智能手机基带处理器电路原理
- 格式:doc
- 大小:1.24 MB
- 文档页数:6
手机原理图分析一、手机基本电路框图:二、基带CPU(MT6226)内部框图:1、组成部分:z DSP:主要完成对语音信号的编解码、信道编码、加密、交织处理等;z ARM7:主要是对外部Memory接口、用户接口(LCD、键盘、触摸等)、语音接口、射频接口、电源管理等的命令控制,使各部分协调工作。
2、基带部分语音编码过程(DSP):GSM标准规定时隙宽为0.577ms,8个时隙为一帧,帧周期为0.577×8=4.615ms。
因此,用示波器观测GSM移动电话机收发信息,会看到周期为4.615ms、宽0.577ms的突发脉冲。
基带部分电路包括信道编/译码、加密/解密、TDMA帧形成/信道分离及基准时钟电路,它还包括话音/译码、码速适配器等电路。
来自送话器的话音信号经过8kHz抽样及A/D转换,变成13bit均匀量化的104kbit/s数据流,再由话音编码器进行RPE-LTP编码。
编码输入为每20ms一段,经话音编码压缩后变为260bit,其中LPC-LTP为72bit,RPE为188bit。
话音编码后的信号速率为13kbit/s。
同时话音编码器还提供话音活性检测(vAD)功能,即当有话音时,其SP信号为1;当无话音传输时,将SP示为0(即SID帧)。
13kbit/s 话音信号进入信道编码器进行编码。
对于话音信号的每20ms 段,信道编码器首先对话音信号中最重要的Ia 类50bit 进行分组编码(CRC 校验),产生3bit 校验位,再与132bit 的Ib 类比特组成185bit ,再加上4个尾比特“0”,组合为189bit ,这189bit 再进入1/2速率卷积码编码器,该编码限制长度为5,最后产生出378bit 。
这378bit 再与话音信号中对无线信道最不敏感的II 类78bit 组成最终的456bit 组。
同样,对于信令信号,由控制器产生并送给信道编码器,首先按FIRE(法尔)码进行分组编码(称为块编码),然后再进入1/2卷积编码,最后形成456bit 组。
手机原理图分析一、手机基本电路框图:二、基带CPU(MT6226)内部框图:1、组成部分:z DSP:主要完成对语音信号的编解码、信道编码、加密、交织处理等;z ARM7:主要是对外部Memory接口、用户接口(LCD、键盘、触摸等)、语音接口、射频接口、电源管理等的命令控制,使各部分协调工作。
2、基带部分语音编码过程(DSP):GSM标准规定时隙宽为0.577ms,8个时隙为一帧,帧周期为0.577×8=4.615ms。
因此,用示波器观测GSM移动电话机收发信息,会看到周期为4.615ms、宽0.577ms的突发脉冲。
基带部分电路包括信道编/译码、加密/解密、TDMA帧形成/信道分离及基准时钟电路,它还包括话音/译码、码速适配器等电路。
来自送话器的话音信号经过8kHz抽样及A/D转换,变成13bit均匀量化的104kbit/s数据流,再由话音编码器进行RPE-LTP编码。
编码输入为每20ms一段,经话音编码压缩后变为260bit,其中LPC-LTP为72bit,RPE为188bit。
话音编码后的信号速率为13kbit/s。
同时话音编码器还提供话音活性检测(vAD)功能,即当有话音时,其SP信号为1;当无话音传输时,将SP示为0(即SID帧)。
13kbit/s 话音信号进入信道编码器进行编码。
对于话音信号的每20ms 段,信道编码器首先对话音信号中最重要的Ia 类50bit 进行分组编码(CRC 校验),产生3bit 校验位,再与132bit 的Ib 类比特组成185bit ,再加上4个尾比特“0”,组合为189bit ,这189bit 再进入1/2速率卷积码编码器,该编码限制长度为5,最后产生出378bit 。
这378bit 再与话音信号中对无线信道最不敏感的II 类78bit 组成最终的456bit 组。
同样,对于信令信号,由控制器产生并送给信道编码器,首先按FIRE(法尔)码进行分组编码(称为块编码),然后再进入1/2卷积编码,最后形成456bit 组。
第一章第一节T18机型逻辑电路原理T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。
(图1)(图1)由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。
1、双卡电路工作原理电路T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2(图2)其工作原理:当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。
2、充电电路当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。
其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。
