时程分析方法.ppt
- 格式:ppt
- 大小:1.38 MB
- 文档页数:15
时程分析法
时程分析法是一种分析和评价活动所需时间的途径,它能够把项目分解成一系列相关
任务,并为每个任务估计持续时间。
它也能够把一个或多个活动编排到时间序列中,帮助
项目计划和项目管理者利用资源,完成活动的计划顺利实施。
时程分析法考虑到项目的复杂性,重视活动和项目之间的联系,并针对多个不确定因
素进行量化估计。
该方法把项目分解成一系列相关任务,根据可能出现的延时进行时间估计。
它以划定活动和计算项目持续时间为基础,将其转化成有效的计划。
时程分析法的优点在于,它能够帮助管理者精确估计活动所需的时间,简化计划复杂、持续时间长的项目,从而有效的提高项目的效率,节约时间。
另外,该方法还能够帮助计
划和管理者对项目可能出现的各类因素进行量化评估,预期出现的问题及时发现,从而有
效解决这些问题,防止项目拖延而出现延期。
时程分析法也有一定的缺陷,例如,它无法准确评估一些不可预测的情况;时程分析
法面对复杂的项目可能会有些繁琐;一些单独的活动可能会受到其他活动的干扰等。
因此,对于较大型的项目,时程分析法可以帮助管理者制定适当的计划,准确判断任
务持续时间,有效地提高项目效率,节约时间,增加项目交付效率,但也应注意一些缺陷,根据实际情况适当使用此方法。
时程分析法1、结构动力方程的建立结构弹性动力方程可以表示为:[]{}[]{}[]{}[]{}()g M x C x K x M E x t ++=-(错误!文档中没有指定样式的文字。
-1)式中[]M 、[]C 和[]K 分别为体系的质量、阻尼和刚度矩阵,{}x 、{}x 和{}x 分别表示结构体系的加速度、速度和位移向量,()g x t 为地面运动水平加速度。
式(错误!文档中没有指定样式的文字。
-1)中,{}[]K x 实际上是结构变形为{}x 时的弹性恢复力向量,但是当结构进入弹塑性变形状态后,结构的恢复力不再与{}[]K x 对应,而与结构运动的时间历程有关。
因此,结构运动的弹塑性运动微分方程可以表示为:[]{}[]{}[]{}()()()((()))g M x t C x t f x t M E x t ++=-(错误!文档中没有指定样式的文字。
-2)式(错误!文档中没有指定样式的文字。
-2)中{}()x t 、{}()x t 和{}()x t 分别表示结构体系在t 时刻的加速度、速度、位移,在t t +∆时刻,式(错误!文档中没有指定样式的文字。
-2)变为:[]{}[]{}[]{}()()()((()))g M x t t C x t t f x t t M E x t t +∆++∆++∆=-+∆(错误!文档中没有指定样式的文字。
-3)式(错误!文档中没有指定样式的文字。
-3)减去(错误!文档中没有指定样式的文字。
-2)得[]{}[]{}[]{}()g M x C x f M E x ∆+∆+∆=-∆(错误!文档中没有指定样式的文字。
-4)当t ∆较小时,结构的位移变化()()x x t t x t ∆=+∆-也不是很大,则{}f ∆可根据t 时刻的切线刚度[]()K t 近似计算{}[]{}()()f K t x t ∆=∆(错误!文档中没有指定样式的文字。
-5)将式(错误!文档中没有指定样式的文字。
时程分析法时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
19. 时程分析(Time History Analysis) 时程分析(Time History Analysis)中所使用的动力平衡方程如下。
: 质量矩阵(Mass Matrix) : 阻尼矩阵(Damping Matrix) : 刚度矩阵(Stiffness Matrix) : 动力荷载 、 、 : 位移、速度、加速度时程分析是可以求出建筑物在动力荷载作用下的动力平衡方程解的方法,这 种方法利用建筑物的动力特性和承受的荷载,计算出处于任意时间内建筑物 的变形、内力等。
