的表示形式A = a + j b1)代数形式:为虚数单位1j -=ϕcos A a =ϕsin A b =22ba A +=ab=ϕtan aAb+1+jϕA实部虚部ϕA A =2)极坐标形式:模幅角2. 两种形式的互换代数极坐标代数极坐标课题2正弦量的相量表示法3. 复数运算(熟记公式)111j b a A +=222j b a A +=1)加减运算(用代数形式):则()()212121j b b a a A A ±+±=±设则222ϕA A =111ϕA A =212121ϕϕ+=⋅A A A A 212121ϕϕ-=A A A A 设2)乘除运算(用极坐标形式):1A 2A 3A 321A A A ++思考如何用作图的方法得到复数的差?3)复数的相等111j b a A +=222j b a A +=21a a =如果21b b =则21A A =222ϕA A =111ϕA A =如果21A A =21ϕϕ=则21A A =4. 旋转因子(模为1,辐角为的复数)ϕ一个复数乘以ϕj e等于把其逆时针旋转角。
§6-5 R 、L 、C 的相量模型在正弦稳态电路中,三种基本电路元件R 、L 、C 的电压、电流之间的关系都是同频率正弦电压、电流之间的关系,所涉及的有关运算都可以用相量进行,因此这些关系的时域形式都可以转换为相量形式。
一. 正弦交流电路中的电阻元件1. 电阻元件伏安关系在电压和电流的参考方向关联时,电阻R 的伏安关系的时域形式R R ()()u t R i t =⋅当正弦电流i R =2I R cos(ωt +ψi )通过电阻R 时, 则 R Rm i u ()cos()cos()Rm u t RI t U t ωψωψ=+=+Rm Rm R R U RI U RI =⎫⎬=⎭电压、电流的最大值(有效值)之间符合欧姆定律;u i u i 0ψψϕψψ=⎫⎬=-=⎭R u 与R i 同相令:R R R iRR R R u R i ()()i t I I u t U U RI R I ψψψ⇒=∠⇒=∠=∠=则在电压和电流关联参考方向下电阻的伏安关系的相量形式为R R U R I = Rm Rm U R I =线性电阻的相量电路、相量图如下。
u R (t )R UR IR I 与R U 共线2. 功率:①瞬时功率:由于瞬时功率p 是由同一时刻的电压与电流的乘积来确定的,因此当流过电阻R 的电流为i R (t )=I R m cos(ωt +Ψi )时,电阻所吸收的瞬时功率为R R R Rm u Rm i 2R R i R R R R i ()()()cos()cos() 2cos ()cos(2)0p t u t i t U t I t U I t U I U I t ωψωψωψωψ==++=+=++≥常量 两倍于原频率的正弦量可以看出,电阻吸收的功率是随时间变化的,但p R 始终大于或等于零,表明了电阻的耗能特性。
上式还表明了电阻元件的瞬时功率包含一个常数项和一个两倍于原电流频率的正弦项,即电流或电压变化一个循环时,功率变化了两个循环。
正弦交流电路知识点总结一、正弦交流电路的基本概念正弦交流电路是指由正弦波形状的电压或电流组成的电路。
在正弦交流电路中,电压或电流随时间呈周期性变化,其波形为正弦曲线。
正弦交流电路中,频率、振幅、相位等是重要的参数。
二、正弦交流电路中的元件1. 交流源:提供正弦波形状的电压或电流。
2. 电阻:阻碍电流通过的元件。
3. 电感:储存磁能量并抵抗变化的元件。
4. 电容:储存电能量并抵抗变化的元件。
三、正弦交流电路中的基本定律1. 欧姆定律:U=IR,其中U为电压,I为电流,R为阻值。
2. 基尔霍夫定律:任意一个节点上所有进入该节点和离开该节点的支路所构成的代数和等于零。
3. 诺依曼定理:在任意一个闭合回路中,沿着这个回路方向绕一圈所得到所有增加量之和等于所有减少量之和。
四、串联和并联1. 串联:将多个电阻、电感、电容依次连接在一起,即为串联。
