电流电压串联并联负反馈分析
- 格式:pdf
- 大小:455.37 KB
- 文档页数:4
反馈放大电路特性分析反馈放大电路是现代电子领域中常见的一种电路形式,它通过引入反馈来提高放大器的性能和稳定性。
本文将对反馈放大电路的特性进行分析和探讨,以帮助读者更好地理解和应用这一电路结构。
一、反馈放大电路的基本原理反馈放大电路由放大器和反馈网络组成。
放大器负责将输入信号放大到所需的幅度,而反馈网络将放大器的输出信号重新引入到输入端,实现信号的反馈。
反馈的作用可以分为正反馈和负反馈两种,而负反馈是最常见的形式。
二、负反馈的基本特点1. 改善放大器的线性度:负反馈可以降低放大器的非线性失真,使其输出更加接近输入信号的形状,提高信号的准确度和保真度。
2. 提高频率响应:负反馈可以通过减小放大器的增益来消除高频段的干扰和失真,从而实现更宽的频率响应范围。
3. 增加输入和输出阻抗:负反馈可以降低放大器的输入和输出阻抗,使其更好地适应不同的信号源和负载要求。
4. 提高放大器的稳定性:负反馈可以降低放大器的灵敏度,减少因元器件参数变化或温度变化而引起的放大器性能波动。
三、反馈放大电路的类型1. 电压串联反馈:将反馈信号以电压的形式串联到放大器的输入端。
这种反馈方式常用于放大器的增益控制和频率响应改善。
2. 电流并联反馈:将反馈信号以电流的形式并联到放大器的输入端。
这种反馈方式可以提高放大器的输入阻抗和线性度。
3. 变压器反馈:通过变压器将输出信号部分作为反馈信号输入到放大器的输入端。
这种反馈方式常用于功率放大器和音频放大器等场合。
4. 共模反馈:将共模信号作为反馈信号用于抑制共模干扰。
这种反馈方式常用于差分放大器等电路中。
四、反馈放大电路的实际应用反馈放大电路广泛应用于各种电子设备和系统中,如音频放大器、射频放大器、运算放大器、电源管理以及通信系统中的前端放大器等。
在这些应用中,反馈放大电路能够提供稳定的放大倍数、低失真的信号放大和抗干扰能力,满足不同应用场景的实际需求。
总结:反馈放大电路是一种常见且重要的电路结构,通过引入负反馈可以改善放大器的性能和稳定性。
负反馈电路是一种控制信号对系统输出进行调节的技术,能够改善系统的稳定性、线性性、带宽和噪声等性能指标。
其中常用的四种负反馈电路包括电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。
它们各自的特点如下:
1.电压串联反馈:在放大器的输出端接入一个反馈电阻,将其串联到放大器的输入端。
当输出信号增大时,反馈信号将使输入信号减小,从而降低放大器的增益。
这种负
反馈电路具有增益稳定性好、线性度高、输出阻抗低等特点。
2.电流串联反馈:在放大器的输出端接入一个电流采样电阻,将其串联到放大器的输
入端。
当输出信号增大时,反馈信号将使输入信号减小,从而降低放大器的增益。
与电压串联反馈电路相比,电流串联反馈电路的线性度更高,但频率响应差。
3.电压并联反馈:在放大器的输入端接入一个反馈电阻,将其并联到放大器的输出端。
当输出信号增大时,反馈信号将使输入信号增大,从而降低放大器的增益。
这种负
反馈电路具有输入阻抗高、噪声降低等特点,但容易产生振荡。
4.电流并联反馈:在放大器的输入端接入一个电流采样电阻,将其并联到放大器的输
出端。
当输出信号增大时,反馈信号将使输入信号增大,从而降低放大器的增益。
与电压并联反馈电路相比,电流并联反馈电路具有更高的带宽和更低的噪声,但稳
定性较差。
正反馈和负反馈_串联反馈和并联反馈_电压反馈和电流反馈_直流反馈和沟通反馈 -电子技术一、正反馈和负反馈依据反馈极必的不同,可以分为正反馈和负反馈。
假如引入的反馈信号增加了外加输入信号的作用,从而使放大电路的放大倍数得到提高,这样的反馈称为正反馈;相反,假如反馈信号减弱外加输入信号的作用,使放大电路的放大倍数降低,则称为负反馈。
为了推断引入的是正反馈还是负反馈,可能接受瞬时极性法。
