等边三角形专题含详解析(供参考)
- 格式:doc
- 大小:364.00 KB
- 文档页数:12
等边三角形(基础)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等边三角形等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.要点三、等边三角形的判定等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【典型例题】类型一、等边三角形1、(2014秋•崇州市期末)如图,已知△A BC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.【思路点拨】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.【答案与解析】证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.【总结升华】本题考查了等边三角形的判定与性质,难度适中,关键找出判定三角形等边的条件.举一反三:【变式】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P 上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【答案】解:∵PE⊥AB,∠B=60°,因此直角三角形PEB中,BE=12BP=13BC=PC,∴∠BPE=30°,∵∠EPF=60°,∴FP⊥BC,∵∠B=∠C=60°,BE=PC,∠PEB=∠FPC=90°,∴△BEP≌△CPF,∴PE=PF,∵∠EPF=60°,∴△EPF是等边三角形.2、已知:如图,△ABC中,AB=AC,∠ABC=60°,AD=CE,求∠BPD的度数.【答案与解析】证明:在ABC ∆中, AB =AC ,∠ABC =60°∴ABC ∆为等边三角形(有一个角为60°的等腰三角形是等边三角形)∴AC =BC ,∠A =∠ECB =60°在ADC ∆和CEB ∆中⎪⎩⎪⎨⎧=∠=∠=)()()(已知已证已证CE AD ECB A CB ACADC ∆≌CEB ∆(SAS )∴21∠∠=(全等三角形对应角相等)23DPB ∠∠∠=+(三角形的一个外角等于与它不相邻的两个内角和)∴13DPB ACB ∠∠∠∠=+=∴∠DPB =60°.【总结升华】这道题利用等边三角形每个角都是60°的性质,并借助全等三角形,和三角形的外角性质使问题得以解决.举一反三:【变式】(2014秋•黔西南州期末)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度?【答案】解:证法一.∵△ABC 为正三角形∴∠ABC=∠C=∠BAC=60°,AB=BC在△AMB 和△BNC 中,△AMB≌△BNC(SAS ),∵∠ANB=∠C+∠NBC=60°+∠NBC,∠MAN=∠BAC﹣∠MAB=60°﹣∠MAB, 又∵∠NBC=∠MAB(全等三角形对应角相等),∴∠ANB+∠MAN=120°,又∵∠ANQ+∠MAN+∠AQN=180°,∴∠AQN=180°﹣∠ANB﹣∠MAN,∠AQN=180°﹣(∠ANB+∠MAN),=180°﹣120°=60°,∠BOM=∠AQN=60°(全等三角形对应角相等).证法二.∵△ABC为正三角形∴∠ABC=∠C=∠BAC=60°,AB=BC在△AMB和△BNC中∴△AMB≌△BNC(SAS)∵∠ANB=∠C+∠NBC=60°+∠NBC∠MAN=∠BAC﹣∠MAB又∵∠NBC=∠MAB(全等三角形对应角相等)∴∠ANB+∠MAN=120°又∵∠ANQ+∠MAN+∠AQN=180°∴∠AQN=180°﹣∠ANB﹣∠MAB∠AQN=180°﹣(∠ANB+∠MAN)=180°﹣120°=60°3、(1)如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小;(2)如图,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.【思路点拨】(1)由于△O CD 和△OAB 都是等边三角形,可得OD =OC =OB =OA ,进而求出∠BDA 与∠CAD 的大小及关系,则可求解∠AEB.(2)旋转后,△BOD 与△AOC 仍然保持全等,∠ACO =∠BDO ,∠AED =∠ACO +∠DCO +∠CDB =∠BDO +60°+∠CDB =60°+∠CDO =120°,从而得到∠AEB 的值.【答案与解析】证明:(1)∵O 是AD 的中点,∴AO =DO又∵等边△AOB 和等边△COD∴AO =DO =CO =BO ,∠DOC =∠BOC =∠AOB =60°∴∠CAO =∠ACO =∠BDO =∠DBO =30°∴∠AEB =∠BDO +∠CAO =60°(2)∵∠BOD =∠DOC +∠BOC ,∠AOC =∠AOB +∠BOC∴∠BOD =∠AOC在△BOD 与△AOC 中,BO AO BOD AOC DO CO =⎧⎪∠=∠⎨⎪=⎩∴△BOD ≌△AOC (SAS )∴∠ACO =∠BDO∵∠AED =∠ACO +∠DCO +∠CDB=∠BDO +60°+∠CDB =60°+∠CDO =60°+60°=120°∴∠AEB =180°-∠AED =60°.【总结升华】这道题利用等边三角形每个角都是60°的性质,并借助全等三角形,和三角形的外角性质使问题加以解决.举一反三:【变式】如图,已知△ABC 和△CDE 都是等边三角形,AD 、BE 交于点F,求∠AFB 的度数.【答案】解:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,又∵∠ACB +∠BCD =∠ECD +∠BCD ,即∠ACD =∠BCE ,∴△ACD ≌△BCE ,∴∠CAD =∠CBE ,设AD 与BC 相交于P 点,在△ACP 和△BFP 中,有一对对顶角,∴∠AFB =∠ACB =60°.类型二、含30°的直角三角形4、(2016春·龙口市期末)如图,E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足,连接CD 交OE 于点F ,若∠AOB=60°.(1)求证:△OCD 是等边三角形;(2)若EF=5,求线段OE 的长.【答案与解析】解:(1)∵点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足,∴DE=CE ,在Rt △ODE 和Rt △OCE 中,DE CE OE OE =⎧⎨=⎩∴Rt △ODE ≌Rt △OCE (LH )∴OD=OC ,∵∠AOB=60°,∴△OCD 是等边三角形;(2)∵△OCD 是等边三角形,OF 是角平分线,∴OE ⊥DC ,∵∠AOB=60°,∴∠AOE=∠BOE=30°,∵∠ODF=60°,ED ⊥OA ,∴∠EDF=30°,∴DE=2EF=10,∴OE=2DE=20.【总结升华】本题考查等边三角形的判定和性质,角平分线的性质,三角形全等的判定和性质,30°的直角三角形的性质等,熟练掌握性质和定理是解题的关键。
专题12 共定点等边三角形的六大结论1.1.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ 。
求证:①AD BE =;②//PQ AE ;③AP BQ =;④DE DP =;⑤60AOB ∠=︒; ⑥PCQ ∆是等边三角形;⑦点C 在AOE ∠的平分线上解:如图1所示:∵△ABC 和△CDE 是正三角形,∴AC =BC ,DC =EC ,∠ACB =∠ECD =60°,又∵∠ACD =∠ACB +∠BCD , ∠BCE =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪=⎨⎪=⎩∠∠ ,∴△ACD ≌△BCE (SAS ),∴AD =BE , ∴结论①正确;∵△ACD ≌△BCE , ∴∠CAP =∠CBQ ,,BPO APC 60,AOB ACB 故⑤正确,又∵∠ACB +∠BCD +∠DCE =180°, ∴∠BCD =60°,在△ACP 和△BCQ 中,CAP CBQAC BC ACP BCQ,∴△ACP ≌△BCQ (ASA ),∴AP =BQ ,PC =QC , 故③正确,∴△PCQ 是等边三角形,故⑥正确∴∠CPQ =∠CQP =60°,∴∠CPQ =∠ACB =60°,∴PQ AE ∥, 故②正确,若DE =DP ,∵DC =DE , ∴DP =DC , ∴∠PCD =∠DPC ,又∵∠PCD =60°,∴∠DPC =60°与△PCQ 是等边三角形相矛盾,假设不成立, ∴结论④错误;过点C 分别作CM ⊥AD ,CN ⊥BE 于点M 、N 两点, 如图2所示:∵CM ⊥AD ,CN ⊥BE ,,ACD BCE ≌∴CM =CN ,又∵OC 在∠AOE 的内部,∴点C 在∠AOE 的平分线上,∴结论⑦正确;2.已知:如图,△ABC 、△CDE 都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.(1)求∠DOE 的度数;(2)试判断△MNC 的形状,并说明理由;(3)连接OC ,求证:OC 是∠AOE 的平分线.【答案】(1)∠DOE 的度数是60°(2)△MNC 是等边三角形,理由见解析(3)见解析【解析】【分析】(1)根据等边三角形的性质及角的和差关系可得∠ACD =∠BCE ,利用SAS 可证明△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,利用角的和差关系及外角性质可得∠AOE=120°,根据平角定义即可得答案;(2)根据全等三角形的性质可得∠CAD=∠CBE,AD=BE,AC=BC,根据中点的定义可得AM=BN,利用SAS可证明△ACM≌△BCN,可得CM=CN,∠ACM=∠BCN,利用角的和差关系可得∠MCN=60°,即可证明△MNC是等边三角形;(3)连接OC,过C作CG⊥AD,垂足为G;过C作CH⊥BE ,垂足为H,根据全等三角形的性质可得AD=BE,S△ACD=S△BCE,即可得出CG=CH,根据角平分线的判定定理即可得出结论.(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE,∴AD=BE,∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠BEC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠AOE=120°,∴∠DOE=180°-∠AOE=60°.(2)△MNC是等边三角形,理由如下:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC∵点M、N分别是线段AD、BE的中点,∴AM=12AD,BN=12BE,∴AM=BN,在△ACM和△BCN中,AC BCCAM CBNAM BN=⎧⎪∠=∠⎨⎪=⎩,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°,∴∠ACM+∠MCB=∠BCN+∠MCB=∠ACB=60°,∴∠MCN=60°,∴△MNC是等边三角形.(3)连接OC,过C作CG⊥AD,垂足为G;过C作CH⊥BE ,垂足为H.∵△ACD≌△BCE,∴AD=BE,S△ACD=S△BCE,∴1122AD CG BE CH⋅=⋅,∴CG=CH,∵CG⊥AD,CH⊥BE,∴OC是∠AOE的平分线.【点睛】本题主要考查了全等三角形的性质与判定、等边三角形的性质与判定、三角形外角性质及角平分线的判定定理,能够熟练掌握等边三角形的性质与判定条件是解题关键.3.如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD 交点F,连接AF.(1)求证:△ACD≌△AEB;(2)求证:AF+BF+CF=CD.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAB=60︒,根据全等三角形的判定定理即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAB=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵AD ABDAC BAE AC AB=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△AEB(SAS);(2)由(1)知∠CDA=∠EBA,如图∠1=∠2,∴180°﹣∠CDA﹣∠1=180°﹣∠EBA﹣∠2,∴∠DAB=∠DFB=60°,如图,延长FB至K,使FK=DF,连DK,∴△DFK为等边三角形,∴DK=DF,∴△DBK≌△DAF(SAS),∴BK=AF,∴DF=DK,FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.4.已知ABC为等边三角形.(1)如图1,点D为边BC上一点,以AD为边作等边三角形ADE,连接CE,求证:△≌△.ABD ACE(2)如图2,当点D在边BC的延长线上时,以AD为边作等边三角形ADE,求证:无论点D的位置如何变化,ADE的内角平分线的交点P始终在B的角平分线上.(3)如图3,以AC为腰作等腰直角三角形ACD,取斜边CD的中点E,连接AE,交BD于点F.试判断线段BF,AF,DF之间存在何种数量关系,并证明你的结论.=+,证明见解析.【答案】(1)证明见解析;(2)证明见解析;(3)BF DF AF【解析】【分析】(1)利用等边三角形的性质,得到BAD CAE ∠=∠,则问题可证;(2)过点P 作PN ⊥AB ,交BA 延长线于点N ,作PM ⊥BD 于M ,先证明△P AN ≌△PDM ,得出PN =PM ,再证()Rt PMB R PNB HL ≌,根据角平分线的判定定理即可得出结论; (3)在BF 上截BG DF =,连接AG , 证()BAG DAF SAS ≌,再证AGF 为等边三角形即可得出结论【详解】(1)∵ABC 和ADE 都是等边三角形,∴,,60AB AC BC AD AE BAC DAE ===∠=∠=︒.∴BAC CAD DAE CAD ∠-∠=∠-∠,即BAD CAE ∠=∠.在ABD △和ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS △≌△.(2)过点P 作PM BD ⊥于点M ,PN BA ⊥交射线BA 于点N ,∴90PMB PNB ∠=∠=︒,∵,PA PD 为内角平分线,∴30PAD PDA PAE ∠=∠=∠=︒,∴PA PD =,∵60ACB ∠=︒,∴60ADC CAD ∠+∠=︒,∵60BAC DAE ∠=∠=︒,∴18060CAD EAN BAC DAE ∠+∠=-∠-∠=︒,∴ADC EAN ∠=∠,∴ADC PDA EAN PAE ∠+∠=∠+∠,即PDM PAN ∠=∠,在PDM △和PAN △中,PMD PNA PDM PAN PA PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()PDM PAN AAS ≌,∴PM PN =,在Rt PMB 和Rt PNB △中,PM PN PB PB =⎧⎨=⎩, ∴()Rt PMB R PNB HL ≌,∴PBN PBM ∠=∠,∴BP 平分ABC ∠,即无论点D 的位置如何变化, ADE 的内角平分线的交点P 始终在B 的角平分线上.(3)在BF 上截BG DF =,连接AG ,∵,150AB AD BAD BAC CAD =∠=∠+∠=︒, ∴1180152()ABG ADF BAD ∠=∠=︒-∠=︒, 在BAG 和DAF △中,BA AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴()BAG DAF SAS ≌,∴,AG AF BAG DAF =∠=∠,∵ACD △为等腰直角三角形,∴45ADE ∠=︒∵E 为斜边中点,∴AE CD ⊥,∴90AED ∠=︒∴45DAE ∠=︒,∴45BAG ∠=︒,∴15060GAF BAG DAF ∠=-∠-∠=︒,∴AGF 为等边三角形,∴AF FG =,∴BF BG FG DF AF =+=+.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,角平分线的性质和判定,三角形外角的性质等知识,添加恰当辅助线,构造全等三角形是解决本题的关键. 5.如图1,点C 在线段AB 上,(点C 不与A 、B 重合),分别以AC 、BC 为边在AB 同侧作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点P .【观察猜想】①AE 与BD 的数量关系是 ;②∠APD 的度数为 .【数学思考】如图2,当点C 在线段AB 外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;【拓展应用】如图3,点E 为四边形ABCD 内一点,且满足∠AED =∠BEC =90°,AE =DE ,BE =CE ,对角线AC 、BD 交于点P ,AC =10,则四边形ABCD 的面积为 .【答案】【观察猜想】:①AE =BD .②∠APD =60°.理由见解析;【数学思考】:结论仍然成立,证明见解析;【拓展应用】:50.【解析】【分析】观察猜想:证明△ACE ≌△DCB (SAS ),可得AE =BD ,∠CAO =∠ODP ,由∠AOC =∠DOP ,推出∠DPO =∠ACO =60°;数学思考:结论成立,证明方法类似;拓展应用:证明AC ⊥BD ,可得S 四边形ABCD =12•AC•DP+12•AC•PB =12•AC•(DP+PB )=12•AC•BD.【详解】观察猜想:结论:AE=BD.∠APD=60°.理由:设AE交CD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,即∠APD=60°.故答案为AE=BD,60°.数学思考:结论仍然成立.理由:设AC交BD于点O.∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,即∠APD=60°.拓展应用:设AC 交BE 于点O .∵△ADE ,△ECB 都是等腰直角三角形,∴ED =EA ,∠AED =∠BEC =90°,CE =EB ,∴∠AEC =∠DEB∴△AEC ≌△DEB (SAS ),∴AC =BD =10,∠PBO =∠OCE ,∵∠BOP =∠EOC ,∴∠BPO =∠CEO =90°,∴AC ⊥BD ,∴S 四边形ABCD =12•AC•DP+12•AC•PB =12•AC•(DP+PB )=12•AC•BD =50.故答案为50.【点睛】本题属于四边形综合题,考查了等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.已知,点C 是线段AB 所在平面内任意一点,分别以AC 、BC 为边,在AB 同侧作等边ACE ∆和等边BCD ∆,联结AD 、BE 交于点P .(1)如图1,当点C 在线段AB 上移动时,线段AD 与BE 的数量关系是:________;(2)如图2,当点C 在直线AB 外,且120ACB ∠<︒,仍分别以AC 、BC 为边,在AB 同侧作等边ACE ∆和等边BCD ∆,联结AD 、BE 交于点P .(1)的结论是否还存在?若成立,请证明;若不成立,请说明理由.此时APE ∠是否随ACB ∠的大小发生变化?若变化,写出变化规律,若不变,请求出APE ∠的度数;(3)如图3,在(2)的条件下,联结CP ,求证:CP 平分DPE ∠.【答案】(1) =AD BE ;(2)成立,证明见解析,=60APE ∠︒;(3) 证明见解析.【解析】【分析】(1)直接写出答案即可.(2)证明ΔACD ≌ΔECB ,得到∠CEB =∠CAD ,此为解题的关键性结论;借助内角和定理即可解决问题.(3)过点C 分别作CM ⊥AD 于M ,CN ⊥EB 于N ,由ΔACD ≌ΔECB ,得到CM =CN ,从而得到结论.【详解】解:(1)∵△ACE 、△CBD 均为等边三角形,∴AC =EC ,CD =CB ,∠ACE =∠BCD ,∴∠ACD =∠ECB ;在△ACD 与△ECB 中,∵AC =EC ,∠ACD =∠ECB ,CD =CB ,∴△ACD ≌△ECB (SAS ),∴AD =BE ,故答案为AD =BE .(2)AD =BE 成立,∠APE 不随着∠ACB 的大小发生变化,始终是60°.证明如下:∵ΔACE 和ΔBCD 是等边三角形,∴AC =EC ,CD =CB ,∠ACE =∠BCD ,∴∠BCE =∠ACD , 在ΔACD 和ΔECB 中,∵AC =EC ,∠BCE =∠ACD ,CD =CB ,∴ΔACD ≌ΔECB ,∴AD =BE . ∵ΔACD ≌ΔECB ,∴∠CAD =∠CEB ,∵∠APB =∠P AE +∠PEA ,∴∠APB =∠CAE +∠CEA =120°,∴∠APE =60°;(3)过点C 分别作CM ⊥AD 于M ,CN ⊥EB 于N ,∵ΔACD ≌ΔECB ,∴CM =CN ,∴CP 平分∠DPE .【点睛】该题以等边三角形为载体,主要考查了全等三角形的判定及其性质、等边三角形的性质等几何知识点的应用问题;对综合的分析问题解决问题的能力提出了较高的要求.7.如图,已知△CAD与△CEB都是等边三角形,BD、EA的延长线相交于点F.(1)求证:△ACE≌△DCB.(2)求∠F的度数.(3)若AD⊥BD,请直接写出线段EF与线段BD、DF之间的数量关系.【答案】(1)见解析;(2)60°;(3)EF=BD+2DF.【解析】【分析】(1)根据等边三角形的性质得到CB=CE,CD=CA,∠BCE=∠DCA=60°,由全等三角形的判定定理即可得到结论;(2)设BC与EF相交于G,根据全等三角形的性质得到∠1=∠2,根据三角形的内角和即可得到结论;(3)根据垂直的定义得到∠ADF=90°,求得∠DAF=30°,根据直角三角形的性质得到AF=2DF,根据全等三角形的性质得到AE=BD,于是得到结论.【详解】(1)∵△CAD与△CEB都是等边三角形,∴CB=CE,CD=CA,∠BCE=∠DCA=60°,∴∠BCD=∠ECA,∴△ACE≌△DCB(SAS);(2)设BC与EF相交于G,由(1)可知△ACE≌△DCB,∴∠1=∠2,∵∠1+∠BGF+∠F=∠2+∠AGC+∠BCE=180°,而∠BGF=∠AGC,∴∠F=∠BCE=60°;(3)EF=BD+2DF,理由如下:∵AD⊥BD,∴∠ADF=90°,∵∠F=60°,∴∠DAF=30°,∴AF=2DF,∵△ACE≌△DCB,∴AE=BD,∴EF=AE+AF=BD+2DF.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,正确的识别图形是解题的关键.8.