时程分析方法中有直接积分法(Direct Integration)和振 型叠加法(Modal Superposition),由于振型叠加法的效果好,所以被较多 地使用。
振型叠加法 振型叠加法利用建筑物位移之间具有的正交性,通过线性组合的形式进行表 示,公式如下。
这种方法是在假定阻尼矩阵可以用质量矩阵和刚度矩阵的线 性组合进行表示的前提之下。
(1)(2) (3)(4)(5): Rayleigh 系数 : 第 i 振型的阻尼比 : 第 i 振型的基本周期 : 第 i 振型的模态 : 第 i 振型的单自由度方程的解 时程分析中,建筑物的位移可以按照像公式(4)一样使用振型模态和单自由 度方程解的乘积表示,位移的准确性受到所使用的振型数量的影响。
这种方 法是结构分析程序中使用最多的方法,可以说是大型建筑物线性动力分析中 非常有效的方法。
但是在非线性动力分析或者装有阻尼装置,阻尼无法用刚 度和质量的线性组合进行表现时是不能使用该方法的,这是该方法的缺点。
利用振型叠加法时,需要输入的数据和输入注意事项如下: 分析时间(或者分析步骤次数) : 打算进行分析的时间或者分析步骤数 分析时间间隔: 是分析过程中使用的时间间隔, 对分析的正确性有着相当 程度的影响,时间间隔的长短与建筑物的高阶振型周期或者荷载周期有着密 切的关系。
分析时间间隔对<公式 5>的积分项有着直接的影响,如果输入的 数据不合适,结果将不正确。
时程分析法
时程分析法是一种管理学中的常见方法,它的目的是为了帮助组织将
任务安排在合理的时间节点上。
这个方法通常应用于复杂的多阶段项目,它可以用来预测任务完成的时间,以及团队的能力和外部条件如
天气、材料供应及其他人的工作状况等对整体进度的影响。
时程分析法的基本步骤包括:整体计划时间,首先根据项目需要分析
计划时间,如最终完成日期;分配子任务,将大项目分解成小任务分
配给不同成员;制定并审查工作计划,建立项目各阶段时间表,逐一
审查每个任务的完成时间;安排资源,协调外部资源,如材料或服务;进行控制,对执行任务的进度进行跟踪,必要时作出调整。
完成时,
可以通过比较实现的目标与原定目标是否一致来评估项目整体进展情况。
时程分析法的优点在于可以有效控制项目的实施进度,因为它清楚明
确的把握每个环节的时间。
可以帮助组织团队能够有效地利用每一分钟;它也有助于发现及早及解决项目可能遇到的延期,成本超额等问题,从而使项目实施更加有效率;在决策方面,可以得到精确的数据
分析,更好的把握住项目的总体进展。
总之,时程分析法是一种有效的管理手段,它可以有效控制各个阶段
的时间,使项目实施更加有效,以达到最佳效果。
它能够根据不同的
情况和条件来完善计划,使它们能够满足组织的要求。
时程分析到达时间的方法
时程分析是一种用于确定项目活动开始和结束时间的方法。
它通过计算活动的早期开始时间(EST)和晚期开始时间(LST),以及活动的早期完成时间(EFT)和晚期完成时间(LFT),来确定活动的最早到达时间和最晚到达时间。
以下是一种常用的方法来确定活动的到达时间:
1. 计算活动的最早开始时间(EST)和最早完成时间(EFT):
- EST:从项目开始点到该活动的最早到达时间。
- EFT:从项目开始点到该活动的最早离开时间,等于EST加上该活动的持续时间。
2. 计算活动的最晚开始时间(LST)和最晚完成时间(LFT):
- LFT:从项目结束点到该活动的最晚到达时间。
- LST:从项目结束点到该活动的最晚离开时间,等于LFT减去该活动的持续时间。
3. 确定活动的到达时间:
- 活动的最早到达时间等于其前置活动的最早完成时间(EFT)。
- 活动的最晚到达时间等于其后续活动的最晚开始时间(LST)减去其持续时间。
通过计算活动的EST、EFT、LST和LFT,并确定活动的到达时间,可以帮助项目团队确定项目进程和关键路径,以及项目活动的时间约束和风险。
这些信息对于项目的执行和控制至关重要。
第九章时程分析法第一节时程分析法的概念振型分解法仅限于计算结构在地震作用下的弹性地震反应。
时程分析法是用数值积分求解运动微分方程的一种方法,在数学上称为逐步积分法。
这种方法是从t=0时刻开始,一个时段接着一个时段地逐步计算,每一时段均利用前一时段的结果,而最初时段应根据系统的初始条件来确定初始值。