关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手机仍处于关机状态。
TCL6898手机基本电路原理概述TCL6898是一款双频手机,根据网络情况,可以在GSM900M与DCS1800M之间自动切换,其电路主要由射频,基带及电源电路构成。
射频部分可以分成接收电路,发射电路及频率合成电路,由U705(HD155131TF-EB),通过串行总线在基带MCU控制下,完成对信号的接收解调及调制发射过程。
工作在GSM900频段时,接收频率范围为925.2MHz~959.8MHz,发射频率范围为880.2MHz~914.8MHz;工作在DCS1800频段时,接收频率为1805.2~1879.8M,发射频率为1710.2M~1784.8M。
由V801(VCTCXO)产生的13MHz 作为整个系统工作的基准频率。
基带电路主要包括中央处理器U101(AD6426AB,为手机电路的CPU),存储器U103(EEPROM),U121(32M FLASH MEMORY +4M SRAM),以及实现A/D,D/A变换的U102(AD6421AST)等组成,完成全速率语音编解码,信道编解码,GMSK调制等过程,并产生各种信令来控制其它各部分电路的工作。
电源电路主要由电源管理模块U241,及充电电路构成。
射频电路分析接收电路从天线接收到的信号(范围-15dBm~-110dBm)经双工器Z701(HWXP207-1)滤波(从第14脚进入,GSM信号从13脚输出,经C532、C533和L530滤波后,到达中频IC(HD155131TF)的第6脚;DCS信号从15脚输出,经C516、C517和L508滤波后,到达中频IC (HD155131TF)的第10脚),经内部一LNA(低噪声放大器)放大输出,放大倍数由天线输入信号大小决定,当输入大于-48dBm信号时,输入信号太强,放大器停止工作,此时放大倍数约为-5dBm(即衰减)。
当输入小于-48dBm信号时,放大器工作,放大倍数控制在15dBm以内,保证输入到后级的信号大小在一定范围内,与后级的PGC放大器一起,最终保证I/Q信号稳定在约4dBm。
智能手机芯片的工作原理近年来智能手机逐渐成为人们必备的生活工具,而智能手机芯片是这个小巧而强大的设备的核心,它是手机性能、功能、功耗等方面的关键所在。
那么,智能手机芯片是如何工作的呢?一、芯片的类型及功能智能手机芯片通常分为四种类型:应用处理器、基带处理器、存储芯片和传感器。
其中,应用处理器(Application Processor, AP)是智能手机最为重要的芯片之一,它由CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processing)和ISP(Image Signal Processing)等部件组成,主要负责运行手机上的各种应用程序,控制手机的运行、通信和娱乐等功能。
基带处理器(Baseband Processor)则是指控制手机与网络通讯连接的芯片,它支持多种移动通信标准,如2G、3G、4G、5G等。
存储芯片则负责保存用户的数据、程序和系统文件等。
传感器芯片则是通过感应外部环境来实现各种功能的装备,如加速度计、陀螺仪、指纹识别器等。
二、应用处理器的工作原理AP是智能手机最为重要的芯片之一,主要负责运行各种应用程序。
当用户打开一个应用程序时,AP会根据程序的指令集和数据文件,在CPU和GPU等处理器的协同作用下,完成数据的解析、运算和图像的渲染等任务。
其中,CPU是AP最为核心的部件之一,它通过解析指令、调取数据和执行计算等操作,来实现应用程序的运行。
CPU的性能直接影响到手机的运行速度、功耗和温度等参数。
GPU则是AP的另一个重要组成部分,它负责手机上的各种图形处理任务,如游戏画面的渲染、视频播放的解码等。
GPU采用并行计算的方式,能够同时处理多个任务,极大提高了手机的图形处理速度和效果。
DSP则是AP的数字信号处理器,它能够对音频、视频、图像等数字信号进行处理,提高手机的音视频播放、拍照、图像识别等功能。
智能手机的电路原理智能手机的电路原理包括以下几个方面:1. 电源管理电路:负责将电池的直流电转换为各个电路模块所需的稳定电压,并提供电池充电和电池状态监测等功能。
2. 中央处理器(CPU):是智能手机的核心计算单元,负责执行各种应用程序和指令,控制和管理整个手机的操作。
3. 存储器:智能手机通常包括闪存和运行内存。
闪存用于存储操作系统、应用程序和用户数据,运行内存用于临时存储正在运行的应用程序和数据。
4. 通信模块:智能手机需要与基站进行通信,通信模块负责处理无线信号的发送和接收,包括移动通信(如GSM、CDMA、LTE等)、Wi-Fi、蓝牙和GPS等。
5. 图像处理器(GPU):负责处理手机屏幕上的图像和视频,提供高质量的图像显示和流畅的视频播放效果。
6. 触摸屏控制器:智能手机的触摸屏上有一个触摸屏控制器,负责检测和解析用户的触摸输入,并将其转换为相应的操作命令。