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)见解析;(3)是定值,理由见解析【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】解:(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.故答案为:30°;(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线,AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒,903060BOA ∴∠=︒-︒=︒. ②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,如图3,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒,150CBE CAD ∴∠=∠=︒,30CBO ∴∠=︒,30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.9.已知点C 为线段AB 上一点,分别以AC ,BC 为边在线段AB 同侧作△ACD 和△BCE ,且CA =CD ,CB =CE , ∠ACD =∠BCE ,直线AE 与BD 交于点F .(1)如图1,若∠ACD =58°,求∠BCE 的度数.(2)如图2,将图1中△ACD 绕点C 顺时针旋转任意角度(交点F 至少在BD ,AE 中的一条线段上)①请直接写出∠EFB 与∠ECB 的数量关系;②若∠ACD =α ,试探究∠AFB 与α的数量关系,并予以证明.(3)如图3,若∠ACD =α,连AB ,求∠BAE 一∠ABD 的值.【答案】(1)58°;(2)①∠EFB =∠ECB ;②∠AFB =180°-α;(3)α【解析】【分析】(1)根据∠BCE =∠ACD 即可得出答案;(2)①先根据SAS 得出△ACE ≌△DCB ,得出∠CBD =∠AEC ,再根据三角形的内角和定理以及对顶角相等即可得出答案;②由∠EFB =∠ECB ,∠BCE =∠ACD =α,再根据平角的定义得出答案;(3)延长EA 交BD 于F ,BC 交EF 于M ,得出∠BAE 一∠ABD = ∠BFE ,再根据∠BFE =∠BCE =∠ACD = α即可得出答案;【详解】解:(1)∵∠ACD =∠BCE ,∠ACD =58°,∴∠BCE =58°(2)①∠EFB =∠ECB ,理由如下:∵∠ACD =∠BCE∴∠ACD +∠DCE =∠BCE +∠DCE∴∠ACE =∠DCB在△ACE 和△DCB 中AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCB∴∠CBD=∠AEC,设BF交CE于点O∵∠COB=∠FOE,∴∠EFB=∠ECB②∠AFB =180°-α,理由如下:∵∠EFB=∠ECB,∠BCE=∠ACD=α,∴∠EFB=∠ECB=∠ACD=α∴∠AFB=180°-∠EFB =180°-α.(3)如图3,延长EA交BD于F,则∠BAE-∠ABD = ∠BFE又由(1)知△ACE≌△DCB∴∠BCD=∠ECA∠DBC=∠AEC设BC交EF于M,此时∠BMF=∠EMC ∴∠BFE=∠BCE∵∠BCD=∠ECA∴∠BCD+∠BCA =∠ECA+∠BCA∴∠BCE=∠ACD = α∴∠BFE=∠BCE=∠ACD = α∴∠BAE-∠ABD的值为α.【点睛】本题几何变换综合题,全等三角形的判定和性质,三角形外角性质,三角形的内角和定理的应用,关键是推出△ACE ≌△DCB .10.如图1,点M 为锐角三角形ABC 内任意一点,连接,,AM BM CM .以AB 为一边向外作等边三角形ABE △,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN .(1)求证:AMB ENB △≌△;(2)若AM BM CM ++的值最小,则称点M 为ABC 的费马点.若点M 为ABC 的费马点,求此时,,AMB BMC CMA ∠∠∠的度数;(3)受以上启发,你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图,并说明作法以及理由.【答案】(1)见解析;(2)120BMC ∠=︒:120AMB ∠=︒;120AMC ∠=︒;(3)见解析【解析】【分析】(1)结合等边三角形的性质,根据SAS 可证△AMB ≌△ENB(2)连接MN ,由(1)的结论证明ΔBMN 为等边三角形,所以BM =MN ,即AM+BM+CM =EN+MN+CM ,所以当E 、N 、M 、C 四点共线时,AM+BM+CM 的值最小,从而可求此时∠AMB 、∠BMC 、ΔCMA 的度数;(3)根据(2)中费马点的定义,又△ABC 的费马点在线段EC 上,同理也在线段BF 上,因此线段EC 和BF 的交点即为△ABC 的费马点.【详解】解:(1)证明:∵ABE △为等边三角形,∴,60AB BE ABE =∠=︒.而60MBN ∠=︒,∴ABM EBN ∠=∠.在AMB 与ENB △中,AB BE ABM EBN BM BN =⎧⎪∠=∠⎨⎪=⎩∴(SAS)AMB ENB ≌.(2)连接MN .由(1)知,AM EN =.∵60,MBN BM BN ∠=︒=,∴BMN △为等边三角形.∴BM MN =.∴AM BM CM EN MN CM ++=++.∴当E 、N 、M 、C 四点共线时,AM BM CM ++的值最小.此时,180120BMC NMB ∠=︒-∠=︒:180120AMB ENB BNM ∠=∠=︒-∠=︒;360120AMC BMC AMB ∠=-∠-∠=︒︒.(3)如图2,分别以ABC 的AB ,AC 为一边向外作等边ABE △和等边ACF ,连接,CE BF ,相交于M ,则点M 即为ABC 的费马点,由(2)知,ABC 的费马点在线段EC 上,同理也在线段BF 上.因此线段EC 与BF 的交点即为ABC 的费马点.(方法不唯一,正确即可)【点睛】本题考查了等边三角形的性质,三角形全等的判定与性质,掌握三角形全等的判定和性质是解题的关键.11.已知:△ABC 与△BDE 都是等腰三角形.BA =BC ,BD =BE (AB >BD )且有∠ABC =∠DBE .(1)如图1,如果A 、B 、D 在一直线上,且∠ABC =60°,求证:△BMN 是等边三角形; (2)在第(1)问的情况下,直线AE 和CD 的夹角是 °;(3)如图2,若A 、B 、D 不在一直线上,但∠ABC =60°的条件不变则直线AE 和CD 的夹角是 °;(4)如图3,若∠ACB =60°,直线AE 和CD 的夹角是 °.【答案】(1)证明见解析;(2)60;(3)60;(4)60;【解析】【分析】(1)根据题意,得∠ABC =∠DBE =60°,从而得ABE DBC ∠=∠;通过证明ABE CBD ≌,得BAE BCD ∠=∠;通过证明BAM BCN ≌,得BM BN =,根据等边三角形的性质分析,即可完成证明;(2)结合题意,通过证明ABC 为等边三角形,得60BAC BCA ∠=∠=︒;结合(1)的结论,根据三角形外角性质,推导得120AOD ∠=︒,从而完成求解;(3)同理,通过证明ABC 为等边三角形,得60BAC BCA ∠=∠=︒;通过证明ABE CBD ≌,得BAE BCD ∠=∠;根据三角形外角性质,推导得120AOD ∠=︒,从而完成求解; (4)根据题意,通过证明ABC 为等边三角形,推导得ABE CBD ∠=∠,通过证明ABE CBD ≌,得BAE BCD ∠=∠,结合三角形外角的性质计算,即可得到答案.【详解】(1)∵∠ABC =∠DBE =60°∴18060MBN ABC DBE ∠=︒-∠-∠=︒,ABE ABC MBN ∠=∠+∠,DBC DBE MBN ∠=∠+∠ ∴ABE DBC ∠=∠∵BA =BC ,BD =BEABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠ BAM 和BCN △中60BAE BCD AB BC ABC MBN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴BAM BCN ≌∴BM BN =∴BMN △为等边三角形;(2)∵∠ABC =∠DBE =60°, BA =BC ∴ABC 为等边三角形;∴60BAC BCA ∠=∠=︒根据题意,AE 和CD 相交于点O∵BAE BCD ∠=∠∴AOD OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOD BAC BCA ∠=∠+∠=︒∴18060AOC AOD ∠=︒-∠=︒,即直线AE 和CD 的夹角是60︒故答案为:60;(3)∵∠ABC =∠DBE =60°, BA =BC ∴ABC 为等边三角形;∴60BAC BCA ∠=∠=︒∵ABE ABC MBN ∠=∠+∠,DBC DBE MBN ∠=∠+∠,∠ABC =∠DBE =60°∴ABE DBC ∠=∠∵BA =BC ,BD =BEABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠如图,延长AE ,交CD 于点O∴AOD OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOD BAC BCA ∠=∠+∠=︒∴18060AOC AOD ∠=︒-∠=︒,即直线AE 和CD 的夹角是60︒故答案为:60;(4)∵BA =BC ,∴ACB CAB ∠=∠∵∠ACB =60°∴60ACB CAB ∠=∠=︒∴ABC 为等边三角形∵BD =BE ,∠ABC =∠DBE∴60DBE ∠=︒∵ABE ABC CBE ∠=∠-∠,CBD DBE CBE ∠=∠-∠∴ABE CBD ∠=∠ABE △和CBD 中BA BC ABE DBC BE BD =⎧⎪∠=∠⎨⎪=⎩∴ABE CBD ≌∴BAE BCD ∠=∠分别延长CD 、AE ,相较于点O ,如下图:∴AOF OAC ACO OAC BCA BCD OAC BCA BAE ∠=∠+∠=∠+∠+∠=∠+∠+∠∵OAC BAE BAC ∠+∠=∠∴120AOF BAC BCA ∠=∠+∠=︒∴18060AOC AOF ∠=︒-∠=︒,即直线AE 和CD 的夹角是60︒故答案为:60.【点睛】本题考查了等腰三角形、等边三角形、全等三角形、补角、三角形外角的知识;解题的关键是熟练掌握等边三角形、全等三角形、三角形外角的性质,从而完成求解。
2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)专题03 等边三角形【题型1】等边三角形的性质1.(2022·全国·八年级课时练习)下列条件中,不能判断ABC V 是等边三角形的是( ).A .AB AC =,60B Ð=oB .AB AC =,B A Ð=ÐC .60A B Ð=Ð=oD .2A B CÐ+Ð=Ð【答案】D【分析】根据等边三角形的定义和判定定理判断即可.【详解】解:A 选项:∵AB =AC .∠B =60°.∴△ABC 是等边三角形,故A 选项不符合题意;B 选项:∵∠B =∠A ,∴AC =BC ,∵AB =AC ,∴AB =AC =BC ,∴△ABC 是等边三角形,故B 选项不符合题意;C 选项:∵∠A =∠B =60°,∠C =180°−∠A −∠B =60°,∴∠A =∠B =∠C ,∴AB =AC =BC ,∴△ABC 是等边三角形,故C 选项不符合题意;D 选项:∵∠A +∠B =2∠C ,∠A +∠B +∠C =180°,∴∠C =60°,不能判断△ABC 是等边三角形,故D 选项符合题意,故选:D .【点睛】本题考查了等边三角形的判定,解题的关键是熟悉等边三角形的定义及等边三角形的判定定理.注意:等边三角形的判定定理有:①三边都相等的三角形是等边三角形,②三角都相等的三角形是等边三角形,③有一个角等于60°的等腰三角形是等边三角形.【变式1-1】2.(2022·全国·八年级专题练习)如图,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为____°.【答案】60【分析】根据等边三角形的性质可得AB BC =,A ABC CB =Ð∠,证明△ABD ≌△BCE (SAS ),根据全等三角形的性质可得∠1=∠CBE ,根据三角形外角的性质可得∠2=∠1+∠ABE ,继而根据等量代换可得∠2=∠CBE +∠ABE =∠ABC ,即可求解.【详解】解:∵△ABC 是等边三角形,∴AB BC =,A ABC CB =Ð∠,在△ABD 和△BCE 中,AB BC ABC ACB BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△BCE (SAS ),∴∠1=∠CBE ,∵∠2=∠1+∠ABE ,∴∠2=∠CBE +∠ABE =∠ABC =60°.故答案为:60.【点睛】本题考查了等边三角形的性质,三角形外角的性质,全等三角形的性质与判定,掌握等边三角形的性质是解题的关键.【题型2】等边三角形的判定1.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,已知P 、Q 是△ABC 的BC 边上的两点,BP =PQ =QC =AP =AQ ,则∠BAC 的大小为( )A .120°B .110°C .100°D .90°【答案】A 【分析】根据等边三角形的性质,得∠PAQ =∠APQ =∠AQP =60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP =∠CAQ =30°,从而求解.【详解】解:∵PQ =AP =AQ ,∴△APQ 是等边三角形,∴∠PAQ =∠APQ =∠AQP =60°,∵BP =AP , QC =AQ∴∠B =∠BAP ,∠C =∠CAQ .又∵∠BAP +∠ABP =∠APQ =60°,∠C +∠CAQ =∠AQP =60°,∴∠BAP =∠CAQ =30°.∴120BAC BAP PAQ CAQ Ð=Ð+Ð+Ð=°.故∠BAC 的度数是120°.故选:A .【点睛】此题主要考查了运用等边三角形的性质与判定、等腰三角形的性质以及三角形的外角的性质.【变式2-1】2.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,在等边△ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD上,且2ED=BC,则∠ACE=_______【题型3】等边三角形的判定和性质1.(2022·山东·济南市济阳区垛石街道办事处中学八年级阶段练习)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm.若AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN=_________.【答案】2cm【分析】作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠MAB=∠B=∠CAN=∠C=30°∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为:2cm.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.【变式3-1】2.(2022·福建·莆田哲理中学八年级期末)如图,AB =AC ,AE =EC =CD ,∠A =60°,延长DE 交于AB 于F ,若EF =2,则DF =_________.【答案】6【分析】由AB AC =,60A Ð=°得到△ABC 是等边三角形,由等边三角形的性质和AE EC CD ==,推出BE =4,再由∠DBE =∠CDE =30°,推出ED =BE =4,从而求出DF 的长度.【详解】解:∵AB AC =,60A Ð=°,∴△ABC 是等边三角形,又∵AE EC =,∴∠AEB =90°,∠ABE =∠DBE =30°,∵∠ACB =60°,EC CD =,∴∠CED =∠CDE =30°,∴∠AEF=30°,∴∠FEB =60°,∴∠BFE =90°,∵2EF =,∴BE =4,∵∠DBE=∠CDE =30°,∴ED=BE =4,∴DF = ED+EF =6.故答案为6.【点睛】本题考查了等腰三角形的判定与性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,解题的关键是根据已知条件推出△BEF 是直角三角形.【题型4】含30度角的直角三角形1.(2020·湖北·公安县教学研究中心八年级期中)如图,∠B =∠D =90°,AB =AD ,∠2=60°,BC =5,则AC =( )A .5B .10C .15D .2.5【答案】B 【分析】利用HL 证明Rt △ACB ≌Rt △ACD ,推出∠1=30°,再利用含30度角的直角三角形的性质即可求解.【详解】解:∵∠B =∠D =90°,AB =AD ,AC =AC ,∴Rt △ACB ≌Rt △ACD (HL ),∴∠ACB =∠ACD =60°,∴∠1=30°,∵BC =5,∴AC =2BC =10,故选:B .【点睛】本题考查全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是证明Rt △ACB ≌Rt △ACD .【变式4-1】2.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC D 中,90C Ð=°,BE 平分ABC Ð,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.【答案】6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =Ð=Ð=Ð,再根据三角形的内角和定理可得30CBE Ð=°,设AE BE x ==,则9CE x =-,在Rt BCE V 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE Q 平分ABC Ð,ABE CBE \Ð=Ð,ED Q 垂直平分AB ,AE BE \=,ABE A \Ð=Ð,ABE CBE A \Ð=Ð=Ð,又90C Ð=°Q ,90ABE CBE A \Ð+Ð+Ð=°,解得30CBE Ð=°,设AE BE x ==,则9CE AC AE x =-=-,Q 在Rt BCE V 中,90C Ð=°,30CBE Ð=°,2BE CE \=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.一.选择题1.(2020·全国·九年级专题练习)如图,将一副三角尺如图所示叠放在一起,若12AB cm =,则阴影部分的面积是( )A .12B .18C .24D .362.(2022·广东清远·八年级期中)如图,在Rt ABC V 中,90ACB Ð=°,30A Ð=°,1BC =,则AB =( )A .2B C D .1.5【答案】A 【分析】根据含30°角的直角三角形的性质定理得出AB =2BC ,代入求出即可.【详解】解:Q 在Rt ABC D 中,90ACB Ð=°,30A Ð=°,2AB BC \=,1BC =Q ,2AB \=,故选:A .【点睛】本题考查了含30°角的直角三角形的性质定理,能根据含30°角的直角三角形的性质定理得出AB =2BC 是解此题的关键.3.(2022·江苏·八年级单元测试)如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E Ð=o ,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm4.(2022·全国·八年级课时练习)如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC =6,则DE 的长为( )A .1B .2C .3D .45.(2021·贵州·铜仁市第十一中学八年级期中)如图,D 是等边ABC V 的边AC 上的一点,E 是等边ABC V外一点,若BD CE =,12Ð=Ð,则对ADE V 的形状最准确的是( ).A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C 【分析】先根据已知利用SAS 判定△ABD ≌△ACE 得出AD =AE ,∠BAD =∠CAE =60°,从而推出△ADE 是等边三角形.【详解】解:∵三角形ABC 为等边三角形,∴AB =AC ,∵BD =CE ,∠1=∠2,在△ABD 和△ACE 中,12AB AC BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴AD =AE ,∠BAD =∠CAE =60°,∴△ADE 是等边三角形.故选:C .【点睛】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.6.(2021·江苏·九年级专题练习)如图,一块三角形空地上种草皮绿化,已知AB =20米,AC =30米,∠A =150°,草皮的售价为a 元/米2,则购买草皮至少需要( )A .450a 元B .225a 元C .150a 元D .300a 元【答案】C 【详解】如图,过点C 作CD ⊥BA 交BA 的延长线于点D ,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD÷2=×20×15÷2=150m2,∵草皮的售价为a元/米2,∴购买这种草皮的价格:150a元.故选C.二、填空题7.(2022·广东·平洲一中八年级期中)如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=_____cm.8.(2022·上海·七年级专题练习)如图,已知O是等边△ABC内一点,D是线段BO延长线上一点,且Ð=_____.Ð=120°,那么BDC=,AOBOD OA【答案】60°【分析】由AOB Ð的度数利用邻补角互补可得出60AOD Ð=°,结合OD OA =可得出AOD D 为等边三角形,而根据旋转全等模型由SAS 易证出BAO CAD D @D ,根据全等三角形的性质可得出120ADC AOB Ð=Ð=°,再根据BDC ADC ADO Ð=Ð-Ð即可求出BDC ∠的度数.【详解】解:ABC D Q 为等边三角形,AB AC \=,60BAC Ð=°.120AOB Ð=°Q ,180AOD AOB Ð+Ð=°,60AOD \=°∠.又OD OA =Q ,AOD \D 为等边三角形,AO AD \=,60OAD Ð=°,60ADO Ð=°.60BAO OAC OAC CAD Ð+Ð=Ð+Ð=°Q ,BAO CAD \Ð=Ð.在BAO D 和CAD D 中,AB AC BAO CAD AO AD =ìïÐ=Ðíï=î,()BAO CAD SAS \D @D ,120ADC AOB \Ð=Ð=°,60BDC ADC ADO \Ð=Ð-Ð=°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质以及角的计算,通过证明BAO CAD D @D ,找出120ADC AOB Ð=Ð=°是解题的关键.9.