即先假定输入信号为某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号的变化状况,最终推断反馈到输入端信号的瞬时极性是增加还是减弱了原来的输入信号。
例如在上图(a)中,假设加上一个瞬时极性为的正的输入电压(在电路中用符号+、-分别表示瞬时极性的正或负,代表该点瞬时信号的变化为增大或减小)。
因输入电压加在集成运放的反相输入端,故输出电压的瞬时极性为负,而反馈电压由输出电压经电阻R2、R3分压后得到,因此反馈电压的瞬时极性也是负,但集成运放的差模输入电压等于输入电压与反馈电压之差,可见反馈电压增加了输入电大的作用,使放大倍数提高,因此是正反馈。
在上图(b)中,输入电压加在集成运放的同相输入端,当其瞬时极性为正时,输出电压的瞬时极性也为正,输出端通过电阻R3、R4分压后将反馈电压引回到集成运放的反相输入端,此反馈信号将减弱外加输入信号的作用,使放大倍数降低,所以是负反馈。
假如要求稳定放大电路中某个电量,一般接受负反馈的方式。
负反馈虽然损失了放大倍数,但能使其它各项性能得到改善,因此在电路中经常被接受。
有时也用正反馈的方式来获得较高的放大倍数,但要留意,正反馈太强时将会使电路产生振荡。
本章重点争辩各种负反馈。
二、直流反馈和沟通反馈依据反馈信号本身的交、直流性质,可以分为直流反馈和沟通反馈。
假如反馈信号中只饮食成分,则称变直流反馈;若反馈信号中只有沟通成分,则称为沟通反馈。
在很多状况下,交、直流两种反馈兼而有之。
在上图(a)中,设VT2放射极的旁路电容Ce足够大,可认为电容两端的沟通信号基本为零,则从VT2的放射极通过RF引回到VT1基极的反馈信号中将只有直流成分,因此电路中引入的是直流反馈。
模电中电压电流串并联正负反馈的判断在模拟电子电路的设计中,电压电流串并联正负反馈是一个非常重要的概念。
它们决定了电路的工作状态和性能。
在本文中,我们将逐步讨论如何正确地判断电路中的电压电流串并联正负反馈。
1. 判断串联和并联关系第一步是判断电路中的串联和并联关系。
如果电路中的两个元件连接在一起,电流只能顺序地流过它们,这就意味着它们是串联的。
如果两个元件的一侧连接在一起,另一侧连接在另一个元件的一侧,这就意味着它们是并联的。
在判断电路中的串联和并联关系时,可以画出电路图,并在连接线上标注箭头,表示电流的方向。
2. 判断正反馈和负反馈第二步是判断电路中的正反馈和负反馈。
在带有反馈的电路中,输出信号被送回到输入端,以影响输入信号。
如果反馈信号与输入信号同相,这就是正反馈;如果反馈信号与输入信号反相,这就是负反馈。
3. 判断电压和电流反馈第三步是判断电路中的电压和电流反馈。
电压反馈是指输出信号被送回到输入端的过程中,反馈信号是电压信号。
当输出电压被送回到输入端,影响输入电压时,这就是电压反馈。
电流反馈是指反馈信号是电流信号。
当输出电流被送回到输入端,影响输入电流时,这就是电流反馈。
4. 判断串联、并联、正反馈和负反馈的关系最后一步是判断电路中的串联并联关系和正负反馈之间的关系。
一个串联电路中的正反馈会导致振荡的发生,因为正反馈会增加输入信号,进而增加输出信号,从而又增加输入信号,进而再增加输出信号,这样看似无限循环下去,就导致了振荡的发生。
一个并联电路中的正反馈会导致输出信号不稳定,因为正反馈增加了输入信号,就进一步增加了输出信号,这个过程会一直持续下去,导致输出信号波动不定。
在电路设计中,正确判断电压电流串并联正负反馈是非常重要的,只有正确的判断了它们,才能正确地设计出稳定、可靠的电路。
因此,在设计电路之前,需要对这些概念进行深入的理解和掌握。
一.电压串联负反馈:图Z0303(a)为两级电压串联负反馈放大电路,图(b)是它的交流等效电路方框图。
1.反馈类型的判断(1)找出联系输出回路与输入回路的反馈元件。
图Z0303(a)中Rf、Cf、Re1是联系输出回路与输入回路的元件,故Rf、Cf、Re1是反馈元件,它们组成反馈网络,引入级间反馈。