即是由初始状态开始逐步积分直至地震终止,求出结构在地震作用下从静止到振动、直至振动终止整个过程的地震反应。
时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。
时程分析法能给出结构地震反应的全过程,能给出地震过程中各构件进入弹塑性变形阶段的内力和变形状态,因而能找出结构的薄弱环节。
时程分析法分为弹性时程分析法和弹塑性时程分析法两类。
第一阶段抗震计算“小震不坏”中,采用时程分析法进行补充计算,这时计算所采用的结构刚度和阻尼在地震作用过程中保持不变,称为弹性时程分析。
在第二阶段抗震计算“大震不倒”中,采用时程分析法进行弹塑性变形计算,这时结构刚度和阻尼随结构及其构件所处的非线性状态,在不同时刻可能取不同的数值,称为弹塑性时程分析。
弹塑性时程分析能够描述结构在强震作用下在弹性和非线性阶段的内力、变形,以及结构构件逐步开裂、屈服、破坏甚至倒塌的全过程。
第二节时程分析法的适用范围一、时程分析法的适用范围时程分析法是根据选定的地震波和结构恢复力特性曲线,对动力方程进行直接积分,采用逐步积分的方法计算地震过程中每一瞬时的结构位移、速度和加速度反应,从而可观察到结构在强震作用下弹性和非弹性阶段的内力变化以及构件开裂、损坏直至结构倒塌的全过程。
但此法的计算工作十分繁重,须借助计算机,费用较高,且确定计算参数尚有许多困难,目前仅在一些重要的、特殊的、复杂的以及高层建筑结构的抗震设计中应用。
《建筑抗震设计规范》对时程分析法的适用范围规定如下:9-2 全国注册结构工程师专业备考加油站辅导教材《建筑抗震设计规范》的条文说明:与振型分解反应谱法相比,时程分析法校正与补充了反应谱法分析的不足。
时程分析法定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。
概述:时程分析法是世纪60年代逐步发展起来的抗震分析方法。
用以进行超高层建筑的抗震分析和工程抗震研究等。
至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。
原理:时程分析法在数学上称步步积分法,抗震设计中也称为“动态设计”。
由结构基本运动方程输入地面加速度记录进行积分求解,以求得整个时间历程的地震反应的方法。
此法输入与结构所在场地相应的地震波作为地震作用,由初始状态开始, 一步一步地逐步积分,直至地震作用终了。
是对工程的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,通过积分运算求得在地面加速度随时间变化期间结构的内力和变形状态随时间变化的全过程,并以此进行结构构件的界面抗震承载力验算和变形验算。
时程分析法是世纪60年代逐步发展起来的抗震分析方法。
用以进行超高层建筑的抗震分析和工程抗震研究等。
至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。
“时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。
“时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的。
规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算。
所以有较多设计人员对应用时程分析法进行抗震设计感到生疏。
近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了。
地震动输入对结构的地震反应影响非常大。
目前的现状是,输入地震动的选择大多选择为数不多的几条典型记录(如:1940年的El Centro(NS)记录或1952年的Taft记录),国内外进行结构时程分析时所经常采用的几条实际强震记录主要有适用于I类场地的滦河波、适用于II、III类场地的El-Centrol波(1940,N-S)和Taft波(1952,E-w)、适用于IV类场地的宁河波等。