(2022·山东临沂·八年级期末)已知等腰ABC V 的一底角∠B =15°,且斜边AB =6cm ,则ABC V 的面积为__10.(2020·辽宁阜新·中考真题)如图,直线a,b过等边三角形ABC顶点A和C,且//a b,142Ð=°,则2Ð的度数为________.【答案】102°【分析】根据题意可求出BACÐ的度数,再根据两直线平行内错角相等即可得出答案.【详解】Q三角形ABC为等边三角形\Ð=°BAC60//Qa b\Ð=Ð+Ð=°+°=°BAC214260102故答案为:102°.【点睛】本题考查了平行线的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.11.(2022·内蒙古·呼和浩特市回民区秋实学校八年级阶段练习)如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE = ,则BC =________.12.(2022·全国·八年级专题练习)如图,在△ABC 中,AB AC =,点D 在BC 上,AD DE =,如果20BAD Ð=o ,∠AED =60o ,那么∠EDC 的度数为___度.【答案】10【分析】先证明△ADE 是等边三角形,从而得到∠ADE =∠AED =60°,再根据等腰三角形的性质与三角形外角的性质得到∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,据此求解即可.【详解】解:∵AD =DE ,∠AED =60°,∴△ADE 是等边三角形,∴∠ADE =∠AED =60°,∵AB =AC ,∴∠B =∠C ,∵∠ADC =∠B +∠BAD ,∠AED =∠C +∠EDC ,∴∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,∴2∠EDC =60°-∠C +∠B -40°,∴∠EDC =10°,故答案为:10.【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质,三角形外角的性质,证明△ADE 是等边三角形是解题的关键.三、解答题13.(2021·辽宁营口·九年级期中)ABC V 与CDE △都是等边三角形,连接AD 、BE .(1)如图①,当点B 、C 、D 在同一条直线上时,则BCE Ð=______度;(2)将图①中的CDE △绕着点C 逆时针旋转到如图②的位置,求证:AD BE =.【答案】(1)120;(2)证明见解析.【分析】(1)根据CDE △是等边三角形及点B 、C 、D 在同一条直线上即可求解;(2)证明BCE ACD D D ≌即可求解.【详解】解:(1)∵CDE △是等边三角形,∴60DCE Ð=°,∵点B 、C 、D 在同一条直线上,∴180BCE DCE ÐÐ+=°,∴180120BCE DCE ÐÐ=°-=°(2)∵ABC V 与CDE △都是等边三角形,∴BC =AC ,CE =CD ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,∴∠BCE =∠ACD ,在BCE V 与ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,∴()BCE ACD SAS D D ≌,∴BE =AD .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质;解题的关键是熟练掌握全等三角形的判定方法.14.(2021·江苏·南通田家炳中学一模)如图,已知点D 、E 在ABC V 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE Ð的度数.【答案】(1)证明见解析;(2)90o.【分析】(1)作AF BC ^于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE V 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF BC ^于F .Q AB AC =,AD AE =,\BF CF =,DF EF =,15.(2021·江西·信丰县第七中学八年级阶段练习)如图,△ABC中,∠A=90°,∠B=60°,BC的垂直平分线交BC与点D,交AC于点E.求证:(1)AE=DE;(2)若AE=6,求CE的长.【答案】(1)证明见解析;(2)12.【分析】(1)由垂直平分线可得EB=EC,则得∠EBC=∠C=30°=∠ABE,由角平分线性质可得AE=DE;(2)根据直角三角形中,30°所对直角边为斜边的一半.即可得到答案.【详解】(1)证明:连接BE,∵∠A=90°,∠B=60°,∴∠C=30°.∵DE垂直平分BC,16.(2022·江苏·八年级专题练习)如图,点C 为线段AB 上一点,ACM V ,CBN V 是等边三角形,直线AN MC 、交于点E ,直线BM CN 、交于点F .(1)求证:AN BM =;(2)求证:EC FC =;(3)求证://AB EF .【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)只需要证明△CAN ≌△CMB 即可得到答案;(2)根据△CAN ≌△CMB 得到∠EAC =∠FNC ,再由AC =MC ,∠ACE =∠MCF =60°,即可证明△AEC ≌△MFC ,得到CE =CF ;(3)根据CE =CF ,∠ECF =60°,推出△ECF 是等边三角形,则∠CEF =∠ACE =60°,即可得证.【详解】解:(1)∵△ACM 和△CBN 都是等边三角形,∴AC =MC ,CN =CB ,∠ACM =∠BCN =60°,∴∠MCN =180°-∠ACM -∠BCN =60°,∴∠CAN =∠ACM +∠MCN =∠MCN +∠BCN =∠BCM =120°,∴△CAN ≌△CMB (SAS ),∴AN =BM ;(2)∵△CAN≌△CMB,∴∠EAC=∠FNC,∵AC=MC,∠ACE=∠MCF=60°,∴△AEC≌△MFC(ASA),∴CE=CF;(3)∵CE=CF,∠ECF=60°,∴△ECF是等边三角形,∴∠CEF=∠ACE=60°,∴EF∥AB.【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,平行线的判定,解题的关键在于能够熟练掌握相关知识进行求解.17.(2022·全国·八年级课时练习)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定△ADE的形状是_____三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为_____.【答案】等边 6【分析】(1)由等边三角形的性质得出AD=AE,∠DAC=∠EAC=30°,证出∠DAE=60°,由等边三角形的判定可得出结论;(2)证明△ACE≌△CBG(S A S),由全等三角形的性质得出AE=CG,证△CEF≌△GBF(AA S),由全等三角形的性质得出CF=GF,则可得出答案.【详解】解:(1)∵BC=2BD,∴BD=CD,∵△ABC是等边三角形,∴∠BAD=∠DAC=30°,∵点D关于直线AC的对称点为点E,∴AD=AE,∠DAC=∠EAC=30°,∴∠DAE=60°,∴△ADE是等边三角形.故答案为:等边;(2)∵点D关于直线AC的对称点为点E.∴△ACD≌△ACE,∴CE=CD,∠ACD=∠ACE,∵BG=CD,∴CE=BG,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=CB,∴∠ACD=∠GBC=120°,∴∠ACE=∠GBC=120°,∴△ACE≌△CBG(S A S),∴AE=CG,∵∠BCE=∠ACE﹣∠ACB=60°,∴∠BCE+∠BGC=180°,∴BG∥CE,∴∠G=∠FCE,∵F为BE的中点,∴BF=EF,∵∠BFG=∠CFE,∴△CEF≌△GBF(AA S),∴CF=GF,18.(2021·河北唐山·八年级期末)在三角形纸片ABC 中,90ABC Ð=°,30A Ð=°,4AC =,点E 在AC 上,3AE =.将三角形纸片ABC 按图中方式折叠,使点A 的对应点A ¢落在AB 的延长线上,折痕为ED ,A E ¢交BC 于点F .(1)求CFE Ð的度数;(2)求BF 的长度.【答案】(1)60°;(2)1.【分析】(1)先根据折叠的性质可得30A A ¢Ð=Ð=°,再根据邻补角的定义可得90A BF =¢Ð°,然后根据直角三角形的性质可得60A FB ¢Ð=°,最后根据对顶角相等即可得;(2)先根据线段的和差可得1CE =,再根据等边三角形的判定与性质可得1EF CE ==,然后根据折叠的性质可得3A E AE ¢==,从而可得2A F ¢=,最后利用直角三角形的性质即可得.【详解】(1)由折叠的性质得:30A A ¢Ð=Ð=°,90ABC Ð=°Q ,点A ¢落在AB 的延长线上,18090ABC A BF ¢Ð=°Ð=-\°,9060A FB A ¢¢\Ð=°-Ð=°,由对顶角相等得:60CFE A FB ¢Ð=Ð=°;(2)4,3C E A A ==Q ,1CE AC AE \=-=,Q 在ABC V 中,90ABC Ð=°,30A Ð=°,9060C A \Ð=°-Ð=°,由(1)知,60CFE Ð=°,。
1专题07 等边三角形的判定与性质知识对接考点一、等边三角形的判定与性质 1、性质: (1)三边相等.(2)三个内角相等,每一个内角都等于60°. (3)是轴对称图形,有三条对称轴. (4)面积:S=43a 2(a 为等边三角形的边长). 2、判定:(1)三边相等的三角形是等边三角形. (2)三个角都相等的三角形是等边三角形. (3)有一个角是60°的等腰三角形是等边三角形.专项训练一、单选题1.(2021·陕西西安·交大附中分校九年级)如图,点A ,B ,C ,D 在⊙O 上,其中四边形OBCD 为平行四边形,连接AB ,AC ,则⊙A 的度数为( )A .20°B .25°C .30°D .35°【答案】A 【分析】连接OC ,先证明⊙OBC 是等边三角形,得到⊙BOC =60°,然后利用圆周角定理求解即可. 【详解】 解:连接OC .⊙四边形OBCD为平行四边形,⊙OD=BC,⊙OB=OC=OD,⊙OB=OC=BC,⊙⊙OBC是等边三角形,⊙⊙BOC=60°,⊙BOC=30°,⊙⊙BAC=12故选A.【点睛】本题主要考查了平行四边形的性质,等边三角形的性质与判定,圆周角定理,解题的关键在于能够熟练掌握相关知识进行求解.2.(2021·绍兴市柯桥区杨汛桥镇中学九年级二模)如图,正方形ABCD的顶点A、B在⊙O 上,顶点C、D在⊙O内,将正方形ABCD绕点B顺时针旋转α度,使点C落在⊙O上.若正方形ABCD的边长和⊙O的半径相等,则旋转角度α等于()A.36°B.30°C.25°D.22.5°【答案】B【分析】连接OA,OB,OG,由旋转的性质可得,AB=BG,⊙ABE=⊙CBG=α,先证明⊙OAB和⊙OBG 都是等边三角形,得到⊙OBA=⊙OBG=60°,再由⊙ABO+⊙OBG=⊙ABC+⊙CBG=120°,求解即可.【详解】解:如图所示,连接OA,OB,OG,由旋转的性质可得,AB=BG,⊙ABE=⊙CBG=α⊙正方形ABCD的边长和⊙O的半径相等,⊙OA=OB=OG=BG=AB,⊙⊙OAB和⊙OBG都是等边三角形,3⊙⊙OBA =⊙OBG =60°,⊙⊙ABO +⊙OBG =⊙ABC +⊙CBG =120°,⊙ABC =90°(正方形的性质), ⊙⊙CBG =30°, ⊙α=30°, 故选B .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,正方形的性质,解题的关键在于能够熟练掌握相关知识进行求解.3.(2021·西安市铁一中学)如图,在矩形ABCD 中,DAB ∠的平分线交BD 于点F ,CD 于点E ,15EAC ∠=︒,AB =EF 的长为( )A.2 BC.2 D1【答案】B 【分析】过点F 作FG AD ⊥于点G ,根据矩形性质证明OAD ∆是等边三角形,利用tan60=︒GF DG ,求出GF 的长,再根据勾股定理即可求出结果. 【详解】解:如图,过点F 作FG AD ⊥于点G ,在矩形ABCD 中,EA 是DAB ∠的平分线, ⊙45DAE EAB AED ∠=∠=∠=︒, ⊙AD DE =,AG GF =, ⊙15EAC ∠=︒,⊙60=︒∠DAC ,⊙OAD ∆是等边三角形, ⊙60ADB ∠=︒, ⊙AB = ⊙2AD =,4BD =, ⊙2AD DE ==, ⊙AE =⊙60GDF ∠=︒,2=-=-DG AD AG GF , ⊙tan60=︒GF DG ,⊙()2=-GF GF解得3=GF⊙==AF⊙(=-=EF AE AF . 故选B . 【点睛】本题主要考查了矩形的性质,角平分线的性质,勾股定理,等边三角形的性质与判定,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.4.(2021·海南三亚·九年级一模)如图,在Rt ABC △中,90ABC ∠=︒,AB BC ==ABC 绕点C 逆时针转60︒,得到MNC ,则BM 的长是( )A .1B .1C D .2+【答案】B 【分析】连接AM ,BM 交AC 于D ,如图,利用等腰直角三角形的性质得到AC ==2,再根据旋转的性质得CM =CA =2,⊙ACM =60°,则可判断⊙ACM 为等边三角形,直接证BM 垂直平分AC ,然后利用等腰直角三角形和等边三角形的性质计算出BD 和MD ,从而得到BM 的长. 【详解】5解:连接AM ,BM 交AC 于D ,如图,⊙⊙ABC =90°,AB =BC = ⊙AC ===2,⊙⊙ABC 绕点C 逆时针转60°,得到⊙MNC , ⊙CM =CA =2,⊙ACM =60°, ⊙⊙ACM 为等边三角形, ⊙MA =MC , 而BA =BC , ⊙BM 垂直平分AC , ⊙BD 12=AC =1,MD ==2 ⊙BM =1 故选:B . 【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形和等边三角形的性质. 5.(2021·河北九年级)如图,直线AB 、CD 交于点O ,若AB 、CD 是等边MNP △的两条对称轴,且点P 在直线CD 上(不与点O 重合),则点M 、N 中必有一个在( )A .AOD ∠的内部B .BOD ∠的内部PC .BOC ∠的内部D .直线AB 上【答案】D 【分析】根据等边三角形是轴对称图形,利用轴对称图形的性质解决问题即可. 【详解】 解:如图,⊙⊙PMN是等边三角形,⊙⊙PMN的对称轴经过三角形的顶点,⊙直线CD,AB是⊙PMN的对称轴,又⊙直线CD经过点P,⊙直线AB一定经过点M或N,故选:D.【点睛】本题考查轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6.(2021·四川绵阳·)如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是()A.2B.3C D【答案】D【分析】如图所示,等边三角形ABC,BC边上的高AD即为所求.【详解】解:如图所示等边三角形ABC,AD是BC边上的高,由题意可知AD的长即为所求,AB=2,⊙B=60°,⊙sinAD AB B==故选D.7【点睛】本题主要考查了等边三角形的性质,三视图,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.7.(2021·四川雅安·)如图,四边形ABCD 为⊙O 的内接四边形,若四边形OBCD 为菱形,A ∠为( ).A .45°B .60°C .72°D .36°【答案】B 【分析】根据菱形性质,得OB OD BC CD ===;连接OC ,根据圆的对称性,得OB OC OD ==;根据等边三角形的性质,得BOD ∠,再根据圆周角和圆心角的性质计算,即可得到答案. 【详解】⊙四边形OBCD 为菱形 ⊙OB OD BC CD === 连接OC⊙四边形ABCD 为⊙O 的内接四边形 ⊙OB OC OD ==⊙OBC ,OCD 为等边三角形 ⊙60BOC COD ∠=∠=︒⊙120BOD BOC COD ∠=∠+∠=︒⊙1602A BOD ︒∠=∠=故选:B . 【点睛】本题考查了圆内接多边形、等边三角形、菱形的知识;解题的关键是熟练掌握圆的对称性、等边三角形、菱形、圆周角、圆心角的知识;从而完成求解.8.(2021·山东枣庄·中考真题)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,=AC 6BD =,点P 是AC 上一动点,点E 是AB 的中点,则PD PE +的最小值为( )A .B .C .3D .【答案】A 【分析】连接DE ,先根据两点之间线段最短可得当点,,D P E 共线时,PD PE +取得最小值DE ,再根据菱形的性质、勾股定理可得6AB =,然后根据等边三角形的判定与性质求出DE 的长即可得. 【详解】解:如图,连接DE ,由两点之间线段最短得:当点,,D P E 共线时,PD PE +取最小值,最小值为DE ,四边形ABCD 是菱形,=AC 6BD =, 11,3,22AB AD OB BD OA AC AC BD ∴=====⊥,6AB ∴=, 6AB AD BD ∴===,ABD ∴是等边三角形,9点E 是AB 的中点, 13,2AE AB DE AB ∴==⊥,DE ∴即PD PE +的最小值为 故选:A . 【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识点,熟练掌握菱形的性质是解题关键.9.(2021·天津)如图,在ABC 中,120BAC ∠=︒,将ABC 绕点C 逆时针旋转得到DEC ,点A ,B 的对应点分别为D ,E ,连接AD .当点A ,D ,E 在同一条直线上时,下列结论一定正确的是( )A .ABC ADC ∠=∠B .CB CD =C .DE DC BC +=D .AB CD ∥【答案】D 【分析】由旋转可知120EDC BAC ∠=∠=︒,即可求出60ADC ∠=︒,由于60ABC ∠<︒,则可判断ABC ADC ∠≠∠,即A 选项错误;由旋转可知CB CE =,由于CE CD >,即推出CB CD >,即B 选项错误;由三角形三边关系可知DE DC CE +>,即可推出DE DC CB +>,即C 选项错误;由旋转可知DC AC =,再由60ADC ∠=︒,即可证明ADC 为等边三角形,即推出60ACD ∠=︒.即可求出180ACD BAC ∠+∠=︒,即证明//AB CD ,即D 选项正确;【详解】由旋转可知120EDC BAC ∠=∠=︒, ⊙点A ,D ,E 在同一条直线上, ⊙18060ADC EDC ∠=︒-∠=︒, ⊙60ABC ∠<︒,⊙ABC ADC ∠≠∠,故A 选项错误,不符合题意; 由旋转可知CB CE =,⊙120EDC ∠=︒为钝角, ⊙CE CD >,⊙CB CD >,故B 选项错误,不符合题意; ⊙DE DC CE +>,⊙DE DC CB +>,故C 选项错误,不符合题意; 由旋转可知DC AC =, ⊙60ADC ∠=︒, ⊙ADC 为等边三角形, ⊙60ACD ∠=︒. ⊙180ACD BAC ∠+∠=︒,⊙//AB CD ,故D 选项正确,符合题意; 故选D . 【点睛】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定.利用数形结合的思想是解答本题的关键.10.(2021·安徽)如图,在ABC 中,AB =BC =3,⊙ABC =30°,点P 为ABC 内一点,连接P A 、PB 、PC ,求P A +PB +PC 的最小值( )A .B .C .D .【答案】A 【分析】将⊙ABP 绕点B 逆时针旋转60°得到⊙BFE ,连接PF ,E C .易证P A +PB +PC =PC +PF +EF ,因为PC +PF +EF ≥EC ,推出当P ,F 在直线EC 上时,P A +PB +PC 的值最小,求出EC 的长即可解决问题. 【详解】解:将⊙ABP 绕点B 逆时针旋转60°得到⊙BFE ,连接PF ,E C .11由旋转的性质可知:⊙PBF 是等边三角形, ⊙PB =PF , ⊙P A =EF ,⊙P A +PB +PC =PC +PF +EF , ⊙PC +PF +EF ≥EC ,⊙当P ,F 在直线EC 上时,P A +PB +PC 的值最小, 由旋转可知:BC =BE =BA =3,⊙CBE =⊙ABC +⊙ABE =90°, ⊙EB ⊙BC , ⊙ECBC=⊙P A +PB +PC的最小值为 故选A . 【点睛】本题旋转变换,等边三角形的判定和性质,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题. 二、填空题11.(2021·杭州市十三中教育集团(总校))如图,点D 是等边⊙ABC 边BC 上一点,将等边⊙ABC 折叠,使点A 与点D 重合,折痕为EF (点E 在边AB 上). (1)当点D 为BC 的中点时,AE :EB =________; (2)当点D 为BC 的三等分点时,AE :EB =________.【答案】1:1 7:5或7:8 【分析】(1)连接AD ,然后根据折叠的性质和等边三角形的性质求解即可;(2)分当DC :BD =1:2时,当DC :BD =2:1时两种情况,利用相似三角形进行求解即可. 【详解】解:(1)如图,连接AD ,⊙D 为BC 的中点,⊙ABC 为等边三角形,折叠, ⊙AD ⊙BC ,⊙DAB =⊙DAC =1=2BAC ∠30°,⊙B =60°,⊙⊙EDB =90°﹣30°=60°=⊙B , ⊙⊙BED 为等边三角形,⊙AE =ED =BE ,即AE :EB =1:1, 故答案为:1:1;(2)当DC :BD =1:2时, 设CD =k ,BD =2k , ⊙AB =AC =3k , ⊙⊙ABC 为等边三角形, ⊙⊙EDF =⊙A =60°,⊙⊙EDB +⊙FDC =⊙BED +⊙EDB =120°, ⊙⊙BED =⊙FDC , ⊙⊙B =⊙C =60°, ⊙⊙BED ⊙⊙CDF , ⊙=BE BED DC CDF 的周长的周长, ⊙54BE kk k, ⊙BE =54k ,⊙AE =74k , ⊙AE :BE =7:5,13当DC :BD =2:1时, 设CD =2k ,BD =k , 同上一种情况得:=BE BED DC CDF 的周长的周长, ⊙425BE kk k⊙BE =85k , ⊙AE =75k, ⊙AE :BE =7:8, 故答案为:7:5或7:8.【点睛】本题主要考查了等边三角形的性质与判定,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.12.(2021·陕西西安·交大附中分校)如图,在边长为6cm 的正六边形中,点P 在边AB 上,连接PD 、PE .