串联后的总阻值为各元件阻值之和。
2. 并联:将多个电阻、电感、电容同时连接在一起,即为并联。
并联后的总阻值等于各元件倒数之和的倒数。
五、交流电路中的功率交流电路中的功率分为有功功率和无功功率两部分:1. 有功功率:指交流电路中被转化成有用能量的功率。
2. 无功功率:指交流电路中被转化成储存于元件中的能量或者从元件中释放出来但不能做有用工作的能量。
六、交流电路中的相位相位是指两个正弦波形状的信号之间时间上的差异。
在正弦交流电路中,相位是一个重要参数。
不同元件间存在着不同相位差,而且相位差随频率变化。
七、滤波器滤波器是指通过对信号进行滤波,去除不需要或者干扰信号来得到所需信号的设备。
根据滤波器对信号处理方式不同,可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
八、交流电路中的共振共振是指在交流电路中,当电容和电感与外部信号频率相等时,电路中的阻抗达到最小值。
在共振状态下,电路中的能量传输效率最高。
九、交流电路中的谐波谐波是指在交流电路中,除了基频信号之外产生的频率为整数倍于基频信号频率的信号。
第三章 正弦交流电路一、填空题1.交流电流是指电流的大小和____ 都随时间作周期变化,且在一个周期内其平均值为零的电流。
2.正弦交流电路是指电路中的电压、电流均随时间按____ 规律变化的电路。
3.正弦交流电的瞬时表达式为e =____________、i =____________。
4.角频率是指交流电在________时间内变化的电角度。
5.正弦交流电的三个基本要素是_____、_____和_____。
6.我国工业及生活中使用的交流电频率____,周期为____。
7. 已知V t t u )270100sin(4)(︒+-=,m U = V ,ω= rad/s ,ψ = rad ,T= s ,f= Hz ,Tt=12时,u(t)= 。
8.已知两个正弦交流电流A )90314sin(310A,)30314sin(100201+=-=t i t i ,则21i i 和的相位差为_____,___超前___。
9.有一正弦交流电流,有效值为20A ,其最大值为____,平均值为____。
10.已知正弦交流电压V )30314sin(100+=t u ,该电压有效值U=_____。
11.已知正弦交流电流A )60314sin(250-=t i ,该电流有效值I=_____。
12.已知正弦交流电压()V 60314sin 22200+=t u ,它的最大值为___,有效值为____,角频率为____,相位为____,初相位为____。
13.正弦交流电的四种表示方法是相量图、曲线图、_____ 和_____ 。
14.正弦量的相量表示法,就是用复数的模数表示正弦量的_____,用复数的辐角表示正弦量的_______。
15.已知某正弦交流电压V t U u u m )sin(ψω-=,则其相量形式•U =______V 。
16.已知某正弦交流电流相量形式为0i120e50=•I A ,则其瞬时表达式i =__________A 。
§6-5 R 、L 、C 的相量模型在正弦稳态电路中,三种基本电路元件R 、L 、C 的电压、电流之间的关系都是同频率正弦电压、电流之间的关系,所涉及的有关运算都可以用相量进行,因此这些关系的时域形式都可以转换为相量形式。
一. 正弦交流电路中的电阻元件1. 电阻元件伏安关系在电压和电流的参考方向关联时,电阻R 的伏安关系的时域形式R R ()()u t R i t =⋅当正弦电流i R =2I R cos(ωt +ψi )通过电阻R 时, 则 R Rm i u ()cos()cos()Rm u t RI t U t ωψωψ=+=+Rm Rm R R U RI U RI =⎫⎬=⎭电压、电流的最大值(有效值)之间符合欧姆定律;u i u i 0ψψϕψψ=⎫⎬=-=⎭R u 与R i 同相令:R R R iRR R R u R i ()()i t I I u t U U RI R I ψψψ⇒=∠⇒=∠=∠=则在电压和电流关联参考方向下电阻的伏安关系的相量形式为R R U R I = Rm Rm U R I =线性电阻的相量电路、相量图如下。