7. 传感器:智能手机通常配备了各种传感器,如加速度计、陀螺仪、磁力计、光线传感器和距离传感器等,用于感知手机的方向、位置、光线强度和距离等信息。
8. 音频处理器:负责手机的音频输入和输出,包括麦克风、扬声器和耳机等,同时还支持音频编解码和音效处理功能。
9. 射频收发器:负责手机与通信网络之间的无线信号传输,包括信号的调制解调、放大和滤波等。
10. 外设接口:智能手机还配备了各种外设接口,如USB接口、HDMI接口和SIM卡插槽等,用于与其他设备进行数据交换和连接。
这些电路模块通过相互连接和协同工作,使得智能手机能够实现各种功能,如通话、上网、拍照、录音、游戏等。
同时,为了提高手机的性能和使用体验,电路原理还涉及了许多细节设计和优化,如信号调理、功耗管理和故障检测等。
智能手机电路原理智能手机的电路原理是指智能手机中各种电子元件的布局、连接方式以及相互作用的原理。
这些电子元件包括处理器、内存、存储器、传感器、显示屏、电池等。
下面,我将详细介绍智能手机电路原理的主要组成部分。
1.处理器:智能手机的处理器是其"大脑",负责控制整个系统的运行。
处理器通常由多个核心组成,每个核心都有自己的运算和控制单元,并通过总线连接。
处理器主要包括CPU(中央处理器)、GPU(图形处理器)和DSP(数字信号处理器)等。
CPU负责处理智能手机的大部分计算任务,GPU主要用于图形处理和游戏运行,而DSP负责音频和信号的处理。
2.内存和存储器:智能手机的内存和存储器用于存储和访问应用程序、数据和多媒体文件。
内存通常包括RAM(随机存储器)和ROM(只读存储器)。
RAM用于快速读写数据和运行应用程序,而ROM则用于存储系统软件和固件。
存储器主要包括闪存和SD卡,用于长期存储和备份数据、照片、视频等。
3.传感器:智能手机的传感器用于感知和收集外部环境的信息,从而实现更多的功能和交互方式。
常见的传感器包括加速度计、陀螺仪、磁力计、GPS、指纹识别传感器、环境光传感器等。
这些传感器通过电路与处理器直接连接,可以实时获取外部环境的数据。
4.显示屏:智能手机的显示屏用于显示用户界面、图片和视频等内容。
显示屏通常采用液晶显示技术,具有高分辨率和高亮度。
显示屏电路包括控制电路和背光电路。
控制电路负责接收处理器发送的图像信号并转换为显示屏的语言,而背光电路负责提供显示屏的照明。
5.电池和充电电路:智能手机的电池负责为其提供电力。
电池容量决定了智能手机的使用时间和续航能力。
电池需要通过充电电路进行充电,充电电路主要包括充电管理芯片和充电接口。
充电管理芯片负责监测电池的充电状态和保护电池安全,充电接口则用于连接充电器和电池。
除了以上主要组成部分之外,智能手机还包括音频电路、无线通信电路、触摸屏电路等。
智能手机基带处理器电路原理
在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。
在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。
不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。
我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。
这样看来,基带处理器的主要工作内容和认为就比较容易理解了。
以基带处理器电路PMB8875 为例,框图如图1所示。
图1 基带处理器电路PMB8875 框图
1、模拟基带电路
模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。
模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。
(1)基带信号处理电路
基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。
在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。
基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。
接收基带信号处理框图如图2所示。
图2接收基带信号处理框图
发射基带信号处理框图如图3所示。
图3发射基带信号处理框图
(2)话音基带信号处理电路
话音处理电路用来处理接收、发射音频信号。
在接收方面,将数字基带处理器电路处理得到的接收数字音频信号转换成模拟的话音信号;在发射方面,将模拟话音信号转换成数字音频信号,送到数字基带处理器电路。
接收音频信号处理将数字基带信号处理器得到的接收数字语音信号进行转换,得到模拟的话音信号——数字-模拟变换(DAC)过程。
数字基带信号处理对接收数字基带信号进行解密、信道解码、去分间插入等一系列的处理后,得到数字音频信号,经音频串行接口总线输出数字音频信号,到模拟基带信号处理器。
接收、发射音频信号处理电路如图4所示。
图4接收、发射音频信号处理电路