则PDE 的面积为______cm 2.【答案】【分析】首先求得正六边形的边心距,从而求得⊙PDE 边DE 上的高,利用三角形的面积公式求得答案即可.【详解】解:如图所示,连接OD 、OE ,此正六边形中DE=6,则⊙DOE=60°;⊙OD=OE,⊙⊙ODE是等边三角形,⊙OG⊙DE,⊙⊙DOG=30°,⊙OG=OD•cos30°=cm),⊙⊙PDE边DE上的高为2OG=cm),cm2),⊙S⊙PDE=12故答案为【点睛】此题考查了正六边形的性质,三角形面积的求法,解题的关键是根据题意作出辅助线.13.(2021·江苏九年级二模)若线段DE是等边⊙ABC的中位线,且DE=2,则⊙ABC的周长为____.【答案】12.【分析】根据三角形中位线定理求出BC,根据等边三角形的概念计算即可.【详解】解:如图,⊙DE是⊙ABC的中位线,⊙BC=2DE=4,⊙⊙ABC为等边三角形,15⊙AB =AC =BC =4, ⊙⊙ABC 的周长为12, 故答案为:12. 【点睛】本题考查的是三角形中位线定理、等边三角形的概念,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(2021·山东滨州·)如图,在ABC 中,90ACB ∠=︒,30BAC ∠=︒,2AB =.若点P 是ABC 内一点,则PA PB PC ++的最小值为____________.【分析】根据题意,首先以点A 为旋转中心,顺时针旋转⊙APB 到⊙AP ′B ′,旋转角是60°,作出图形,然后根据旋转的性质和全等三角形的性质、等边三角形的性质,可以得到P A +PB +PC =PP ′+P ′B ′+PC ,再根据两点之间线段最短,可以得到P A +PB +PC 的最小值就是CB ′的值,然后根据勾股定理可以求得CB ′的值,从而可以解答本题. 【详解】解:以点A 为旋转中心,顺时针旋转⊙APB 到⊙AP ′B ′,旋转角是60°,连接BB ′、PP ′,CB ',如图所示,则⊙P AP ′=60°,AP =AP ′,PB =P ′B ′, ⊙⊙APP ′是等边三角形, ⊙AP =PP ′,⊙P A +PB +PC =PP ′+P ′B ′+PC ,⊙PP ′+P ′B ′+PC ≥CB ′,⊙PP ′+P ′B ′+PC 的最小值就是CB ′的值, 即P A +PB +PC 的最小值就是CB ′的值, ⊙⊙BAC =30°,⊙BAB ′=60°,AB =AB '=2,⊙⊙CAB ′=90°,AB ′=2,AC =AB •cos ⊙BAC =2×cos 30°=2= ⊙CB=【点睛】本题考查旋转的性质、等边三角形的性质、最短路径问题、勾股定理,解答本题的关键是作出合适的辅助线,得出P A +PB +PC 的最小值就是CB ′的值,其中用到的数学思想是数形结合的思想.15.(2021·四川达州·中考真题)如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为___________.【答案】 【分析】首先证明120APB ∠=︒,推出点P 的运动轨迹是以O 为圆心,OA 为半径的弧.连接CO 交⊙O 于P',当点P 运动到P'时,CP 取到最小值. 【详解】如图所示,⊙边长为6的等边ABC ∆,17⊙6AC AB ==,60ACB CAB ∠=∠=︒ 又⊙AE CF = ⊙()ACF BAE SAS ≅ ⊙CAP PBA ∠=∠⊙60EPA PBA PAB CAP PAB CAB ∠=∠+∠=∠+∠=∠=︒ ⊙120APB ∠=︒⊙点P 的运动轨迹是以O 为圆心,OA 为半径的弧 此时120AOB ∠=︒连接CO 交⊙O 于P',当点P 运动到P'时,CP 取到最小值 ⊙CA CB =,CO CO =,OA OB = ⊙()ACO BCO SSS ≅⊙30ACO BCO ∠=∠=︒,60AOC BOC ∠=∠=︒ ⊙90CAO CBO ∠=∠=︒ 又⊙6AC =⊙'tan 306OP OA AB ==⋅︒==cos30AB OC =⋅==︒⊙''CP OC OP =-==即min CP =故答案为:【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、圆、特殊角的三角函数等相关知识.关键是学会添加辅助线,该题综合性较强. 三、解答题16.(2021·广东广州·中考真题)如图,在四边形ABCD 中,90ABC ∠=︒,点E 是AC 的中点,且AC AD =(1)尺规作图:作CAD ∠的平分线AF ,交CD 于点F ,连结EF 、BF (保留作图痕迹,不写作法);(2)在(1)所作的图中,若45BAD ∠=︒,且2CAD BAC ∠=∠,证明:BEF 为等边三角形.【答案】(1)图见解析;(2)证明见解析. 【分析】(1)根据基本作图—角平分线作法,作出CAD ∠的平分线AF 即可解答;(2)根据直角三角形斜边中线性质得到12BE AC =并求出30BEC BAC ABE ∠=∠+∠=︒,再根据等腰三角形三线合一性质得出CF DF =,从而得到EF 为中位线,进而可证BE EF =,60BEF ∠=︒,从而由有一个角是60°的等腰三角形是等边三角形得出结论.【详解】解:(1)如图,AF 平分CAD ∠,(2)⊙45BAD ∠=︒,且2CAD BAC ∠=∠, ⊙30CAD ∠=︒,15BAC ∠=︒, ⊙AE EC =,90ABC ∠=︒, ⊙12BE AE AC ==, ⊙15ABE BAC ∠=∠=︒, ⊙30BEC BAC ABE ∠=∠+∠=︒, 又⊙AF 平分CAD ∠,AC AD =, ⊙CF DF =, 又⊙AE EC =, ⊙1122EF AD AC ==,//EF AD ,19⊙30CEF CAD ∠=∠=︒, ⊙60BEF BEC CEF ∠=∠+∠=︒ 又⊙12BE EF AC ==⊙BEF 为等边三角形. 【点睛】本题主要考查了基本作图和等腰三角形性质以及与三角形中点有关的两个定理,解题关键是掌握等腰三角形三线合一定理、直角三角形斜边中线等于斜边一半以及三角形中位线定理. 17.(2021·南山实验教育集团南海中学九年级三模)如图,BC 是O 的直径,点A 是O 上一点,点D 是BC 延长线上一点,AB AD =,AE 是O 的弦,30AEC ∠=.(1)求证:直线AD 是O 的切线; (2)若3CD =,求O 的半径;(3)若AE BC ⊥于点F ,点P 为ABE 上一点,连接AP ,CP ,EP ,请找出AP ,CP ,EP 之间的关系,并证明.【答案】(1)见解析;(2)3;(3)EP AP +=,理由见解析 【分析】(1)先求出⊙BAD =120°,再求出⊙OAB ,进而得出⊙OAD =90°,即可得出结论; (2)先判断出⊙AOC 是等边三角形,得出AC =OC ,再判断出AC =CD ,即可得出结论; (3)先判断出⊙CAP =⊙CEM ,进而得出⊙ACP ⊙⊙ECM (SAS ),进而得出CM =CP ,⊙APC =⊙M =30°,再判断出MN =,即可得出结论. 【详解】(1)证明:如图,连接AC OA ,,30AEC ∠=︒, 30ABC AEC ∴∠∠︒==,AB AD =,30D ABC ∴∠∠︒==,120BAD ∴∠=︒,OA OB =,,30OAB ABC ∴∠=∠=︒,90OAD BAD OAB ∴∠∠∠︒=-=,点A 在O 上, ⊙直线AD 是的切线; (2)解:如图1,连接AC ,由(1)知,30D ∠=︒,90OAD ∠=︒,9060AOC D ∴∠︒∠︒=-=,∴AOC △是等边三角形,OC AC ∴=,60OAC ∠=︒,30CAD OAD OAC D ∴∠∠-∠︒∠===, 3AC CD ∴==,3OC ∴=,即O 的半径为3;(3)EP AP +=, 理由:如图, 30AEC ︒∠=, 30APC AEC ︒∴∠=∠=,连接AC ,延长PE 至M ,使EM AP =,连接CM ,AE BC ⊥,BC 为O 的直径,AC EC ∴=,四边形APEC 是O 的内接四边形,CAP CEM ∴∠=∠,∴()ACP ECM SAS ≅,21CM CP ∴=,30APC M ︒∠=∠=,过点C 作CN PM ⊥于N ,2PM MN ∴=,在Rt CNM △中,MNcos CMM =,MN cos30CM ∴︒=MN ∴=,2PM MN ∴===,PM PE EM PE AP =+=+,PE AP ∴+=,即EP AP +=. 【点睛】此题是圆的综合题,主要考查了切线的判定和性质,等边三角形的判定和勾股定理,构造出直角三角形是解本题的关键.18.(2021·广州市八一实验学校九年级)如图,在⊙P AB 中,点C 、D 在AB 上,PC =PD =CD ,⊙A =⊙BPD ,求证:⊙APC ⊙⊙BPD .【答案】见解析 【分析】根据PC =PD =CD ,可得出PCD 为等边三角形,即可得出PCD PDC ∠=∠,进而得出ACP PDB ∠=∠,再根据相似三角形的判定推出即可.【详解】证明:⊙PC =PD =CD , ⊙PCD 为等边三角形, ⊙⊙PCD =⊙PDC 60=︒, ⊙120ACP PDC ∠=∠=︒, ⊙⊙A =⊙BPD , ⊙⊙APC ⊙⊙PBD . 【点睛】本题考查了等边三角形的判定与性质,相似三角形的判定等知识点,注意:如果两个三角形的两个角分别对应相等,那么这两个三角形相似.19.(2021·黄石市有色中学九年级)如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =,60EDF ∠=︒,其两边分别交AB ,AC 于点E ,F .(1)若2DG =,求AC 的长; (2)求证:AB AE AF =+. 【答案】(1)4;(2)见解析 【分析】(1)连接BD 由等腰三角形的性质和已知条件得出⊙BAD =⊙DAC =12×120°=60°,再由AD =AB ,可得⊙ABD 是等边三角形,由等边三角形的性质得出DG =AG =12AD =2,,即可求解; (2)由⊙ABD 是等边三角形,得出BD =AD ,⊙ABD =⊙ADB =60°,证出⊙BDE =⊙ADF ,由ASA 证明⊙BDE ⊙⊙ADF ,得出AF =BE ,即可求解. 【详解】解:(1)证明:⊙AB =AC ,AD BC ⊥, ⊙⊙BAD =⊙DAC =12⊙BAC , ⊙⊙BAC =120°,⊙⊙BAD =⊙DAC =12×120°=60°,⊙AD =AB ,⊙⊙ABD 是等边三角形, ⊙AD =AB =BD , ⊙AD BC ⊥, ⊙DG =AG =12AD =2, ⊙AD =AB =AC =4, 即AC =4;(2)⊙⊙ABD 是等边三角形, ⊙⊙ABD =⊙ADB =60°,BD =AD , ⊙AB AC =,120BAC ∠=︒,AD BC ⊥,⊙⊙BAD=⊙DAC=12×120°=60°,⊙⊙ABD=⊙DAC,⊙⊙EDF=60°,⊙⊙ADB-⊙ADE=⊙EDF-⊙ADE,即⊙BDE=⊙ADF,⊙⊙BDE⊙⊙ADF(ASA),⊙BE=AF,⊙AB=AE+BE,⊙AB=AE+AF.【点睛】本题主要考查了三角形综合题,考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.20.(2021·合肥市五十中学东校九年级三模)如图1,已知等腰直角ΔABC,⊙ACB=90°,在直角边BC上取一点D,使⊙DAC=15°,以AD为一边作等边ΔADE,且AB与DE相交.(1)求证:AB垂直平分DE;(2)连接BE,判断EB与AC的位置关系,并说明理由;(3)如图2,若F为线段AE上一点,且FC=AC,求EFAF的值.【答案】(1)见解析;(2)互相平行;见解析;(3)1【分析】(1)根据⊙DAC=15°及等腰直角三角形的性质,可得⊙DAB=30°,根据等边三角形的性质可得⊙EAB=30°,由等腰三角形的性质可得结论;(2)由(1)的结论易得BD=BE,⊙EBA=⊙CBA=45°,即BE⊙BC,从而可得BE与AC的位置关系;(3)延长CF,与BE的延长线交于点G.易得CF=BF;其次由(2)的结论易得⊙G=30°,从而CG=2BC=2FC,即CF=GF,然后可证明⊙CAF⊙⊙GEF,从而得AF=EF,即可得结果.【详解】(1)⊙⊙ABC是等腰直角三角形,⊙ACB=90°⊙AC=BC,⊙CAB=⊙CBA=45°⊙⊙DAC=15°⊙⊙DAB=⊙CAB-⊙DAC=30°23⊙⊙ADE 是等边三角形 ⊙⊙DAE =60°⊙⊙EAB =⊙DAE -⊙DAB =30° ⊙⊙DAB =⊙EAB ⊙⊙ADE 是等边三角形 ⊙AB 垂直平分DE (2)互相平行 理由如下: ⊙AB 垂直平分DE ⊙BD =BE⊙⊙EBA =⊙CBA =45° ⊙⊙EBC =⊙EBA +⊙CBA =90° 即⊙EBC +⊙ACB =180° ⊙BE ⊙AC(3)延长CF ,与BE 的延长线交于点G ,如图所示⊙⊙F AC =⊙DAE +⊙DAC =75°,FC =AC ⊙⊙CF A =⊙F AC =75° ⊙⊙FCA =180°-2×75°=30° ⊙AC =BC ,AC =FC ⊙BC =FC由(2)知:BE ⊙AC ⊙⊙G =⊙FCA =30° ⊙⊙EBC =90° ⊙CG =2BC =2FC ⊙CF =GF在⊙CAF 和⊙GEF 中 FCA G CF GFCFA GFE ∠=∠⎧⎪=⎨⎪∠=∠⎩⊙⊙CAF ⊙⊙GEF (ASA ) ⊙AF =EF ⊙1EFAF=25【点睛】本题考查了等腰直角三角形的性质、等边三角形的性质、直角三角形的性质、全等三角形的判定与性质等知识,第(3)问的关键是作辅助线,构造三角形全等.21.(2021·广西柳州市·)如图,已知ABC 中,AC BC =,以BC 为直径的O 交AB 于E ,过点E 作EG AC ⊥于G ,交BC 的延长线于点F .(1)求证:FE 是O 的切线;(2)若30F ∠=︒,求证:24FG FC FB =⋅; (3)当6BC =,4EF =时,求AG 的长. 【答案】(1)见解析;(2)见解析;(3)245【分析】(1)连接EC ,OE ,由BC 为O 的直径,可得90BEC ∠=︒,由AC BC =,可得E 为AB 中点,由O 为BC 中点,利用中位线性质可得OE∥AC ,由EG AC ⊥,可得OE EG ⊥即可; (2)由OE OC =,可得OEC OCE ∠=∠,由EF 为圆的切线,可得90FEC OEC ∠+∠=︒,由90BEC ∠=︒,可得90B BCE ∠+∠=︒,可证FEC FBE △∽△,可得2FE FC FB =⋅,当30F ∠=︒时,可求60FOE ∠=︒,可证OEC △为等边三角形,可得30FEC F ∠=︒=∠,可证2FE FG =即可;(3)由(2)得2FE FC FB =⋅,可得()246FC FC =⋅+,解得2FC =或FC =-8舍去,可证FCG FOE △∽△,可得253CG=,可求65CG =即可. 【详解】解:(1)证明:连接EC ,OE , ⊙BC 为O 的直径, ⊙90BEC ∠=︒, ⊙CE AB ⊥, 又⊙AC BC =, ⊙E 为AB 中点, 又⊙O 为BC 中点, ⊙OE∥AC ,又⊙EG AC ⊥, ⊙OE EG ⊥, 又OE 为O 的半径, ⊙FE 是O 的切线.(2)⊙OE OC =, ⊙OEC OCE ∠=∠, ⊙EF 为圆的切线, ⊙90FEC OEC ∠+∠=︒, ⊙90BEC ∠=︒ ⊙90B BCE ∠+∠=︒, ⊙FEC B ∠=∠, 又⊙F F ∠=∠, ⊙FEC FBE △∽△, ⊙FE FCFB FE=, ⊙2FE FC FB =⋅,当30F ∠=︒时,60FOE ∠=︒, 又OE OC =,⊙OEC △为等边三角形, ⊙60OEC ∠=︒, ⊙30FEC F ∠=︒=∠, ⊙CE CF =, 又CG FE ⊥, ⊙2FE FG =, ⊙()22FG FC FB =⋅, 即24FG FC FB =⋅.(3)由(2)得2FE FC FB =⋅, 又6BC =,4FE =,FB=BC +FC =6+FC ,27⊙()246FC FC =⋅+,因式分解得(FC +8)(FC -2)=0, 解得2FC =或FC =-8舍去, ⊙6BC =, ⊙132OE OC BC ===,6AC BC ==, ⊙235FO FC CO =+=+=, ⊙CG∥OE ,⊙⊙GCF =⊙EOF ,⊙FGC =⊙FEO , ⊙FCG FOE △∽△, ⊙FC CG FO OE =,即253CG=, ⊙65CG =, ⊙624655AG AC CG =-=-=. 【点睛】本题考查圆的切线判定,直径所对圆周角性质,等腰三角形性质,中位线性质,三角形相似判定与性质,等边三角形判定与性质,掌握圆的切线判断,直径所对圆周角性质,等腰三角形性质,中位线性质,三角形相似判定与性质,等边三角形判定与性质是解题关键. 22.(2021·江苏九年级)如图,⊙ABC 为等边三角形,AB =6,将边AB 绕点A 顺时针旋转θ(0°<θ<120°)得到线段AD ,连接CD ,CD 与AB 交于点G ,⊙BAD 的平分线交CD 于点E ,F 为CD 上一点,且DF =2CF . (1)当⊙EAB =30°时,求⊙AEC 的度数;(2)当线段BF 的长取最小值时,求线段AG 的长; (3)请直接写出⊙ADE 的周长的最大值.【答案】(1)60°;(2)AG =12;(3)6+【分析】(1)用角平分线的性质和旋转性质即可;(2)作FM ⊙AD ,连接BM ,FM =2,点F 的运动轨迹是以M 为圆心、2为半径的圆,当B、F 、M 共线时,BF 取最小值; 由⊙ADG ⊙⊙BFG 可求AG ;(3)连接BE ,设BAE α∠=,AE 平分BAD ∠,可得,DAE ED EB α==∠,得到A E B C 、、、四点共圆,作ABC 的外接圆O ,CAB △是等边三角形,可将CAB △绕点C 顺时针旋转60︒得到CAN △,得E 、A 、N 三点共线,求出AE DE +的最大值,即可求出ADE 的周长. 【详解】(1)⊙AD 由AB 旋转得到AD =AB ⊙AE 平分BAD ∠ ⊙30DAE EAB ∠=∠=︒ ⊙120DAC ∠=︒ ⊙30D ∠=︒⊙=AEC D DAE ∠+∠∠ ⊙⊙AEC =60°; (2)如图,⊙CA =AB =6 ⊙2163CM CD ==,⊙13CM CA =,13FM AD =, 又DF 2CF = ⊙13CF CD = ⊙13CF CM CD CA == 又MCF ACD =∠∠ ⊙MCF ACD ∽∠∠ ⊙12,3MF AD CFM D ====∠∠ ⊙FM =2,⊙点F 的运动轨迹是以M 为圆心、2为半径的圆, ⊙当B 、F 、M 共线时,BF 取最小值 即min 2BM BM MF BM =-=- ⊙2,6,60CM BC ACB ===︒∠⊙BM =29⊙min 22BM BM MF BM -=-== ⊙CFM D =∠∠ ⊙FH ⊙AD又BF 取最小值点F 在BM 上, ⊙BFAD⊙⊙ADG ⊙⊙BFG ⊙AD AGBF BG=,6AGAG=-,⊙12AG =;⊙当BF取最小值时,12AG = (3)如图,连接BE ,设BAE α∠= ⊙AE 平分BAD ∠ ⊙,DAE ED EB α==∠ ⊙602DAC α=︒+∠ 又60ABC ∠=︒ ⊙A E B C 、、、四点共圆作ABC 的外接圆O ,则点F 在O 上, 180CBE CAE +=︒∠∠又CAB △是等边三角形,⊙可将CBF 绕点C 顺时针旋转60︒得到CAN △ 由旋转的性质得:,,60CN CE AN EB ECN ===︒∠,CAN CBE =∠∠ ⊙180CAN CAE +=︒∠∠ ⊙E 、A 、N 三点共线 ⊙ECN 为等边三角形,⊙,AE ED AE EB AE AN EN CE +=+=+== ⊙6AB =⊙ABC 的外接圆O 的半径R ==R⊙CE 的最大值为2R =即AE DE +的最大值为⊙ADE 的周长是AD AE DE ++⊙ADE 的周长是6+ 【点睛】本题考查了三角形相似的性质和判定,等边三角形的性质等知识,解题的关键是学会构建辅助圆来确定线段的最值问题.23.(2021·甘肃庆阳·九年级二模)如图,等边三角形ABC 的外部有一点P ,且30BPA ∠=︒,将AP 绕点B 逆时针旋转60°得到CQ ,连接BQ .(1)求证:ABP CBQ ≌△△.(2)若4AP =,3BP =,求P ,C 两点之间的距离. 【答案】(1)见解析(2)5 【分析】(1)由旋转的性质可知,对应边相等,旋转角相等,用“边角边”证明三角形全等即可 (2)连接,PQ PC ,根据已知条件构造直角三角形,用勾股定理求得P C ,的距离 【详解】(1)由旋转的性质可知,,,60AB CB PB QB PBQ ABC ==∠=∠=︒PBA PBQ QBA ABC QBA QBC ∴∠=∠+∠=∠+∠=∠ABP CBQ ∴≌(SAS )(2)连接,PQ PC,60PB BQ PBQ=∠=︒PBQ∴为等边三角形60PQB∴∠=︒,3PQ BQ==ABP CBQ≌△△∴30BPA BQC∠=∠=︒,4QC AP==603090PQB PQB BQC∴∠=∠+∠=︒+︒=︒222PC PQ QC∴=+5PC∴==【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质与判定,找到旋转角是解题的关键.31。
等边三角形试题及答案
1. 等边三角形的三个内角各是多少度?
答案:等边三角形的三个内角都是60度。
2. 在等边三角形中,如果一边的长度是a,那么其周长是多少?
答案:等边三角形的周长是3a。
3. 已知等边三角形的高为h,求其面积。
答案:等边三角形的面积是\(\frac{\sqrt{3}}{4} \times h^2\)。
4. 等边三角形的外接圆半径和内切圆半径的关系是什么?
答案:等边三角形的外接圆半径是内切圆半径的两倍。
5. 如果等边三角形的边长增加10%,那么其面积会增加多少?
答案:等边三角形的面积会增加约33.1%。
6. 等边三角形的中线、角平分线和高线是否重合?
答案:是的,等边三角形的中线、角平分线和高线都重合。
7. 等边三角形的外心、内心和重心是否重合?
答案:是的,等边三角形的外心、内心和重心都重合。
8. 等边三角形的对角线长度是多少?
答案:等边三角形的对角线长度是\(\frac{\sqrt{3}}{2} \times a\)。
9. 在等边三角形中,如果一个内角的度数增加5度,那么这个三角形
还是等边三角形吗?
答案:不是,因为等边三角形的每个内角都是60度,增加5度后不再
是等边三角形。
10. 等边三角形的边长和高的关系是什么?
答案:等边三角形的高是边长的\(\frac{\sqrt{3}}{2}\)倍。