(2)判断是电压反馈还是电流反馈。
可用两种方法来判别,一是反馈网络直接接在放大电路电压输出端,故为电压反馈;二是令Uo = 0,因Uf由Rf、Re1 对Uo分压而得,故Uf= 0反馈消失,所以为电压反馈;(3)判别是串联反馈还是并联反馈。
由图Z0303(a)可以看出:Ube = Ui - Uf 即输入端反馈信号与输入信号以电压形式相迭加,故为串联反馈,也可令Ui=0,此时Uf仍能作用到放大电路输入端,故为串联反馈;还可以根据反馈信号引至共射电路发射极则为串联反馈。
(4)判别反馈极性。
假定Ui为+,则经两级共射电路放大后,Uo为+,经Rf与Re1 分压得到的Uf也为+,结果使得放大电路有效输入信号减弱,故为负反馈。
综上判断结果、该电路为电压串联负反馈放大电路。
2、反馈对输出电量的稳定作用放大电路引入电压负反馈后,能够使输出电压稳定。
任何外界因素引起输出电压不稳时,输出电压的变化将通过反馈网络立即回送到放大电路的输入端,并与原输入信号进行比较,得出与前一变化相反的有效输人信号,从而使输出电压的变化量得到削弱,输出电压便趋于稳定。
可见,负反馈使放大电路具有了自动调节能力。
电压负反馈能够稳定输出电压。
3、信号源内阻对串联反馈效果的影响由上面的讨论可见,对串联反馈Ube = Ui - Uf ,显然,UI越稳定,Uf 对Ube 的影响就越强,控制作用就越灵敏。
当信号源内阻Rs = 0时,信号源为恒压源,Us就为恒定值,则Uf的增加量就全部转化为Ube 的减小量,此时,反馈效果最强。
因此,串联反馈时,Rs 越小越好,或者说串联反馈适用于信号源内阻Rs 小的场合。
实验5 负反馈放大电路的分析实验原理反馈是将输出信号的部分或全部通过反向传输网络引回到电路的输入端,与输入信号叠加后作用于基本放大电路的输入端。
当反馈信号与输入信号相位相反时,引入的反馈信号将抵消部分输入信号,这种情况称为负反馈。
在基本放大系统中引入负反馈可以提高放大器的性能,具有稳定电路的作用,但这是以牺牲放大器的增益为代价。
负反馈对放大器性能指标的影响取决于反馈组态和反馈深度的大小。
负反馈系统组态根据反馈信号的取样的种类可以分为电压反馈和电流反馈,根据反馈信号与输入信号的叠加关系何以分为串联反馈和并联反馈。
综合这两方面,就有了负反馈电路的四种组态即电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。
负反馈系统特性1、系统增益及其稳定性A f=A1+AF∆A f A f=11+AF×∆A A可见负反馈放大器的增益下降了(1+AF)倍,但其稳定性却提高了(1+AF)倍。
当闭环系统满足深度负反馈条件(即AF≫1)时,系统增益A f就与基本放大器的开环增益无关,而仅由反馈系数F决定,即A f≈1/F。
2、输入电阻对于串联负反馈R if=(1+AF)R i可见串联负反馈使放大器的输入电阻提高了(1+AF)倍对于并联负反馈R if=1(1+AF)R i可见并联负反馈使放大器的输入电阻下降了(1+AF)倍3、输出电阻对于电压负反馈R of=1(1+AF)R o可见电压负反馈使放大器的输出电阻下降了(1+AF)倍,系统更加接近理想电压源。
对于电流负反馈R of=(1+AF)R o可见电流负反馈使放大器的输出电阻提高了(1+AF)倍,系统更加接近理想电流源。
4、通频带负反馈能够展宽放大器的通频带宽,对于但极点心系统,电路的增益带宽积为常数。
对于多极点系统,系统的增益带宽积不再是常数,但通频带总有所扩展。
f Lf=f L1+AF f Hf=(1+AF)f HB f=f Hf−f Lf≈(1+AF)B5、非线性失真负反馈能够减小放大器的非线性失真。
竭诚为您提供优质文档/双击可除电压串联负反馈电路实验报告篇一:负反馈电路实验报告一.实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。
