_向量自回归模型(_VAR)_和VEC
- 格式:ppt
- 大小:1.17 MB
- 文档页数:100
V AR模型、协整和VEC模型1. V AR(向量自回归)模型定义2. V AR模型的特点3. V AR模型稳定的条件4. V AR模型的分解5. V AR模型滞后期的选择6. 脉冲响应函数和方差分解7. 格兰杰(Granger)非因果性检验8. V AR模型与协整9. V AR模型中协整向量的估计与检验10. 案例分析1980年Sims 提出向量自回归模型(vector autoregressive model )。
这种模型采用多方程联立的形式,它不以经济理论为基础。
在模型的每一个方程中,内生变量对模型的全部内生变量的滞后项进行回归,从而估计全部内生变量的动态关系。
1. V AR (向量自回归)模型定义以两个变量y 1t ,y 2t 滞后1期的V AR 模型为例,y 1, t = c 1 + π11.1 y 1, t -1 + π12.1 y 2, t -1 + u 1t y 2, t = c 2 + π21.1 y 1, t -1 + π22.1 y 2, t -1 + u 2t其中u 1 t , u 2 t ~ IID (0, σ 2), Cov(u 1 t , u 2 t ) = 0。
写成矩阵形式是,⎥⎦⎤⎢⎣⎡t t y y 21=12c c ⎡⎤⎢⎥⎣⎦+⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ⎥⎦⎤⎢⎣⎡--1,21,1t t y y +⎥⎦⎤⎢⎣⎡t t u u 21设Y t =⎥⎦⎤⎢⎣⎡t t y y 21, c =12c c ⎡⎤⎢⎥⎣⎦, ∏1 =⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ, u t =⎥⎦⎤⎢⎣⎡t t u u 21, 则,Y t = c + ∏1 Y t -1 + u t (1.3)含有N 个变量滞后k 期的V AR 模型表示如下:Y t = c + ∏1 Y t -1 + ∏2 Y t -2 + … + ∏k Y t -k + u t , u t ~ IID (0, Ω)其中,Y t = (y 1, ty 2, t … y N , t )', c = (c 1 c 2 … c N )'∏j =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡j NN jN jN j N jj j N j j..2.1.2.22.21.1.12.11πππππππππ, j = 1, 2, …, ku t = (u 1 t u 2,t … u N t )',不同方程对应的随机误差项之间可能存在相关。
vec指标
"vec"指标(Vector Error Correction)是一种用于时间序列分析的方法,用于研究多个经济变量之间的关系。
在经济学中,多个经济变量之间可能存在着长期均衡关系和短期动态关系,"vec"指标可以用来估计这些关系。
具体来说,"vec"指标是一种修正误差模型(Error Correction Model,ECM)的扩展形式。
它可以用来分析经济变量之间的长期均衡关系,同时还可以考虑短期的动态调整过程。
"vec"指标建立在向量自回归模型(Vector Autoregression,VAR)的基础上,通过添加一条误差修正项,来考虑多个经济变量之间的长期均衡关系。
这个误差修正项表示的是,当某个变量与其长期均衡值之间存在偏离时,它会被引导向长期均衡关系。
"vec"指标在宏观经济学、金融学等领域得到广泛应用,可以用来分析货币政策、国际贸易、汇率波动等问题。
向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
向量自回归模型(VAR )与向量误差修正模型(VEC )向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。
这种模型其优点是具有明显的经济理论含义。
但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。
一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。
为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。
VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。
它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。
而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。
VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (15.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (15.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (15. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式. 如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。
V AR模型、协整和VEC模型1. V AR(向量自回归)模型定义2. V AR模型的特点3. V AR模型稳定的条件4. V AR模型的分解5. V AR模型滞后期的选择6. 脉冲响应函数和方差分解7. 格兰杰(Granger)非因果性检验8. V AR模型与协整9. V AR模型中协整向量的估计与检验10. 案例分析1980年Sims 提出向量自回归模型(vector autoregressive model )。
这种模型采用多方程联立的形式,它不以经济理论为基础。
在模型的每一个方程中,内生变量对模型的全部内生变量的滞后项进行回归,从而估计全部内生变量的动态关系。
1. V AR (向量自回归)模型定义以两个变量y 1t ,y 2t 滞后1期的V AR 模型为例,y 1, t = c 1 + π11.1 y 1, t -1 + π12.1 y 2, t -1 + u 1t y 2, t = c 2 + π21.1 y 1, t -1 + π22.1 y 2, t -1 + u 2t其中u 1 t , u 2 t ~ IID (0, σ 2), Cov(u 1 t , u 2 t ) = 0。
写成矩阵形式是,⎥⎦⎤⎢⎣⎡t t y y 21=12c c ⎡⎤⎢⎥⎣⎦+⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ⎥⎦⎤⎢⎣⎡--1,21,1t t y y +⎥⎦⎤⎢⎣⎡t t u u 21设Y t =⎥⎦⎤⎢⎣⎡t t y y 21, c =12c c ⎡⎤⎢⎥⎣⎦, ∏1 =⎥⎦⎤⎢⎣⎡1.221.211.121.11ππππ, u t =⎥⎦⎤⎢⎣⎡t t u u 21, 则,Y t = c + ∏1 Y t -1 + u t (1.3)含有N 个变量滞后k 期的V AR 模型表示如下:Y t = c + ∏1 Y t -1 + ∏2 Y t -2 + … + ∏k Y t -k + u t , u t ~ IID (0, Ω)其中,Y t = (y 1, ty 2, t … y N , t )', c = (c 1 c 2 … c N )'∏j =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡j NN jN jN j N jj j N j j..2.1.2.22.21.1.12.11πππππππππ,j = 1, 2, …, ku t = (u 1 t u 2,t … u N t )',不同方程对应的随机误差项之间可能存在相关。
时序预测中的多变量预测方法分享时序预测是指根据过去的数据和趋势,对未来的数值或事件进行预测。
多变量预测则是指在预测过程中考虑多个变量之间的关系。
在实际应用中,时序预测的方法和技术层出不穷,其中多变量预测方法是一种常见且有效的预测手段。
本文将分享一些在时序预测中常用的多变量预测方法,以期为相关研究和实践提供参考和借鉴。
一、向量自回归模型(VAR)向量自回归模型(Vector Autoregression, VAR)是一种常用的多变量时序预测方法。
它假设各个变量之间存在相互影响和依赖关系,通过构建一个包含所有变量的向量自回归模型,从而实现对未来数值的预测。
VAR模型的优点之一在于能够捕捉不同变量之间的相互作用,因此在需要考虑多个相关变量的预测问题中往往能够取得较好的效果。
同时,VAR模型也有其局限性,比如在变量较多、相关性较强的情况下,模型的参数估计和预测结果可能会变得复杂和不稳定。
二、脉冲响应函数分析脉冲响应函数分析是一种用于衡量多变量时序预测模型中变量之间影响和关联关系的方法。
通过脉冲响应函数分析,可以得到各个变量对其他变量的冲击响应情况,从而揭示它们之间的动态关系。
在实际应用中,脉冲响应函数分析可以帮助研究人员理解多变量时序数据中不同变量之间的因果关系,为预测模型的构建和优化提供重要的参考依据。
三、卡尔曼滤波器卡尔曼滤波器是一种基于状态空间模型的多变量时序预测方法。
它通过不断地观测和估计系统的状态,实现对未来状态的预测。
卡尔曼滤波器在工程控制、金融领域等多个领域有着广泛的应用,尤其在需要对系统状态进行实时跟踪和预测的情境下表现突出。
卡尔曼滤波器的核心思想是通过递归地更新状态估计值和协方差矩阵,不断提高预测的准确性和稳定性。
然而,卡尔曼滤波器也有一些前提假设,比如线性动态系统和观测方程的高斯噪声等,需要在实际应用中加以考虑。
四、向量误差修正模型(VECM)向量误差修正模型(Vector Error Correction Model, VECM)是一种专门用于处理多个协整关系变量的时序预测方法。