2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题08 等边三角形的判定和性质考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·凉山期末)如图, MNP V 中, 60P Ð=° , MN NP = , MQ PN ⊥ ,垂足为Q ,延长MN 至G ,取 NG NQ = ,若 MNP V 的周长为12,MQ m = ,则 MGQ V 周长是( )A .8+2mB .8+mC .6+2mD .6+m 【答案】C【完整解答】解:∵60P Ð=° , MN NP = ,∴△PMN 是等边三角形,∵MQ PN ⊥ ,∴QN=PQ= 12MN ,∠QMN=30°,∠QNM=60°,∵NG NQ = ,∴∠GQN=∠G=30°,QN=NG= 12MN ,∴∠QMN=∠G=30°,∴QM=QG ,∵MNP V 的周长为12, MQ m = ,∴MN=4,QN=NC=2,QM=QG=m ,∴MGQ V 周长是QM+QG+MN+NG=6+2m.故答案为:C.【思路引导】易得△PMN 是等边三角形,得QN=PQ=12MN ,∠QMN=30°,∠QNM=60°,根据等腰三角形的性质可得∠GQN=∠G=30°,QN=NG=12MN ,推出QM=QG ,根据△MNP 的周长可得MN=4,QN=NC=2,QM=QG=m ,据此求解.2.(2分)(2021八上·铁岭期末)如图,E 是等边ΔABC 中AC 边上的点,12Ð=Ð,BE CD =,则ADE ∆是( )A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【答案】B【完整解答】解:∵△ABC 为等边三角形∴AB=AC ,∠BAE=60°,∵∠1=∠2,BE=CD ,∴△ABE ≌△ACD (SAS ),∴AE=AD ,∠BAE=∠CAD=60°,∴△ADE 是等边三角形.故答案为:B .【思路引导】利用等边三角形的判定与性质即可得出结论。
等边三角形的性质与判定(3种题型)了解等边三角形的有关概念,探索并掌握性质及判定方法。
一.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.二.等边三角形的判定(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.三.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.一.等边三角形的性质(共9小题)1.(2022秋•崇川区校级月考)如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC 于点E,且CE=1.5,则AB的长为()A.3B.4.5C.6D.7.5【分析】由在等边三角形ABC中,DE⊥BC,可求得∠CDE=30°,则可求得CD的长,又由BD平分∠ABC 交AC于点D,由三线合一的知识,即可求得答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD平分∠ABC交AC于点D,∴AD=CD=3,∴AB=AC=AD+CD=6.故选:C.【点评】此题考查了等边三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.2.(2022秋•姜堰区月考)如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm【分析】根据等边三角形的性质解答即可.【解答】解:∵等边△ABC的边长AB=4cm,BD平分∠ABC,∴∠ACB=60°,DC=AD=2cm,∵∠E=30°,∠E+∠EDC=∠ACB,∴∠EDC=60°﹣30°=30°=∠E,∴CD=CE=2cm,故选:B.【点评】此题考查等边三角形的性质,关键是根据等边三角形的三线合一解答.3.(2022秋•常州期中)如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,则∠PAB的度数是()A.10°B.15°C.20°D.25°【分析】由已知条件AD=AP可知∠ADP=∠APD,结合∠APD=70°可得∠ADP的度数,从而得到∠P AD 的度数;根据等边三角形的性质,可以得到∠BAC=60°,结合∠PAB=∠BAC﹣∠PAD即可解答此题.【解答】解:∵AD=AP,∴∠ADP=∠APD.∵∠ADP=∠APD,∠APD=70°,∴∠ADP=70°,∠PAD=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠PAB=60°﹣40°=20°.故选:C.【点评】本题主要考查等边三角形与等腰三角形的性质,可以结合等边三角形的性质进行解答.4.(2022秋•海门市期末)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,DF⊥BE,垂足为点F.(1)求证:CE=2CF;(2)若CF=2,求△ABC的周长.【分析】(1)根据等边三角形的性质可知∠ACB=60°,再由DF⊥BE可知∠DFC=90°,∠FDC=90°﹣∠C=30°,由直角三角形的性质即可得出结论;(2)由CF=2可得出CD=4,故可得出AC的长,进而可得出结论.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,∵DF⊥BE,∴∠DFC=90°,∠FDC=90°﹣∠C=30°,∴DC=2CF.∵CE=CD∴CE=2CF;(2)解:∵CF=2,由(1)知CE=2CF,∴DC=2CF=4.∵△ABC为等边三角形,BD是中线,∴AB=BC=AC=2DC=8,∴△ABC的周长=AB+AC+BC=8+8+8=24.【点评】本题考查的是等边三角形的性质,熟知边三角形的三个内角都相等,且都等于60°是解题的关键.5.(2022秋•启东市期末)如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=BC,则∠AFE=()A.100°B.105°C.110°D.115°【分析】根据等边三角形的性质得到∠BAC=60°,∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,根据等腰直角三角形的性质得到∠DEC=∠DCE=45°,根据三角形的内角和定理即可得到答案.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AD是BC边上的中线,∴∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,∴∠CDE=90°,∵DE=BC,∴DE=DC,∴∠DEC=∠DCE=45°,∴∠AEF=∠DEC=45°,∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°,故选:B.【点评】本题考查了等边三角形的性质,三角形的内角和定理,熟练掌握等边三角形的性质是解题的关键.6.(2022秋•大丰区期中)如图,在等边△ABC中,D为BC边上的中点,以A为圆心,AD为半径画弧,与AC边交点为E,则∠ADE的度数为()A.60°B.105°C.75°D.15°【分析】根据等边三角形三线合一的性质可求出∠DAC=30°,结合AD等于AE求出∠ADE的度数即可.【解答】解:在等边△ABC中,D为BC边上的中点,∴∠DAC=30°(三线合一),在△ADE中,AD=AE,∴∠AED=∠ADE=(180°﹣30°)=75°,故选:C.【点评】本题考查了等边三角形的性质,等腰三角形的性质,解题关键在于能够熟练掌握该知识并进行合理运用.7.(2022秋•如皋市期中)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F,连接CF,若△AFC是等边三角形,则∠B的度数是()A.60°B.45°C.30°D.15°【分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B的度数.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故选:C.【点评】本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.8.(2022秋•秦淮区校级月考)如图,△ABC是等边三角形,D,E分别是AC,BC上的点,若AE=AD,∠CED=25°,则∠BAE=°.【分析】利用等边三角形的性质可得∠C=∠BAC=60°,从而利用三角形的外角性质可得∠ADE=85°,然后利用等腰三角形的性质可得∠AED=∠ADE=85°,从而利用三角形的内角和定理可得∠DAE=10°,最后利用角的和差关系进行计算即可解答.【解答】解:∵△ABC是等边三角形,∴∠C=∠BAC=60°,∵∠CED=25°,∴∠ADE=∠CED+∠C=85°,∵AE=AD,∴∠AED=∠ADE=85°,∴∠DAE=180°﹣∠AED﹣∠ADE=10°,∴∠BAE=∠BAC﹣∠DAE=60°﹣10°=50°,故答案为:50.9.(2022秋•工业园区校级月考)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.【点评】此题主要是考查了等边三角形的性质、角平分线的性质以及三角形的面积公式.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.二.等边三角形的判定(共6小题)10.(2022秋•吴江区校级月考)若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为()A.钝角三角形B.等腰三角形C.直角三角形D.正三角形【分析】根据有一个角是60°的等腰三角形是等边三角形求解.【解答】解:根据有一个角是60°的等腰三角形是等边三角形可得到该三角形一定为正三角形.【点评】此题考查学生对有一个角是60°的等腰三角形是等边三角形的运用.11.(2022秋•梁溪区期中)如图所示,在等腰△ABC中,AB=AC,AF为BC的中线,D为AF上的一点,且BD的垂直平分线过点C并交BD于E.求证:△BCD是等边三角形.【分析】根据等腰三角形的性质得出AF⊥BC,根据线段垂直平分线性质求出BD=DC,BC=CD,推出BD =DC=BC,根据等边三角形的判定得出即可.【解答】证明:∵AB=AC,AF为BC的中线,∴AF⊥BC,∴BD=DC,∵CE是BD的垂直平分线,∴BC=CD,∴BD=DC=BC,∴△BCD是等边三角形.【点评】本题考查了等边三角形的判定,等腰三角形的性质,线段垂直平分线性质的应用,能正确运用定理进行推理是解此题的关键.12.(2021秋•淮安期末)三角形的三边长a,b,c满足(a﹣b)4+(b﹣c)2+|c﹣a|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.等腰非等边三角形D.钝角三角形【分析】利用偶次方及绝对值的非负性可得出a﹣b=0,b﹣c=0,c﹣a=0,进而可得出a=b=c,再结合a,b,c是三角形的三边长,即可得出这个三角形是等边三角形.【解答】解:∵(a﹣b)4+(b﹣c)2+|c﹣a|=0,∴a﹣b=0,b﹣c=0,c﹣a=0,又∵a,b,c是三角形的三边长,∴这个三角形是等边三角形.故选:B.【点评】本题考查了等边三角形的判定、偶次方及绝对值的非负性,牢记三条边都相等的三角形是等边三角形是解题的关键.13.(2022秋•吴江区校级月考)在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?【分析】(1)由平行线的性质得∠BQP=∠C=60°,∠BPQ=∠A=60°,从而得出△BPQ是等边三角形,列方程求解即可;(2 )根据点Q所在的位置不同,分类讨论△APQ是否为等边三角形,再根据等边三角形的性质得到等量关系,列方程求解即可.【解答】解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.题为背景,根据等边三角形、等腰三角形以及全等三角形的性质寻找等量关系,再列方程求解,能根据题目要求进行分类讨论是解题的关键.14.(2022秋•常州期中)如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.【分析】(1)因为AB=AC,根据等腰三角形的性质,等腰三角形的两个底角相等,又∠BAC=120°,根据三角形内角和,可求出∠C的度数为30°.(2)AD⊥AC,AE⊥AB,∠ADE=∠AED=60°,三个角是60°的三角形是等边三角形.【解答】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,故答案为:30°.(2)证明:∵∠B=∠C=30°,AD⊥AC,AE⊥AB.∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴△ADE是等边三角形.【点评】本题考查等腰三角形的性质,等腰三角形的底角相等,以及等边三角形的判定定理,三个角是60°的三角形,是等边三角形.15.(2022秋•江都区校级月考)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.【分析】先证△ABP≌△ACQ得AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】解:△APQ证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.【点评】考查了等边三角形的判定及全等三角形的判定方法.三.等边三角形的判定与性质(共9小题)16.(2022秋•梁溪区期中)一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距()A.100海里B.80海里C.60海里D.40海里【分析】先求得∠CBA=60°,然后可判断△ABC为等边三角形,从而可求得AC的长.【解答】解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠ABD=40°,∠CBD=20°,∴∠CBA=∠ABD+∠CBD=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.【点评】本题主要考查的是方向角、等边三角形的性质和判定,证得△ABC为等边三角形是解题的关键.17.(2022秋•玄武区期中)如图,△ABC为等边三角形,BD⊥AC交AC于点D,DE∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.18.(2022秋•姑苏区期中)如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.(1)判断△DEF的形状,并说明理由;(2)若AD=12,CE=8,求CF的长.【分析】(1)先证明△ABD是等边三角形,可得∠ABD=∠ADB=60°,由平行线的性质可得∠CED=∠ADB=∠DFE=60°,可得结论;(2)由等边三角形的性质和平行线的性质可求AE=CE=8,即可求解.【解答】解:(1)△DEF是等边三角形,理由如下:∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°,∵CE∥AB,∴∠CED=∠A=60°,∠DFE=∠ABD=60°,∴∠CED=∠ADB=∠DFE,∴△DEF是等边三角形;(2)连接AC交BD于点O,∵AB=AD,CB=CD,∴AC是BD的垂直平分线,即AC⊥BD,∵AB=AD,∠BAD=60°,∴∠BAC=∠DAC=30°,∵CE∥AB,∴∠BAC=∠ACE=∠CAD=30°,∴AE=CE=8,∴DE=AD﹣AE=12﹣8=4,∵△DEF是等边三角形,∴EF=DE=4,∴CF=CE﹣EF=8﹣4=4.【点评】本题考查了等边三角形的判定和性质,平行线的性质,证明AE=CE是解题的关键.19.(2022秋•南通期末)已知等边△ABC的边长为5,点D为直线BC上一点,BD=1,DE∥AB交直线AC于点E,则DE的长为.【分析】分D在线段BC上,和D在线段CB的延长线上,两种情况,讨论求解即可.【解答】解:①当D在线段BC上,如图:∵等边△ABC的边长为5,∴∠A=∠B=∠C=60°,AB=AC=BC=5,∵BD=1,∴CD=BC﹣BD=4,∵DE∥AB,∴∠EDC=∠B=60°,∠DEA=∠A=60°,∴△DEC为等边三角形,∴DE=CD=4;②当D在线段CB的延长线上,如图:同法可得:△DEC为等边三角形,∴DE=CD=BC+BD=6;综上:DE的长为:4或6;故答案为:4或6.【点评】本题考查等边三角形的判定和性质.熟练掌握,两直线平行,同位角相等,证明三角形是等边三角形,是解题的关键.注意,分类讨论.20.(2022秋•鼓楼区校级月考)如图所示,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B 以2cm/s的速度移动,点Q从点B出发沿BA边向点A以5cm/s的速度移动.P,Q两点同时出发,它们移动的时间为ts.(1)你能用含的式子表示BP和BQ的长度吗?请你表示出来.(2)请问几秒后,△PBQ第一次为等边三角形?(3)若P,Q两点分别从C,B两点同时出发,并且按顺时针方向沿△ABC三边运动,请问经过几秒后点P与点Q第一次在△ABC的哪条边上相遇?【分析】(1)由等边三角形的性质可求得BC的长,用t可表示出BP和BQ的长;(2)由等边三角形的性质可知BQ=BP,可得到关于t的方程,可求得t的值;(3)设经过t秒后第一次相遇,由条件可得到关于t的方程,可求得t的值,可求得点P走过的路程,可确定出P点的位置.【解答】解:(1)∵△ABC为等边三角形,∴BC=AB=9cm,∵点P的运动速度为2cm/s,运动时间为ts,∴BP=BC﹣CP=(9﹣2t)cm,∵点Q的运动速度为5cm/s,运动时间为ts,∴BQ=5t(cm);(2)若△PBQ为等边三角形,则有BQ=BP,即9﹣2t=5t,解得t=,∴s时,△PBQ第一次为等边三角形;(3)设ts时,Q与P第一次相遇,根据题意得5t﹣2t=18,解得t=6,即6s时,两点第一次相遇.当t=6s时,P走过的路程为2×6=12cm,而9<12<18,即此时P在AB边上,∴经过6秒后点P与点Q在AB上第一次相遇.【点评】本题考查了等边三角形的性质和判定、方程思想等知识.该题为运动型题目,解决这类问题的关键是化“动”为“静”,即用时间和速度表示出线段的长.21.(2022秋•泰州月考)如图,已知点D、E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE=CE,求∠BAE的度数.【分析】(1)作AF⊥BC于点F,利用等腰三角形三线合一的性质得到BF=CF,DF=EF,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【解答】(1)证明:如图,过点A作AF⊥BC于F.∵AB=AC,AD=AE.∴BF=CF,DF=EF,∴BD=CE.(2)∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=∠ADE=60°.∵AD=BD,∴∠DAB=∠DBA.∴∠DAB=∠ADE=30°.∴∠BAE=∠BAD+∠DAE=90°.【点评】本题考查了等边三角形的判定与性质,熟练运用等边三角形的判定是本题的关键.22.(2022秋•沭阳县期中)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN 交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.【分析】(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△ACN≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.【解答】证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,在△ACN和△MCB中,∵,∴△ACN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∵,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.【点评】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用.23.(2022秋•启东市校级月考)数学课上,张老师举了下面的例题:例1:等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2:等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编的题目如下:变式题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答上面的变式题.(2)请继续探索,完成下面问题:等腰三角形ABC中,∠A=60°,则∠B的度数为.(3)根据以上探索,我们发现,∠A的度数不同,得到的∠B度数的个数也可能不同.请你直接写出当∠A 满足什么条件时,∠B能得到三个不同的度数.【分析】(1)∠A是顶角,则∠B是底角,根据等腰三角形的两个底角相等即可求解;∠B是顶角,则∠A 是底角,则根据等腰三角形的两个底角相等,以及三角形的内角和定理即可求解;∠C是顶角,则∠B与∠A都是底角,根据等腰三角形的两个底角相等即可求解;(2)分两种情况:①90≤x<180;0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)当∠A=80°为顶角时,∠B==50°;当∠B是顶角,则∠A是底角,则∠B=180°﹣80°﹣80°=20°;当∠C是顶角,则∠B与∠A都是底角,则∠B=∠A=80°,综上所述,∠B的度数为50°或20°或80°;(2)因为有一个角为60°的等腰三角形为等边三角形,所以∠B=60°,故答案为:60°.(3)分两种情况:设∠A=x°,①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0°<∠A<90°且x≠60°时,∠B有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.24.(2022秋•铜山区校级月考)已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:(1)AE=DB;(2)△CMN为等边三角形.【分析】(1)根据△DAC、△EBC均是等边三角形,求证△ACE≌△DCB(SAS)即可得出结论.(2)由(1)可知:△ACE≌△DCB,和△DAC、△EBC均是等边三角形,求证△ACM≌△DCN(ASA)即可得出结论.【解答】证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB(SAS).∴AE=DB.(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°﹣∠ACD﹣∠BCE=180°﹣60°﹣60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∴△ACM≌△DCN(ASA).∴CM=CN.又∠DCN=60°,∴△CMN为等边三角形.【点评】此题主要考查学生对等边三角形的性质与判定、全等三角形的判定与性质、三角形内角和定理等知识点的理解和掌握,此题难度不大,但是步骤繁琐,属于中档题.一.选择题(共5小题)1.(2022秋•梁溪区期中)下列命题不正确的是()A.