二.实验原理负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。
负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。
本实验以电压串联为例,分析负反馈对放大器指标的影响。
1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压uf。
主要性能指标如下:(1)闭环电压放大倍数Ar=Av/1+AvFv,Av为开环放大倍数。
负反馈放大器图1为带有电压串联负反馈的两极阻容耦合放大器(2)反馈系数Fv=RF1/Rf+RF1(3)输入电阻R1f=(1+AvFv)RfRf为基本放大器的输入电阻(4)输出电阻Rof=Ro/(1+AvoFv)Ro为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。
2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2图2基本放大器三.实验设备与器件模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。
四.实验内容1.静态工作点的测量条件:ucc=12V,ui=0V用直流电压表测第一级,第二级的静态工作点。
表3—12.测量基本放大器的各项性能指标实验将图2改接,即把Rf断开后风别并在RF1和RL上。
(1)测量中频电压放大倍数Av,输入输出电阻Ri和Ro。
条件;f=1Kh,us=5mV的正弦信号,用示波器监视输出波形,在输出波形不失真的情况下用交流毫伏表测量us,ui,uL计入3—2表表3—2(2)保持us不变,,断开负载电阻RL,测量空载时的输出电压uo计入3—2表1观察负反馈对非线性失真的改善(1)实验电路改接成基本放大器形式,在输入端加入f=1Kh的正弦信号,输出端接示波器,逐步增大输入信号的幅度,使输出波形开始出现失真,记下此时的波形和输出电压的幅度。
28/99二、电压串联负反馈放大电路1.判断反馈的类型1) 反馈网络—R f 和R e12)判断反馈的类型+-U f +-U di ① 将输出对地短路,反馈消失,因此是电压反馈。
② 输入信号和反馈信号分别加在三极管发射结的两端,故为串联反馈。
③ 假定输入电压的瞬时极性为正,反馈电压的瞬时极性也为正,U di =U i -U f <U i ,因此是负反馈。
+--++④ 电路中无电容,因此是交直流反馈。
称为极间反馈∙ R f 和R e1组成两极放大电
路的交直流电压串联负反
馈网络。
∙ R e1也是T 1本级的电流
串联负反馈。
∙ R e2又是T 2本级的电流
串联负反馈。
电路中存在三个反馈环,分析时以级间反馈作为主要反馈环。
电压串联负反馈29/99
电压串联负反馈方框图
2.增益及反馈系数开环增益di o U U U A =闭环增益i o Uf U U A =反馈系数o f U U U B =反馈方程式U
U U Uf 1B A A A +=反馈深度U U 1B A F +=+-U i R b A U +-U di R c2+-U o -B U R e1+U f R f 无量纲i di f
o U o U U U U U B U A =+=+30/99
制作单位:北京交通大学电子信息工程学院 《模拟电子技术》课程组。
模拟电子技术
知识点:
负反馈放大电路的四种组态
1.电压串联负反馈放大电路
▪输入以电压形式求和(KVL ):v id =v i -v f ▪稳定输出电压特点:
▪电压控制的电压源R L ↓→v o ↓→v f ↓→v id (=v i -v f )↑
v o ↑
2.电压并联负反馈放大电路
▪输入以电流形式求和(KCL ):i id =i i -i f ▪稳定输出电压
▪
电流控制的电压源
特点:
3.