接收音频处理电路处理得到的模拟话音信号通常用于手机中的内的受话器、扬声器、耳机,或输出到外接的音频附件。
接收音频终端电路通常都比较简单,模拟基带处理电路输出的信号或直接送到音频终端,或通过模拟电子开关、外部的音频放大器到音频终端。
(3)辅助变换电路
辅助变换电路直接由数字基带信号处理器部分引出的同步串行口寻址,多少与基带部分的串口相似,通过辅助串行接口(控制串行接口)连接到数字基带信号处理器。
辅助变换电路通常包含两个部分,一个是ADC,一个是DAC。
DAC 是固定的,通常都是自动频率控制信号产生的AFC DAC,以及发射功率控制信号产生的VAPC DAC;在ADC 方面,模拟基带信号处理器通常提供多个通道的ADC 变换,不同的模拟基带信号处理器提供的ADC 通道不同。
1)DAC 电路
在DAC 方面,一个是AFC,一个是APC,它们的控制数据信号都是数字基带处理电路输出,经控制串行接口到模拟基带处理电路。
在AFC 方面,数字基带处理电路输出的控制数据信号通常要由控制寄存器缓冲,然后将控制数据送到
AFC DAC 单元,进行数字-模拟变换。
AFC DAC 单元输出的信号经滤波后,被送到手机的参考振荡(系统主时钟)电路的频率特性,控制手机的时钟与基站系统的时钟同步。
发射功率控制的DAC 通道比AFC DAC 通道复杂,如图5所示。
图5发射功率控制的DAC 通道
2)ADC 电路
ADC 通道主要被用来进行电池电压监测、电池温度监测、环境温度监测等。
ADC 的输入信号端口连接到各相应的监测电路,以得到模拟的监测电压(或电流)信号。
输入的模拟电信号经AD 变换后,得到的数据信号经控制串行接口送到数字基带信号处理器。
手机系统通过访问系统软件中的参数值与手机的相关工作状态来决定相应的控制动作。
2、数字基带电路结构
数字基带电路包括微处理器电路、数字语音处理器电路(DSP)、ASIC 电路、音频编译码电路、射频逻辑接口电路等。
(1)微处理器电路
微处理器MCU( Microcontroller Unit)相当于计算机中的CPU,它通常是简化指令集的计算机芯片(RISC)。
MCU 电路通常会提供一些用户界面、系统控制等;它包括一个CPU(中央处理器)核心,和单片机支持系统,手机的微处理器有采用Intel 处理器内核的,也有采用ARM 处理器内核的,多数手机的微处理器都采用ARM 处理器内核。
在智能手机中,基带电路的MCU 执行多个功能,包括系统控制、通讯控制、身份验证、射频监测、工作模式控制、附件监测、电池监测等,提供与计算机、外部调试设备的通讯接口,如JTAG 接口等。
不同厂家MCU 或许在构造上有这样那样的不同,但它们的基本功能都相似,手机中的MCU 电路都被集成在(数字)基带信号处理器中。
(2)数字语音处理器电路(DSP)
DSP 是Digital signal processing 的缩写,即是数字信号处理,手机的DSP 由DSP 内核加上内建的RAM 和加载了软件代码的ROM 组成。
DSP 通常提供如下的一些功能:射频控制、信道编码、均衡、分间插入与去分间插入、AGC、AFC、SYCN、密码算法、邻近蜂窝监测等。
DSP 核心还要处理一些其他的功能,包括双音多频音的产生和一些短时回声的抵消,在GSM 移动电话的DSP 中,通常还有突发脉冲(Burst)建立。
数字语音处理器电路框图如图6所示。
图6数字语音处理器电路框图
(3)ASIC 电路
ASIC 是application specific integrated circuit 的缩写,即专用应用集成电路。
在手机中,ASIC 通常包含如下的一些功能:提供MCU 与用户模组之间的接口;提供MCU 与DSP 之间的接口;提供MCU、DSP 与射频逻辑接口电路之间的接口;产生时钟;提供用户接口;提供SIM 卡接口(GSM 手机),或提供UIM 接口(CDMA 手机);提供时间管理及外接通讯接口等。
除了诺基亚早期的一些GSM 手机外,很少有独立的ASIC 单元,ASIC 单元所包含的接口电路通常被集成在数字基带信号处理器中。
(4)音频编译码电路
音频编译码电路完成了语音信号的A/D、D/A 转换、PCM 编译码、音频路径转换;发射话音的前置放大;接收话音的驱动放大器;双音多频DTMF 信号发生等功能。
接收音频处理电路框图如图7所示。
图7接收音频处理电路框图
发射音频处理框图如图8所示。
图8发射音频处理框图
(5)射频逻辑接口
在接收方面,接收射频电路输出的接收机模拟基带信号,并通过ADC 处理将接收基带信号转换为数字接收基带信号,接收数字基带信号被送到DSP 电路进行进一步的处理。
在发射方面,射频逻辑接口电路接收DSP 电路输出的发射数字基带信号,并通过GMSK调制(或QPSK 调制等)、DAC 转换,将发射数字基带信号转化为模拟的发射基带信号TXI/Q。
TXI/Q 信号被送到发射机射频部分的发射I/Q 调制电路,调制到发射中频(或射频)载波上。
射频逻辑接口还提供AFC 信号处理、AGC 与APC 信号处理等。