等腰三角形的底角不能是钝角B.等腰三角形不能是直角三角形C.若一个三角形有三条对称轴,那么它一定是等边三角形D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形【分析】利用等腰三角形的性质和等边三角形的判定的知识,对各选项逐项分析,即可得出结果.【解答】解:本题可采用排除法;A、利用等腰三角形的性质,等腰三角形的两底角相等,若两底角均为钝角,不能构成三角形,故这种说法错误,故不选A;B、举反例:等腰直角三角形,故B不正确.即答案选B.【点评】本题主要考查了等腰三角形的性质和等边三角形的判定,要求学生在学习过程中要对所学过的知识进行总结和复习,以便灵活的运用所学的知识.2.(2022秋•鼓楼区校级月考)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC ≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.【点评】此题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.3.(2022秋•射阳县校级月考)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(2,m,m﹣2),则m=()A.2B.3C.4D.6【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),得到经过该点的三条直线对应着等边三角形三边上的三个数,依次为左,上,下,即可解答.【解答】解:由题意得:点C的坐标为(2,4,2),∴m=4,故选:C.【点评】本题考查了等边三角形的性质,规律型:数字的变化类,找出题中的规律是解题的关键.4.(2022秋•扬州期中)在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形(2)有两个外角相等的等腰三角形是等边三角形(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形(4)三个外角都相等的三角形是等边三角形其中正确的个数是()A.4个B.3个C.2个D.1个【分析】根据等边三角形的性质和定义,可得:有一个角为60°的等腰三角形是等边三角形;三个内角都相等的三角形为等边三角形;再由中线的性质和三角形内角和的定义可解答本题.【解答】解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.(4):三个外角都相等的三角形是等边三角形.正确;故选:C.【点评】本题考查等边三角形的判定,解题的关键是灵活运用的等边三角形的判定方法解决问题.5.(2022秋•邗江区月考)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB 于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.【点评】本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.二.填空题(共13小题)6.(2022秋•江阴市期中)已知△ABC中,AB=AC=6,∠C=60°,则BC=6.【分析】先利用等腰三角形的性质得到∠B=∠C=60°,则可判断△ABC为等边三角形,然后根据等边三角形的性质得到BC=AB.【解答】解:∵AB=AC=6,∴∠B=∠C=60°,∴△ABC为等边三角形,∴BC=AB=6.故答案为:6.【点评】本题考查了等边三角形的性质:等边三角形的三条边都相等,三个内角都相等,且都等于60°.7.(2022秋•建邺区校级月考)如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD =30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠CAD)=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.【点评】此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.8.(2022秋•崇川区校级月考)如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。
《等边三角形》专题2.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =3. (2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC17. (2017河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是()A .3B .4 C. 8 D .910.(2008·菏泽中考)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点O,AD与BC交于点P,BE与CD 交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的有________(把你认为正确的序号都填上).16、(2009·义乌中考)如图,在边长为4的正三角形ABC中,AD BC于点D,以AD为一边向右作正三角形ADE。
(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明。
《等边三角形》练习题1.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64 2.(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°3.(2012•荆门)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2 B.2C.D.34.(2011•南平)边长为4的正三角形的高为()A.2 B.4 C.D.25.(2010•随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定6.(2009•攀枝花)如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A.60°B.45°C.40°D.30°7.(2007•绵阳)如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1=S2D.S1=2S28.(2007•娄底)如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,A.4cm2B.2cm2C.3cm2D.3cm29.(2006•天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其A.3个B.2个C.1个D.0个设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是A.d>h B.d<h C.d=h D.无法确定11.(2007•南充)一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,A.30海里B.40海里C.50海里D.60海里12.(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好A.25°B.30°C.45°D.60°13.(2011•茂名)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= _________ 度.14.(2008•日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有_________ .(把你认为正确的序号都填上)15.(2005•扬州)如图,将边长为4的等边△ABC,沿x轴向左平移2个单位后,得到△A′B′C′,则点A′的坐标为_________ .16.(2004•茂名)如图,正三角形A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中线又组成△A3B3C3,…,如此类推,得到△A n B n C n.则:(1)△A3B3C3的边长a3= _________ ;(2)△A n B n C n的边长a n= _________ (其中n为正整数).17.(2006•嘉峪关)△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为_________ 三角形.18.(1999•广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出_________ 个.19.如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′= _________ .20.(2009•浙江)如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明.21.(2009•辽阳)如图,△ABC为正三角形,D为边BA延长线上一点,连接CD,以CD 为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.22.(2008•绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①_________ ;②_________ ;③_________ .并对②,③的判断,选择一个给出证明.23.(2007•河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(2004•苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB 至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.25.(2002•黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.26.(2000•河南)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.27.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.28.(2005•临沂)如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.29.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.30.如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?《全等三角形》练习参考答案与试题解析1.C 2.C 3.C 4.D5.B6.A7.A9.B10.C11.B12.B13.∠E= 15 度.14.①②③⑤.15..16.a3=;△A n B n C n的边长a n= (或21﹣n)17.等边三角形.18. 2 个.19 PP′= 3 .20.解:(1)在正△ABC中,AD=4×,(2分)∴S=BC×AD=×4×2=4.(3分)(2)AC、DE的位置关系:AC⊥DE.(1分)在△CDF中,∵∠CDE=90°﹣∠ADE=30°,(2分)∴∠CFD=180°﹣∠C﹣∠CDE=180°﹣60°﹣30°=90°.∴AC⊥DE.(3分)(注:其它方法酌情给分).21.解:AE∥BC.理由如下:∵△ABC与△CDE为正三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,∴△BCD≌△ACE,∴∠B=∠EAC,∵∠B=∠ACB,∴∠EAC=∠ACB,∴AE∥BC.22.请你作出判断,在下列横线上填写“是”或“否”:①是;②是;③否.并对(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN,∴∠AMB=∠BNC.又∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.23解:(1)BF=CG;证明:在△ABF和△ACG中∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC∴△ABF≌△ACG(AAS)∴BF=CG;(2)DE+DF=CG;证明:过点D作DH⊥CG于点H(如图2)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形∴DE=HG,DH∥BG∴∠GBC=∠HDC∵AB=AC∴∠FCD=∠GBC=∠HDC又∵∠F=∠DHC=90°,CD=DC∴△FDC≌△HCD(AAS)∴DF=CH∴GH+CH=DE+DF=CG,即DE+DF=CG;(3)仍然成立.证明:过点D作DH⊥CG于点H(如图3)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形,∴DE=HG,DH∥BG,∴∠GBC=∠HDC,∵AB=AC,∴∠FCD=∠GBC=∠HDC,又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS)∴DF=CH,∴GH+CH=DE+DF=CG,即DE+DF=CG.24.(1)证明:过点D作DF∥AB,交BC于F.∵△ABC为正三角形,∴∠CDF=∠A=60°.∴△CDF为正三角形.∴DF=CD.又BE=CD,∴BE=DF.又DF∥AB,∴∠PEB=∠PDF.∵在△DFP和△EBP中,∵,∴△DFP≌△EBP(AAS).∴DP=PE.(2)解:由(1)得△DFP≌△EBP,可得FP=BP.∵D为AC中点,DF∥AB,∴BF=BC=a.∴BP=BF=a.25.解:(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2+h3=AN+MN=AM=h,即h1+h2+h3=h.(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2﹣h3=h.理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2﹣h3=AN﹣MN=AM=h,即h1+h2﹣h3=h.26.解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.27.证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN,∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.28.证明:∵△OAB和△OCD为等边三角形,∴CD=OD,OB=AB,∠ADC=∠ABO=60°.∵四边形ODEB是平行四边形,∴OD=BE,OB=DE,∠CBE=∠EDO.∴CD=BE,AB=DE,∠ABE=∠CDE.∴△ABE≌△EDC.∴AE=CE,∠AEB=∠ECD.∵BE∥AD,∴∠AEB=∠EAD.∴∠EAD=∠ECD.在△AFE和△CFD中又∵∠AFE=∠CFD,∴∠AEC=∠ADC=60°.∴△ACE为等边三角形.29.解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.30.解:过P点作PF∥BC交AC于F点,∵等边△ABC的边长为10,点P是边AB的中点,CQ:BC=1:2,∴AB=BC,∠B=∠ACB=∠A=60°,∴AP=CQ,∵PF∥AB,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴∠A=∠APF=∠AFP=60°,∴△APF是等边三角形,∵PE⊥AC,∴EF=AF,∵△APF是等边三角形,AP=CQ,∴PF=CQ∵PF∥AB,∴∠Q=∠FPD,在△PDF和△QDC中∵,∴△PDF≌△QDC,∴DF=CD,∴DF=CF,∴DE=EF+DF=AF+CF=AC,∴ED=5.双基训练1. 如图14-45,在等边ΔABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是。
等边三角形典型试题综合训练一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.47.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的平分线互相重合.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是(请写出正确结论的序号).三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.等边三角形典型试题综合训练参考答案与试题解析一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④【分析】根据等边三角形的判定和性质对各个选项逐一分析即可.【解答】解:根据等边三角形的每个角都是60°;故①正确.根据等边三角形的概念:三边相等的三角形是等边三角形.故②正确;根据等边对等角;故③正确;根据等边三角形的判定;故④正确.故选D.2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选C3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有,AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【解答】解:∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°,所以这四项都是正确的.故选:D.4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【分析】由等边三角形的性质和平角的定义以及三角形内角和定理即可得出结果.【解答】解:∵△ABC、△DEF和△GMN都是等边三角形,∴∠GMN=∠MGN=∠DEF=60°,∵∠1+∠GMN+∠GME=180°,∠2+∠MGN+∠EGM=180°,∠3+∠DEF+∠MEG=180°,∴∠1+∠GMN+∠GME+∠2+∠MGN+∠EGM+∠3+∠DEF+∠MEG=3×180°,∵∠GME+∠EGM+∠MEG=180°,∴∠1+∠2+∠3=3×180°﹣180°﹣3×60°=180°;故选:D.5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°【分析】易证△ABD≌△BCE,可得∠BAD=∠CBE,根据∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°即可求得∠APE=∠ABC,即可解题.【解答】解:在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°,∴∠APE=∠ABC=60°.故选D.6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.4【分析】利用等边三角形的特殊角求出OE与OF的和,可得出其与三角形的高相等,进而可得出结论.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选C.7.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化【分析】本题考查了等边三角形的性质.这类选择题可以取特殊情况进行分析解答,即使五边形继续转动到B点位于OD上、C点位于OG上时,得出答案.【解答】解:设OD交AB于P,OG交BC于Q.过O点作AB、BC的垂线,垂足分别为M、N,则三角形OMP全等于三角形ONQ.所以无论如何旋转,阴影部分面积始终等于四边形OMBN的面积.则使五边形继续转动,使B点位于OD上、C点位于OG上,则∠BOC=120°根据等边三角形的性质,即:阴影部分面积是等边三角形的.故选C.8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD ≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③④正确.【解答】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)所以结论①②③④正确,故选:D.二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.【分析】(1)根据等边三角形性质中内角度数进而填空得出;(2)利用轴对称图形的性质得出即可;(3)根据等腰三角形性质三线合一的性质可得出.【解答】解:(1)等边三角形的三个内角都相等,并且每一个角都等于60°;(2)等边三角形是轴对称图形,它有三条对称轴;(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.故答案为:(1)相等,60°;(2)三;(3)中线,高线.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为120°.【分析】利用等边三角形的性质以及等腰三角形的性质得出∠B=∠BAD=∠C=∠EAC=30°,进而利用三角形内角和定理求出即可.【解答】解:∵E是BC的三等分点,且△ADE是等边三角形,∴BD=DE=EC=AD=AE,∠ADE=∠AED=60°,∴∠B=∠BAD=∠C=∠EAC=30°,∴∠BAC=180°﹣∠B﹣∠C=120°.故答案为:120°.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+DF.【分析】连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.【解答】解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴AC•BN=AB•DE+AC•DF,∵△ABC为等边三角形,∴AB=AC,∴AC•BN=AC•DE+AC•DF,∴BN=DE+DF.故答案为:BN=DE+DF.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是3.【分析】过点D作DH∥AC交BC于H,判断出△BDH是等边三角形,从而求出HD=CF,再根据两直线平行,内错角相等可得∠PCF=∠PHD,然后利用“角角边”证明△PCF和△PHD全等,根据全等三角形对应边相等可得PC=PH,再根据等边三角形的性质可得BE=EH,然后求出EP=BC,从而得解.【解答】解:如图,过点D作DH∥AC交BC于H,∵△ABC是等边三角形,∴△BDH也是等边三角形,∴BD=HD,∵BD=CF,∴HD=CF,∵DH∥AC,∴∠PCF=∠PHD,在△PCF和△PHD中,,∴△PCF≌△PHD(AAS),∴PC=PH,∵△BDH是等边三角形,DE⊥BC,∴BE=EH,∴EP=EH+HP=BC,∵等边△ABC,AB=6,∴EP=×6=3.