电流串联负反馈放大电路
▪输入以电压形式求和(KVL ):v id =v i -v f ▪稳定输出电流▪电压控制的电流源特点:
R L i o v f (=i o R f ) v i 一定时 v i d
i o
4.
电流并联负反馈放大电路
▪输入以电流形式求和(KCL ):i id =i i -i f ▪稳定输出电流
▪电流控制的电流源
特点:
特点小结
串联反馈:输入端电压求和(KVL)
并联反馈:输入端电流求和(KCL)
电压负反馈:稳定输出电压,具有恒压特性电流负反馈:稳定输出电流,具有恒流特性
交流负反馈类型的分析举例
(+)(-)
(+) (+)
级间电压串联负反馈(+)
交流负反馈类型的分析举例
(+)(-)
(+)
(-)(+)
电压并联负反馈
交流负反馈类型的分析举例
(+)(-)
(+)
(+) (+)
电流串联负反馈
知识点:
负反馈放大电路的四种组态。
《模拟电子技术》作业第6章反馈分析1(11) 对图所示两电路:(1)说明各电路所引入负反馈的组态(电压串联,电压并联,电流串联,电流并联)(2)求出各电路在深度负反馈条件的电压放大倍数A UF =u o /u i 的表达式。
2(12) 两图均为深度负反馈放大电路,试说明其反馈的类型(电压串联,电压并联,电流串联,电流并联),并求其闭环电压放大倍数的表达式。
(设C 的容量足够大)。
3 (13)指出电路中(1) 分别引入了何种类型的负反馈(电压串联,电压并联,电流串联,电流并联)? (2) 引入的负反馈各自稳定的是输出电压还是输出电流?(3) 并写出深度负反馈条件下图(a)电路的互阻增益A RF=u o/I i 和图(b)电路的互导增益A GF=I L /u I 的表达式。
4(14) 运算放大器组成的反馈放大电路如图所示。
(1)要引入电压串联负反馈, 则a 端应与C 1点还是C 2点联接? 此时的A uf ≈? (4分) (2)引入电压串联负反馈后,输入电阻和输出电阻将有何变化(增大或减小)? (4分)+ _+uo -5(15) 电路中,N 1,N 2均为理想运放,指出每个电路中负反馈的组态(电压串联,电流串联,电压并联,电流并联);并写出每个电路电压放大倍数A UF =I O u u的表达式。
6(16) 放大电路如图。
(1)若需构成电压串联负反馈电路b 点应接m 还是n? 求出其在深度负反馈条件下的电压放大倍数A uf 的表达式;(2)若要求带负载能力强, 且从信号源索取的电流小, 这种反馈类型是否合适?7(17) 指出所示两电路的负反馈组态, 并写出各电路在深度负反馈条件下的电压放大倍数Auf =u o /u i 的表达式,说明各电路加负反馈后对输入电阻的影响(增大或减小)。
8(18) 分析两电路中, 存在何种组态的负反馈(电压串联,电压并联,电流串联,电流并联);并求其深度负反馈条件下电压放大倍数的表达式,说明加负反馈后各自对电路的输入电阻的影响(增大或减小)。
负反馈放大器可组合成四种类型,即:电流串联、电流并联、电压串联、电压并联四种负反馈类型。
正负反馈的判断
正负反馈的判断使用瞬时极性法。
瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。
这个信号通过放大电路和反馈回路回到输入端。
反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。
(运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。
三极管基极和射级级性相同,基极和集电极极性相反)
正反馈:输入极性和反馈极性相同
负反馈:输入极性和反馈极性相反
串联并联的判断
反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。
串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,即以电压串联的形式迭加(输入信号与反馈信号不在同一电极),而并联反馈是指的净输入电流和反馈电流在输入回路中并联,即以电压串联的形式迭加(输入信号与反馈信号在同一电极).