u R (t )R UR IR I 与R U 共线2. 功率:①瞬时功率:由于瞬时功率p 是由同一时刻的电压与电流的乘积来确定的,因此当流过电阻R 的电流为i R (t )=I R m cos(ωt +Ψi )时,电阻所吸收的瞬时功率为R R R Rm u Rm i 2R R i R R R R i ()()()cos()cos() 2cos ()cos(2)0p t u t i t U t I t U I t U I U I t ωψωψωψωψ==++=+=++≥常量 两倍于原频率的正弦量可以看出,电阻吸收的功率是随时间变化的,但p R 始终大于或等于零,表明了电阻的耗能特性。
上式还表明了电阻元件的瞬时功率包含一个常数项和一个两倍于原电流频率的正弦项,即电流或电压变化一个循环时,功率变化了两个循环。
§5.1 正弦交流电的基本概念本节主要讲正弦交流电的基本概念,我们必须掌握。
一、正弦交流电的三要素我们中学时学过周期这个概念,现在我们来复习一下,所谓周期信号就是每隔一定的时间T,电流和电压的波形重复出现。
我们用数学表示式为 f(t)=f(t+KT)式中K为任何整数。
我们把周期信号完成一个循环所需要的时间T称为周期,周期的单位为秒(S)。
我们又把周期信号在单位时间内完成的循环次数称为频率,显然,频率与周期的关系为f=1/T频率的单位为赫兹(Hz)我国电力网所供给的交流电的频率是50Hz,它的周期是0.02S。
周期信号不仅有大小而且有方向例如右图: 假如通过它的方向是图B所示,那么,当i(t)的波形为正时,表示电流的 实际方向与参考方向一致,当i(t)的波形为负时,则表示相反。
按正弦(余弦)规律变化的周期信号,称为正弦交流电。
简称交流电,以电流为例,其瞬是表达式为i(t)=ImCOS(ωt+θi) 其波形如图C所示,式中Im称为振幅或最大值,它表示正弦波的变化范围,ωt+θi称为正弦波的相位,它表示正弦量变化的进程,因为相位是用角度表示的,故又称为相位角。
我们在中学时已经知道 ω=2π/T=2πf ω称为角频率,其单位是弧度/秒(rad/s)当t=0时,相位角为θi,称为初相位或初相角,简称初相。
一般规定它的范围在-π—π二、相位差有两个同频率正弦交流电,它们分别为u1(t)=U1mCOS(ωt+θ1) u2(t)=U2mCOS(ωt+θ2)它们的相位之差称为相位差,用φ表示,即φ=(ωt+θ1)-(ωt+θ2)=θ1-θ2如果φ〉0,我们称u1(t)超前u2(t),u1(t)先达到正的最大值;如果φ=0,我们称u1(t)与u2(t)同相,即初相相等,u1(t)与u2(t)同时达到正的最大值;如果φ=±π,我们称u1(t)与u2(t)反相,如果u1(t)达到正的最大值,则u2(t)达到负的最大值;三、举例说明例 设有两个频率相同的正弦电流i1(t)=5COS(ωt+60ο)A i2(t)=10SIN(ωt+40ο)A问哪一个电流滞后,滞后的角度是多少?解 首先,把i2(t)改写称用余弦函数表示,即i2(t)=10SIN(ωt+40ο)A =10SIN(90ο+ωt-50ο)A= 10COS(ωt-50ο)A 所以 φ=θ1-θ2=60ο-(-50ο)=110ο电流i2(t)滞后的角度是110ο返回下一节§5.2 利用相量表示正弦交流电在分析电路的正弦稳态响应时,经常遇到正弦波的代数、微分等复杂运算,为此,我们借用复数来表示正弦交流电,从而可以使正弦稳态电路的分析和计算得到减化。