故答案为:3.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.【分析】过P作BC的平行线至AC于F,通过求证△PFD和△QCD全等,推出FD=CD,再通过证明△APF 是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得ED=AC,即可推出ED的长度.【解答】解:过P做BC的平行线至AC于F,∴∠Q=∠FPD,∵等边△ABC,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴△APF是等边三角形,∴AP=PF,AP=CQ,∵AP=CQ,∴PF=CQ,∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,∴AE+DC=EF+FD,∴ED=AC,∵AC=1,∴DE=.故答案为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是①③(请写出正确结论的序号).【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等解答即可.【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,.∴△FEB≌△CDF(SAS),∴BE=FD;∠BFE=∠FCD;故答案为:①③三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.【分析】先根据等边△ABC中,AB=CA,∠BAC=∠ACB=60°,得出∠EAB=∠DCA=120°,再根据SAS即可判定△EAB≌△DCA,进而得出结论.【解答】证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【分析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE=DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE=DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)【分析】(1)先证AE=BE,再证∠D=∠DEB,得出DB=BE,即可得出DB=AE;(2)过点E作EF∥BC,交AC于F,先证明△AEF是等边三角形,得出AE=EF,再证明△DBE≌△EFC,得出DB=EF,即可证出AE=DB.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠ABC=60°,AE=BE,∠ECB=30°,∵ED=EC,∴∠D=∠ECB=30°,∵∠ABC=∠D+∠DEB,∴∠DEB=30°,∴∠D=∠DEB,∴DB=BE,∴DB=AE;故答案为:=;(2)DB=AE成立;理由如下:过点E作EF∥BC,交AC于F,如图2所示:则∠AEF=∠ABC,∠AFE=∠ACB,∠CEF=∠ECD,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEF=∠AFE=60°,∠DBE=120°,∴△AEF是等边三角形,∴AE=EF,∠EFC=120°,∴BE=CF,∠DBE=∠EFC,∵ED=EC,∴∠D=∠ECD,∴∠D=∠CEF,在△DBE和△EFC中,,∴△DBE≌△EFC(AAS),∴DB=EF,∴AE=DB;故答案为:=.19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.【分析】(1)EC=BD,理由为:由△ABE和△ACD都为等边三角形,利用等边三角形的性质得到∠EAB=∠DAC=60°,AE=AB,AD=AC,利用等式的性质得到∠EAC=∠BAD,利用SAS可得出△AEC≌△ABD,利用全等三角形的对应边相等即可得证;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:由三角形ADC 为等边三角形,得到∠ADC=∠ACD=60°,再由(1)得到△AEC≌△ABD,利用全等三角形的对应角相等得到∠ACE=∠ADB,由∠EOD为三角形OCD的外角,利用三角形的外角性质及等量代换可得出∠EOD=∠ADC+∠ACD,可求出∠EOD的度数,利用邻补角定义求出∠DOC的度数,即为BD与CE的夹角.【解答】解:(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,,∴△AEC≌△ABD(SAS),∴EC=BD;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.【分析】(1)根据SAS证明△BCE≌△ACF,得到∠ECB=∠FCA,从而证明结论;(2)结合(1)中证明的全等三角形,即可发现以点A、E、C、F为顶点的四边形的面积即为△ABC的面积;(3)根据等边三角形的判定可以证明△ECF是等边三角形,再进一步根据平角定义,得到∠AFE+∠DFC=120°,则∠AFE=∠FCD,从而求解.【解答】解:(1)∠ECF不变为60°.(1分)理由如下:∵△ABC和△ADC都是边长相等的等边三角形,∴BC=AC=CD,∠B=∠DAC=60°,又∵E、F两点运动时间、速度相等,∴BE=AF,∴△BCE≌△ACF(SAS),∴∠ECB=∠FCA.(4分)所以∠ECF=∠FCA+∠ACE=∠ECB+∠ACE=∠BCA=60°;(6分)(2)不变化.理由如下:∵四边形AECF的面积=△AFC的面积+△AEC的面积,△BCE≌△ACF,∴△AEC的面积+△BEC的面积=△ABC的面积;(8分)(3)证明:由(1)知CE=CF,∠ECF=60°,∴△CEF为等边三角形,∵∠FCD+∠DFC=120°,∠AFE+∠DFC=120°,∴∠ECF﹣∠ACF=∠ACD﹣∠ACF,即∠AFE=∠FCD,所以∠ACE=∠FCD=∠AFE.(10分)22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.【分析】(1)根据对角和是180°可推断出BEFD四点共圆,然后在由同(等)圆中,相等的圆周角所对弧相等来证明DE=DF;(2)先证明△BDE和△BDF是直角三角形,然后利用(1)的结果证明Rt△BED≌Rt△BFD(HL);最后根据全等三角形的性质来证明、计算CF=BC;(3)过点D作DH∥BC,交AB于点H.根据平行线的性质及全等三角形的判定定理(SAS)证明△DHE ≌△DCF(SAS);然后再由全等三角形的性质及等边三角形的性质找出CF与BC的数量关系.【解答】证明:(1)连接BD.∵∠EDF=120°,∠B=60°,∴BEFD四点共圆;又∵D为AC中点,∴在等边三角形ABC中,BD为∠ABC的角平分线,∴DE和DF在BEFD四点所构成的圆内,其圆周角相等,∴DE=DF;(2)连接BD.由(1)知,四边形BEFD是圆内接四边形,又∵在等边三角形ABC中,BD为∠ABC的角平分线,∴BD也是∠EDF的角平分线,∴∠DEB=180°﹣=90°,∴△BED是直角三角形;同理,得△BFD是直角三角形;在Rt△BED和Rt△BFD中,BD=DB(公共边),DE=DF(由上题知),∴Rt△BED≌Rt△BFD(HL),∴BE=BF(对应边相等);又∵AB=BC,BE=3AE∴CF=BC;(3)过点D作DH∥BC,交AB于点H.∴∠CDH+∠BCA=180°,∴∠CDH=120°;又∵D为AC中点,∴DH=BC=DC;∵∠HDE+∠EDC=120°,∠FDC+∠EDC=120°,∴∠HDE=∠FDC;又由ED=FD,∴△DHE≌△DCF(SAS);∴HE=FC;①∵BE=AE,AB=BC,∴BE=BC,∵AH=BC,∴HE=BC﹣AH﹣BE=BC,∴BC;②∵BE=4AE,∴AE=BC,如图(1),连接BD.在Rt△BED和Rt△BFD中,,则Rt△BED≌Rt△BFD,∴BE=BF,∴FC=BC﹣BF=AB﹣BE=AE=BC;故答案分别是:,.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?存在(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=2.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.。
高中数学等边三角形的性质及相关题目解析高中数学:等边三角形的性质及相关题目解析等边三角形是高中数学中常见的几何图形,它具有独特的性质和特点。
本文将介绍等边三角形的性质,并通过具体的题目解析,帮助读者更好地理解和应用这些知识。
一、等边三角形的性质1. 边长相等:等边三角形的三条边长度相等,记作a。
2. 角度相等:等边三角形的三个内角都是60度。
3. 对称性:等边三角形具有三个对称轴,即三条中线,它们相互垂直,交于三角形的重心。
4. 高度和中线:等边三角形的高度和中线重合,且都经过重心。
二、等边三角形的相关题目解析1. 题目一:已知等边三角形的边长为a,求其面积。
解析:等边三角形的面积可以通过公式S = (a^2 * √3) / 4求得。
其中,a为等边三角形的边长。
例如,若等边三角形的边长为6,则其面积为(6^2 * √3) / 4 = 9√3。
2. 题目二:已知等边三角形的高为h,求其边长。
解析:等边三角形的高和边长之间存在特殊的关系,即h = a * √3 / 2。
通过这个关系,我们可以求得等边三角形的边长。
例如,若等边三角形的高为4,则其边长为4 * 2 / √3 = 8 /√3。
3. 题目三:已知等边三角形ABC的边长为a,点D是BC边上的一个点,且AD平分∠BAC,求∠ADC的度数。
解析:由于等边三角形的三个内角都是60度,所以∠BAC = 60度。
又因为AD平分∠BAC,所以∠CAD = ∠BAD = 30度。
由于三角形ADC的内角和为180度,所以∠ADC = 180度 - ∠CAD - ∠CAD = 180度 - 30度 - 30度 = 120度。
三、题目解析的思路和技巧在解决等边三角形相关题目时,我们可以运用以下的思路和技巧:1. 利用等边三角形的性质:等边三角形的边长相等,内角都是60度,这些性质可以帮助我们推导和解决问题。
2. 运用三角形的基本定理:如角平分线定理、高线定理等,结合等边三角形的特点,可以推导出更多的结论。
中考数学复习----《等边三角形》知识点总结与练习题(含答案解) 知识点总结1. 等边三角形的概念:三条边都相等的三角形是等边三角形。
2. 等边三角形的性质:①等边三角形的三条边都相等,三个角也相等,且三个角都等于60°。
②等边三角形三条边都存在“三线合一”③等腰三角形是一个轴对称图形,有三条对称轴。
④等腰三角形的面积等于243a (a 为等腰三角形的边长)。
3. 等腰三角形的判定:①三条边都相等的三角形是等边三角形。
②三个角都相等(两个角是60°)的三角形是等腰三角形。
③底和腰相等的等腰三角形是等边三角形。
④有一个角是60°的等腰三角形是等边三角形。
练习题1、(2022•鞍山)如图,直线a ∥b ,等边三角形ABC 的顶点C 在直线b 上,∠2=40°,则∠1的度数为( )A .80°B .70°C .60°D .50°【分析】先根据等边三角形的性质得到∠A =60°,再根据三角形内角和定理计算出∠3=80°,然后根据平行线的性质得到∠1的度数.【解答】解:∵△ABC 为等边三角形,∴∠A =60°,∵∠A +∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2、(2022•绵阳)下列关于等边三角形的描述不正确的是()A.是轴对称图形B.对称轴的交点是其重心C.是中心对称图形D.绕重心顺时针旋转120°能与自身重合【分析】根据等边三角形的性质,轴对称图形的定义,中心对称图形的定义进行判断即可.【解答】解:等边三角形是轴对称图形,每条边的高线所在的直线是其对称轴,故A选项不符合题意;三条高线的交点为等边三角形的重心,∴对称轴的交点是其重心,故B选项不符合题意;等边三角形不是中心对称图形,故C选项符合题意;等边三角形绕重心顺时针旋转120°能与自身重合,故D选项不符合题意,故选:C.3、(2022•海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.4、(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=3,则△AOB与△BOC的面积之和为()A .43B .23C .433D .3【分析】将△AOB 绕点B 顺时针旋转60°得△CDB ,连接OD ,可得△BOD 是等边三角形,再利用勾股定理的逆定理可得∠COD =90°,从而解决问题.【解答】解:将△AOB 绕点B 顺时针旋转60°得△CDB ,连接OD ,∴OB =BD ,∠OBD =60°,CD =OA =2,∴△BOD 是等边三角形,∴OD =OB =1,∵OD 2+OC 2=12+()2=4,CD 2=22=4,∴OD 2+OC 2=CD 2,∴∠DOC =90°,∴△AOB 与△BOC 的面积之和为S △BOC +S △BCD =S △BOD +S △COD =×12+=, 故选:C .。
等边三角形专题最新[含详细讲解析]等边三角形专题最新[含详细讲解析]等边三角形是一种特殊的三角形,它的三条边长度相等。
在等边三角形中,每个角度都是60度。
在本文中,我们将详细讨论等边三角形的性质、特点和相关公式,并且解答一些常见问题。
让我们一起来深入研究等边三角形吧!一、等边三角形的定义与性质等边三角形是指三条边的长度相等的三角形。
等边三角形的最大特点是每个角度都是60度。
根据等边三角形的性质,我们可以得出以下结论:1. 等边三角形的三个内角都是60度。
2. 等边三角形的三条边都相等。
3. 等边三角形的三条高也相等。
4. 等边三角形的内切圆和外接圆半径都相等。
基于这些性质,我们可以推导出等边三角形的一些公式。
二、等边三角形的相关公式1. 等边三角形的周长公式:等边三角形的周长等于边长的三倍,即周长=3a(a代表等边三角形的边长)。
2. 等边三角形的面积公式:等边三角形的面积等于边长的平方乘以根号3的一半,即面积=(a^2 * √3) / 4。
3. 等边三角形的高公式:等边三角形的高等于边长乘以根号3的一半,即高=(a * √3) / 2。
三、等边三角形的应用1. 在几何图形的构造中,等边三角形经常用于作为基本形状。
通过等边三角形,可以构建出其他复杂的多边形。
2. 在计算几何中,等边三角形的特性可用于求解其他问题。
例如,可以利用等边三角形的面积公式计算其面积,或者利用等边三角形的高公式计算其高。
3. 等边三角形也经常出现在数学竞赛或者学习中的题目中。
掌握了等边三角形的性质和公式,可以帮助我们更好地解决相关问题。
四、等边三角形的证明1. 证明等边三角形内角都是60度:根据等边三角形的定义,我们知道三条边的长度相等。
假设等边三角形的某个内角为x度,则另外两个内角也分别为x度,因为三角形的内角和等于180度。
而由于三角形的内角和等于180度,那么x + x + x = 180,解方程可得x = 60。
所以,等边三角形的内角都是60度。
《等边三角形》专题2.(2017天津第9题)如图,将绕点顺时针旋转得,点的对应点恰好落在延长线上,连接.下列结论一定正确的是( )A. B. C. D.3. (2017天津第11题)如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是( )A. B. C. D.17. (2017河池第12题)已知等边的边长为,是上的动点,过作于点,过作于点,过作于点.当与重合时,的长是()A. B. C. D.10.(2008·菏泽中考)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的有________(把你认为正确的序号都填上).16、(2009·义乌中考)如图,在边长为4的正三角形ABC中,ADBC于点D,以AD为一边向右作正三角形ADE。
(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明。
《等边三角形》练习题1.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为( ) A.6B.12C.32D.64 2.(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( ) A.180°B.220°C.240°D.300°3.(2012•荆门)如图,△ABC是等边三角形,P是∠ABC的平分线BD 上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( ) A.2B.2C.D.34.(2011•南平)边长为4的正三角形的高为( ) A.2B.4C.D.25.(2010•随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( ) A.B.C.D.不能确定6.(2009•攀枝花)如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为( ) A.60°B.45°C.40°D.30°7.(2007•绵阳)如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则( ) A.3S1=2S2B.2S1=3S2C.2S1=S2D.S1=2S28.(2007•娄底)如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( ) A.4cm2B.2cm2C.3cm2D.3cm29.(2006•天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是( ) A.3个B.2个C.1个D.0个10.(2006•南宁)如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是( ) A.d>h B.d<h C.d=h D.无法确定11.(2007•南充)一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ) A.30海里B.40海里C.50海里D.60海里12.(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( ) A.25°B.30°C.45°D.60°13.(2011•茂名)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= _________ 度.14.(2008•日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有 _________ .(把你认为正确的序号都填上)15.(2005•扬州)如图,将边长为4的等边△ABC,沿x轴向左平移2个单位后,得到△A′B′C′,则点A′的坐标为 _________ .16.(2004•茂名)如图,正三角形A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中线又组成△A3B3C3,…,如此类推,得到△A n B n C n.则:(1)△A3B3C3的边长a3= _________ ;(2)△A n B n C n的边长a n= _________ (其中n为正整数).17.(2006•嘉峪关)△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为 _________ 三角形.18.(1999•广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出 _________ 个.19.如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′= _________ .20.(2009•浙江)如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明.21.(2009•辽阳)如图,△ABC为正三角形,D为边BA延长线上一点,连接CD,以CD为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.22.(2008•绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:① _________ ;② _________ ;③ _________ .并对②,③的判断,选择一个给出证明.23.(2007•河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF 与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(2004•苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.25.(2002•黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.26.(2000•河南)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.27.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.28.(2005•临沂)如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.29.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.30.如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE 的长?《全等三角形》练习参考答案与试题解析1.C 2.C 3.C 4.D5.B6.A7.A9.B10.C11.B12.B13.∠E= 15 度.14. ①②③⑤ . 15..16. a3=;△A n B n C n的边长a n= (或21﹣n) 17. 等边 三角形.18. 2 个.19 PP′= 3 .20.解:(1)在正△ABC中,AD=4×,(2分)∴S=BC×AD=×4×2=4.(3分)(2)AC、DE的位置关系:AC⊥DE.(1分)在△CDF中,∵∠CDE=90°﹣∠ADE=30°,(2分)∴∠CFD=180°﹣∠C﹣∠CDE=180°﹣60°﹣30°=90°.∴AC⊥DE.(3分)(注:其它方法酌情给分).21.解:AE∥BC.理由如下:∵△ABC与△CDE为正三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,∴△BCD≌△ACE,∴∠B=∠EAC,∵∠B=∠ACB,∴∠EAC=∠ACB,∴AE∥BC.22.