串联: 输入信号与反馈信号不在同一电极
并联:输入信号与反馈信号在同一电极
电压电流的判断
电压电流反馈是指反馈信号取自输出信号(电压或电流)的形式。
通常,采用将负载电阻短路的方法来判别电压反馈和电流反馈。
具体方法是:若将负载电阻RL短路,如果反馈作用消失,则为电压反馈;如果反馈作用存在,则为电流反馈。
一.电压串联负反馈:
图Z0303(a)为两级电压串联负反馈放大电路,图(b)是它的交流等效电路方框图。
1.反馈类型的判断
(1)找出联系输出回路与输入回路的反馈元件。
图Z0303(a)中Rf、Cf、Re1是联系输出回路与输入回路的元件,故Rf、Cf、Re1是反馈元件,它们组成反馈网络,引入级间反馈。
(2)判断是电压反馈还是电流反馈。
可用两种方法来判别,一是反馈网络直接接在放大电路电压输出端,故为电压反馈;二是令Uo = 0,因Uf由Rf、Re1 对Uo分压而得,故Uf= 0反馈消失,所以为电压反馈;
(3)判别是串联反馈还是并联反馈。
由图Z0303(a)可以看出:Ube = Ui - Uf 即输入端反馈信号与输入信号以电压形式相迭加,故为串联反馈,也可令Ui=0,此时Uf仍能作用到放大电路输入端,故为串联反馈;还可以根据反馈信号引至共射电路发射极则为串联反馈。
(4)判别反馈极性。
假定Ui为+,则经两级共射电路放大后,Uo为+,经Rf与Re1 分压得到的Uf也为+,结果使得放大电路有效输入信号减弱,故为负反馈。
综上判断结果、该电路为电压串联负反馈放大电路。
2、反馈对输出电量的稳定作用
放大电路引入电压负反馈后,能够使输出电压稳定。
任何外界因素引起输出电压不稳时,输出电压的变化将通过反馈网络立即回送到放大电路的输入端,并与原输入信号进行比较,得出与前一变化相反的有效输人信号,从而使输出电压的变化量得到削弱,输出电压便趋于稳定。
可见,负反馈使放大电路具有了自动调节能力。
电压负反馈能够稳定输出电压。
3、信号源内阻对串联反馈效果的影响
由上面的讨论可见,对串联反馈Ube = Ui - Uf ,显然,UI越稳定,Uf 对Ube 的影响就越强,控制作用就越灵敏。
当信号源内阻Rs = 0时,信号源为恒压源,Us就为恒定值,则Uf的增加量就全部转化为Ube 的减小量,此时,反馈效果最强。
因此,串联反馈时,Rs 越小越好,或者说串联反馈适用于信号源内阻Rs 小的场合。
4、放大倍数及反馈系数的含义
对电压串联负反馈电路, Xi = Ui, Xo = Uo,Xf = Uf 故:
AUf、FU,分别称为闭环电压放大倍数和电压反馈系数。
图Z0306(a)为电压并联负反馈放大电路,图(b)是它的交流等效电路方框图。
由图(b)可见,基本放大电路与反馈网络在输出、输入端都是并联的,故为电压并联反馈;又因Ui为 + 时,UO为+,流过Rf 的电流如图中箭头方向所示,其结果使Ib=Ii -I f减小,故为负反馈。
当某种因素(如β或RL变化)引起输出电压变化时,通过反馈将产生如下自动调节过程:
RL ↑→UO↑→I f↑→ Ib↓→ UO↓
结果使输出电压趋于稳定。
对电压并联负反馈放大电路:
Xi = Ii, Xf = If,XO = UO ,故:
Arf、Fg分别称为闭环互阻放大倍数和互导反馈系数。
通过以上基本类型负反馈放大电路的讨论,应当明确:电压负反馈具有稳定输出电压的作用,电流负反馈具有稳定输出电流的作用,而同一个电路中,如果负载是变化的,要想同时实现电压和电流的稳定是不可能的。
此外,串联负反馈适用于信号源内阻较小的场合,而并联反馈则适用于信号源内阻较大的场合。
熟悉了这些后,就可以根据实际需要选择适当的反馈形式。
图Z0305(a)是电流串联负反馈放大电路,图(b)是它的交流等效电路方框图。
采用与前两例类似的分析方法即可对该电路进行分析。
图中Re是反馈元件,它构成反馈网络,由图(b)可以看出,反馈网络与基本放大电路在输出端串联,故为电流反馈,反馈网络与基本放大电路在输入端串联,故为串联反馈,假定UI的瞬时极性为+ ,则Uf的极性为-,结果使放大电路有效输入信号减弱,故为负反馈。
由于引入了电流负反馈,当某种因素引起输出电流发生变化时,电路通过反馈网络将产生如下自动调节过程:
RL ↓→IO↑→Uf↑→Ube↓→ IO↓
结果使IO趋于稳定。
应当注意的是,负载发生变化时,通过负反馈稳定输出电流和稳定输出电压是矛盾的。
上述过程表明了这一点,即当IO 趋于稳定时,UO = IO RL却减小了,也就是说UO 的不稳定性加剧了。
如果电路中RL 稳定不变,则稳定输出电流与稳定输出电压效果是相同的,此时区分电压反馈和电流反馈也就没有意义了。
对电流串联负反馈放大电路,XI = UI, Xf = Uf ,XO =IO ,故:
Agf、Fr分别称为闭环互导放大倍数和互阻反馈系数。
四.电流并联负反馈:
图Z0304(a)是两级电流并联负反馈电路,图(c)是它的交流等效电路方框图。
1、反馈类型的判断
(1)找反馈元件。
由图可见,R f、Re2是联系输出回路和输入回路的元件,故为反馈元件,由它们组成反馈网络。
(2)判断是电压反馈还是电流反馈。
因反馈信号取自非电压输出端,故为电流反馈。
(3)判断是串联反馈还是并联反馈。
因反馈信号引至共射电路的基极,故为并联反馈。
(4)判断反馈极性。
假定Ui为 +(对地),经两级共射电路放大后Ue2为 - ,则通过Rf的电流I f的方向如图(c)中所示,它对Ii起了分流作用,从而使有效输入信号减弱,故为负反馈。
综上判断结果,该电路为电流并联负反馈放大电路。
2、反馈对输出电量的稳定作用
当Ii一定,由于某种原因(如β或RL变化)引起输出电流发生变化时,则通过反馈网络R f、Re2的作用将产生如下自动调节过程:
β2 ↑→Io(Ie2)↑→I f↑→ Ib↓→ Io↓
其效果使输出电流趋于稳定。
可见,电流负反馈能够稳定输出电流。
3、信号源内阻对并联反馈效果的影响
对并联负反馈,有Ib = Ii - I f,若信号源内阻 RS = ∞,则Ii恒定,I f的增加量全部转化为Ib的减小量,反馈效果最强;若RS 较小,则随着I f 的增加,Ii 也有所增加,Ib 的减小量被缩减,负反馈效果减弱。
因此,并联负反馈适用于信号源内阻RS大的场合。
4、放大倍数和反馈系数的含义
电流并联负反馈电路中,XI 、 Xo 、Xf 等均为电流量,故:
AIf、FI分别称为闭环电流放大倍数和电流反馈系数。