第二章正弦交流电路2.1.1 正弦量的三要素及表示方法(1)正弦交流电路:如果在线性电路中施加正弦激励(正弦交流电压源或正弦交流电流源),则电路中的所有响应在电路达到稳态时,也都是与激励同频率的正弦量,这样的电路称为正弦交流电路。
(2)正弦交流电压或正弦交流电流等物理量统称为正弦量,它们的特征表现在变化的快慢、大小及初值3个方面,分别由频率(或周期)、幅值(或有效值)和初相位来确定。
所以称频率、幅值(或有效值)和初相位为正弦量的三要素。
(3)因为正弦量具有3个要素,它们完全可以表达对应的正弦量的特点和共性。
所以,只要能够反映出正弦的三要素,就可以找到多种表示正弦量的方法,其常见的表示方法如下。
①三角函数表示法和正弦波形图示法,比如正弦电压u=U m sin(ωt+φ),其正弦波形如图2.1所示,但是正弦量的这两种表示方法都不利于计算。
②旋转矢量表示法,由于复平面上一个逆时针方向旋转的复数能够反映出正弦量的3个要素,因此可用来表示正弦量。
③相量及相量图表示法,由于正弦交流电路中的激励和响应均为同频率的正弦量,故可在已知频率的情况下,只研究幅值和初相位的问题。
这样,不仅可以用旋转矢量表示正弦量,而且也能把正弦量表示成复数(该复数与一个正弦量对应,称为相量)。
图2.1所示正弦电压的幅值相量和有效值相量分别为2.1.2 电路基本定律的相量形式将正弦量用相量表示有利于简化电路的分析和计算,其中电路分析的基本定律在频域中也是成立的,即为表2.1的电路基本定律的相量形式。
当用相量来表示正弦电压与电流,用复阻抗来表示电阻、电感和电容时,正弦交流电路的分析与计算也就类似于直流电路,复阻抗的串并联等效、支路电流法、叠加定理和戴维宁定理等分析方法均可应用。
为了研究复杂正弦交流电路中激励与响应之间的关系,以及研究电路中能量的转换与功率问题,就必须首先掌握单一参数(电阻、电感、电容)元件在正弦交流电路中的特性(见表2.2),以作为分析复杂正弦交流电路的基础。
正弦交流电路中的电容元件在说到交流电路里的电容器,很多人可能会皱眉头,觉得这玩意儿又复杂又神秘。
其实啊,说到底,电容就是一个能存储电能的小“仓库”,而它在交流电路中的作用,可不小!哎,想象一下你把电容看成一个小小的水库,而电流就是水,电流进得了水库,也能出来。
但是!并不是所有水流都能像“流水线”一样畅通无阻,电容可不按常理出牌,它会根据电流的频率来“选择”是否接受,甚至会调皮地“反向”走一回。
真的是神秘又有趣啊!你要是站在电流的角度看这件事,可能会有点懵。
正常情况下,电流就像流水一样,顺着电线来来去去,没什么难度。
但是一旦碰到电容,电流就变得有点儿“慢热”。
它不直接通过电容流过去,而是得先“储存”一点电能,再慢慢释放。
所以,电容在电路里的角色,像极了一个脾气有点古怪的接待员,总是让电流在门口等一等。
你说,这电容是爱“装”还是“藏”?嘿,谁知道呢!电容在交流电路中的一个特别牛的地方,就是它对频率非常敏感。
这就好比你家里的空调,调节得好,冷气吹得刚刚好。
频率高了,电容表现得像个“门卫”,不允许电流进去;频率低了,电容就“放行”了,电流也能顺利通过。
你想,电流就像跳舞一样,速度快慢不一,电容是那个“把关的”角色,能决定这舞步是否流畅。
简直就是个电路里的“导演”!哦,对了,电容其实不单单是用来“阻拦”电流的,它还有一个很酷的作用,就是“调节”电流的相位。
你是不是想:啥是相位?别急,咱举个简单的例子!假如你有两个人,一个跑得快,一个跑得慢。
看似他们俩起跑点一样,但其实到了终点时,他们的时间差可能就不一样。
电容就是在“调时间差”,它让电压和电流之间保持着一种“默契”,避免它们完全脱节。
所以,电容在电路里的“跳舞”可以说是轻盈且富有节奏感。
电流嘛,时而领先,时而稍稍落后,完美无缺。
说到这里,你也许会好奇,电容具体有什么样的实际应用呢?哦哟,别说你没见过!很多家电里都有电容的身影,最典型的就得说空调了。
空调里的电容,就像是那个“幕后推手”,它帮助调节电流,使得空调工作得更加高效。