请你作出判断,在下列横线上填写“是”或“否”:① 是 ;② 是 ;③ 否 .并对②,③的判断,选择一个给出证明.(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN,∴∠AMB=∠BNC.又∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.23解:(1)BF=CG;证明:在△ABF和△ACG中∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC∴△ABF≌△ACG(AAS)∴BF=CG;(2)DE+DF=CG;证明:过点D作DH⊥CG于点H(如图2)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形∴DE=HG,DH∥BG∴∠GBC=∠HDC∵AB=AC∴∠FCD=∠GBC=∠HDC又∵∠F=∠DHC=90°,CD=DC∴△FDC≌△HCD(AAS)∴DF=CH∴GH+CH=DE+DF=CG,即DE+DF=CG;(3)仍然成立.证明:过点D作DH⊥CG于点H(如图3)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形,∴DE=HG,DH∥BG,∴∠GBC=∠HDC,∵AB=AC,∴∠FCD=∠GBC=∠HDC,又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS)∴DF=CH,∴GH+CH=DE+DF=CG,即DE+DF=CG.24.(1)证明:过点D作DF∥AB,交BC于F.∵△ABC为正三角形,∴∠CDF=∠A=60°.∴△CDF为正三角形.∴DF=CD.又BE=CD,∴BE=DF.又DF∥AB,∴∠PEB=∠PDF.∵在△DFP和△EBP中,∵,∴△DFP≌△EBP(AAS).∴DP=PE.(2)解:由(1)得△DFP≌△EBP,可得FP=BP.∵D为AC中点,DF∥AB,∴BF=BC=a.∴BP=BF=a.25.解:(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2+h3=AN+MN=AM=h,即h1+h2+h3=h.(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2﹣h3=h.理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2﹣h3=AN﹣MN=AM=h,即h1+h2﹣h3=h.26.解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.27.证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN,∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.28.证明:∵△OAB和△OCD为等边三角形,∴CD=OD,OB=AB,∠ADC=∠ABO=60°.∵四边形ODEB是平行四边形,∴OD=BE,OB=DE,∠CBE=∠EDO.∴CD=BE,AB=DE,∠ABE=∠CDE.∴△ABE≌△EDC.∴AE=CE,∠AEB=∠ECD.∵BE∥AD,∴∠AEB=∠EAD.∴∠EAD=∠ECD.在△AFE和△CFD中又∵∠AFE=∠CFD,∴∠AEC=∠ADC=60°.∴△ACE为等边三角形.29.解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.30.解:过P点作PF∥BC交AC于F点,∵等边△ABC的边长为10,点P是边AB的中点,CQ:BC=1:2,∴AB=BC,∠B=∠ACB=∠A=60°,∴AP=CQ,∵PF∥AB,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴∠A=∠APF=∠AFP=60°,∴△APF是等边三角形,∵PE⊥AC,∴EF=AF,∵△APF是等边三角形,AP=CQ,∴PF=CQ∵PF∥AB,∴∠Q=∠FPD,在△PDF和△QDC中∵,∴△PDF≌△QDC,∴DF=CD,∴DF=CF,∴DE=EF+DF=AF+CF=AC,∴ED=5.双基训练1. 如图14-45,在等边ΔABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是 。
《等边三角形》知识全解课标要求:1.了解等边三角形的概念,掌握等边三角形的性质和判定方法.2.等边三角形是特殊的等腰三角形,根据学习等腰三角形的方法来类比学习等边三角形.3.培养学生的自学能力和知识迁移能力.知识结构:内容解析:等边三角形的概念(1)特点:①三条边都相等;②三个角都相等,每个角都是60°.(2)与等腰三角形的关系:等边三角形是特殊的等腰三角形,当等腰三角形的两条腰与底边相等时,这个等腰三角形就是一个等边三角形.因此,等边三角形一定是等腰三角形,但等腰三角形不一定是等边三角形.(3)等边三角形的判定方法①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形.重点难点:本节内容的重点是:等边三角形的性质及判定.教学重点的解决方法:在观察实验的基础上进行性质的概括与判定的推导.通过观察实验,巧妙设问,解决重点.本节内容的难点是:探索等边三角形的性质及判定的过程.教学难点的解决方法:学生对于演绎推理方法证明几何定理或图形的性质还不是很熟练,对几何证明的意义也还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,动手实验,不断渗透,使学生更加理解证明的步骤和基本方法,能根据所学知识完整的给出证明得到结论.教法导引(1)注重将新知识与旧知识进行联系与类比.新旧知识的联系与类比有利于学生建立新的知识体系,同时也能在一定程度上培养学生的合情推理能力.等边三角形是在等腰三角形的基础上提炼出来的;等边三角形的性质和判定是通过类比等腰三角形的性质和判定得到的;这样可以进行适当的合情推理,并能较好地实现知识地正迁移.(2)注重让学生主动参与探索,给学生留有思考和操作的余地.对于等边三角形的性质,让学生动手剪出一个等边三角形,观察类比等腰三角形,提出自己的见解.教学活动的本质是一种合作,一种交流.学生是数学学习的主人,教师是数学学习的组织者.引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学.依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,加强与整式.实数相关内容的联系,使学生的学习形成正迁移.拓展学生探索的空间,体现由具体到抽象的认识过程.学法建议新的教学理念要求在课堂中注重探究学习,在本课中,其实有许多内容可以进行这方面的尝试.如等边三角形的判定方法可以让学生进行探究和归纳.若能在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高.等边三角形是一种特殊的等腰三角形,与等腰三角形的关系也可以让学生进行探究和归纳:等边三角形是特殊的等腰三角形,当等腰三角形的两条腰与底边相等时,这个等腰三角形就是一个等边三角形.因此,等边三角形一定是等腰三角形,但等腰三角形不一定是等边三角形.。
等边三角形典型问题综合专项训练(含解析)一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.47.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的平分线互相重合.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是(请写出正确结论的序号).三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.等边三角形典型问题综合训练参考答案与试题解析一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④【分析】根据等边三角形的判定和性质对各个选项逐一分析即可.【解答】解:根据等边三角形的每个角都是60°;故①正确.根据等边三角形的概念:三边相等的三角形是等边三角形.故②正确;根据等边对等角;故③正确;根据等边三角形的判定;故④正确.故选D.2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选C3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有,AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【解答】解:∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°,所以这四项都是正确的.故选:D.4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【分析】由等边三角形的性质和平角的定义以及三角形内角和定理即可得出结果.【解答】解:∵△ABC、△DEF和△GMN都是等边三角形,∴∠GMN=∠MGN=∠DEF=60°,∵∠1+∠GMN+∠GME=180°,∠2+∠MGN+∠EGM=180°,∠3+∠DEF+∠MEG=180°,∴∠1+∠GMN+∠GME+∠2+∠MGN+∠EGM+∠3+∠DEF+∠MEG=3×180°,∵∠GME+∠EGM+∠MEG=180°,∴∠1+∠2+∠3=3×180°﹣180°﹣3×60°=180°;故选:D.5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°【分析】易证△ABD≌△BCE,可得∠BAD=∠CBE,根据∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°即可求得∠APE=∠ABC,即可解题.【解答】解:在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°,∴∠APE=∠ABC=60°.故选D.6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.4【分析】利用等边三角形的特殊角求出OE与OF的和,可得出其与三角形的高相等,进而可得出结论.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选C.7.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化【分析】本题考查了等边三角形的性质.这类选择题可以取特殊情况进行分析解答,即使五边形继续转动到B点位于OD上、C点位于OG上时,得出答案.【解答】解:设OD交AB于P,OG交BC于Q.过O点作AB、BC的垂线,垂足分别为M、N,则三角形OMP全等于三角形ONQ.所以无论如何旋转,阴影部分面积始终等于四边形OMBN的面积.则使五边形继续转动,使B点位于OD上、C点位于OG上,则∠BOC=120°根据等边三角形的性质,即:阴影部分面积是等边三角形的.故选C.8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD ≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③④正确.【解答】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)所以结论①②③④正确,故选:D.二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.【分析】(1)根据等边三角形性质中内角度数进而填空得出;(2)利用轴对称图形的性质得出即可;(3)根据等腰三角形性质三线合一的性质可得出.【解答】解:(1)等边三角形的三个内角都相等,并且每一个角都等于60°;(2)等边三角形是轴对称图形,它有三条对称轴;(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.故答案为:(1)相等,60°;(2)三;(3)中线,高线.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为120°.【分析】利用等边三角形的性质以及等腰三角形的性质得出∠B=∠BAD=∠C=∠EAC=30°,进而利用三角形内角和定理求出即可.【解答】解:∵E是BC的三等分点,且△ADE是等边三角形,∴BD=DE=EC=AD=AE,∠ADE=∠AED=60°,∴∠B=∠BAD=∠C=∠EAC=30°,∴∠BAC=180°﹣∠B﹣∠C=120°.故答案为:120°.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+DF.【分析】连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.【解答】解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴AC•BN=AB•DE+AC•DF,∵△ABC为等边三角形,∴AB=AC,∴AC•BN=AC•DE+AC•DF,∴BN=DE+DF.故答案为:BN=DE+DF.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是3.【分析】过点D作DH∥AC交BC于H,判断出△BDH是等边三角形,从而求出HD=CF,再根据两直线平行,内错角相等可得∠PCF=∠PHD,然后利用“角角边”证明△PCF和△PHD全等,根据全等三角形对应边相等可得PC=PH,再根据等边三角形的性质可得BE=EH,然后求出EP=BC,从而得解.【解答】解:如图,过点D作DH∥AC交BC于H,∵△ABC是等边三角形,∴△BDH也是等边三角形,∴BD=HD,∵BD=CF,∴HD=CF,∵DH∥AC,∴∠PCF=∠PHD,在△PCF和△PHD中,,∴△PCF≌△PHD(AAS),∴PC=PH,∵△BDH是等边三角形,DE⊥BC,∴BE=EH,∴EP=EH+HP=BC,∵等边△ABC,AB=6,∴EP=×6=3.故答案为:3.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.【分析】过P作BC的平行线至AC于F,通过求证△PFD和△QCD全等,推出FD=CD,再通过证明△APF 是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得ED=AC,即可推出ED的长度.【解答】解:过P做BC的平行线至AC于F,∴∠Q=∠FPD,∵等边△ABC,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴△APF是等边三角形,∴AP=PF,AP=CQ,∵AP=CQ,∴PF=CQ,∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,∴AE+DC=EF+FD,∴ED=AC,∵AC=1,∴DE=.故答案为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是①③(请写出正确结论的序号).【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等解答即可.【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,.∴△FEB≌△CDF(SAS),∴BE=FD;∠BFE=∠FCD;故答案为:①③三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.【分析】先根据等边△ABC中,AB=CA,∠BAC=∠ACB=60°,得出∠EAB=∠DCA=120°,再根据SAS即可判定△EAB≌△DCA,进而得出结论.【解答】证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【分析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE=DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE=DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)【分析】(1)先证AE=BE,再证∠D=∠DEB,得出DB=BE,即可得出DB=AE;(2)过点E作EF∥BC,交AC于F,先证明△AEF是等边三角形,得出AE=EF,再证明△DBE≌△EFC,得出DB=EF,即可证出AE=DB.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠ABC=60°,AE=BE,∠ECB=30°,∵ED=EC,∴∠D=∠ECB=30°,∵∠ABC=∠D+∠DEB,∴∠DEB=30°,∴∠D=∠DEB,∴DB=BE,∴DB=AE;故答案为:=;(2)DB=AE成立;理由如下:过点E作EF∥BC,交AC于F,如图2所示:则∠AEF=∠ABC,∠AFE=∠ACB,∠CEF=∠ECD,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEF=∠AFE=60°,∠DBE=120°,∴△AEF是等边三角形,∴AE=EF,∠EFC=120°,∴BE=CF,∠DBE=∠EFC,∵ED=EC,∴∠D=∠ECD,∴∠D=∠CEF,在△DBE和△EFC中,,∴△DBE≌△EFC(AAS),∴DB=EF,∴AE=DB;故答案为:=.19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.【分析】(1)EC=BD,理由为:由△ABE和△ACD都为等边三角形,利用等边三角形的性质得到∠EAB=∠DAC=60°,AE=AB,AD=AC,利用等式的性质得到∠EAC=∠BAD,利用SAS可得出△AEC≌△ABD,利用全等三角形的对应边相等即可得证;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:由三角形ADC 为等边三角形,得到∠ADC=∠ACD=60°,再由(1)得到△AEC≌△ABD,利用全等三角形的对应角相等得到∠ACE=∠ADB,由∠EOD为三角形OCD的外角,利用三角形的外角性质及等量代换可得出∠EOD=∠ADC+∠ACD,可求出∠EOD的度数,利用邻补角定义求出∠DOC的度数,即为BD与CE的夹角.【解答】解:(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,,∴△AEC≌△ABD(SAS),∴EC=BD;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.【分析】(1)根据SAS证明△BCE≌△ACF,得到∠ECB=∠FCA,从而证明结论;(2)结合(1)中证明的全等三角形,即可发现以点A、E、C、F为顶点的四边形的面积即为△ABC的面积;(3)根据等边三角形的判定可以证明△ECF是等边三角形,再进一步根据平角定义,得到∠AFE+∠DFC=120°,则∠AFE=∠FCD,从而求解.【解答】解:(1)∠ECF不变为60°.(1分)理由如下:∵△ABC和△ADC都是边长相等的等边三角形,∴BC=AC=CD,∠B=∠DAC=60°,又∵E、F两点运动时间、速度相等,∴BE=AF,∴△BCE≌△ACF(SAS),∴∠ECB=∠FCA.(4分)所以∠ECF=∠FCA+∠ACE=∠ECB+∠ACE=∠BCA=60°;(6分)(2)不变化.理由如下:∵四边形AECF的面积=△AFC的面积+△AEC的面积,△BCE≌△ACF,∴△AEC的面积+△BEC的面积=△ABC的面积;(8分)(3)证明:由(1)知CE=CF,∠ECF=60°,∴△CEF为等边三角形,∵∠FCD+∠DFC=120°,∠AFE+∠DFC=120°,∴∠ECF﹣∠ACF=∠ACD﹣∠ACF,即∠AFE=∠FCD,所以∠ACE=∠FCD=∠AFE.(10分)22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.【分析】(1)根据对角和是180°可推断出BEFD四点共圆,然后在由同(等)圆中,相等的圆周角所对弧相等来证明DE=DF;(2)先证明△BDE和△BDF是直角三角形,然后利用(1)的结果证明Rt△BED≌Rt△BFD(HL);最后根据全等三角形的性质来证明、计算CF=BC;(3)过点D作DH∥BC,交AB于点H.根据平行线的性质及全等三角形的判定定理(SAS)证明△DHE ≌△DCF(SAS);然后再由全等三角形的性质及等边三角形的性质找出CF与BC的数量关系.【解答】证明:(1)连接BD.∵∠EDF=120°,∠B=60°,∴BEFD四点共圆;又∵D为AC中点,∴在等边三角形ABC中,BD为∠ABC的角平分线,∴DE和DF在BEFD四点所构成的圆内,其圆周角相等,∴DE=DF;(2)连接BD.由(1)知,四边形BEFD是圆内接四边形,又∵在等边三角形ABC中,BD为∠ABC的角平分线,∴BD也是∠EDF的角平分线,∴∠DEB=180°﹣=90°,∴△BED是直角三角形;同理,得△BFD是直角三角形;在Rt△BED和Rt△BFD中,BD=DB(公共边),DE=DF(由上题知),∴Rt△BED≌Rt△BFD(HL),∴BE=BF(对应边相等);又∵AB=BC,BE=3AE∴CF=BC;(3)过点D作DH∥BC,交AB于点H.∴∠CDH+∠BCA=180°,∴∠CDH=120°;又∵D为AC中点,∴DH=BC=DC;∵∠HDE+∠EDC=120°,∠FDC+∠EDC=120°,∴∠HDE=∠FDC;又由ED=FD,∴△DHE≌△DCF(SAS);∴HE=FC;①∵BE=AE,AB=BC,∴BE=BC,∵AH=BC,∴HE=BC﹣AH﹣BE=BC,∴BC;②∵BE=4AE,∴AE=BC,如图(1),连接BD.在Rt△BED和Rt△BFD中,,则Rt△BED≌Rt△BFD,∴BE=BF,∴FC=BC﹣BF=AB﹣BE=AE=BC;故答案分别是:,.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?存在(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=2.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.。
2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题06 等边三角形的性质考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·嵩县期末)如图, ABC V 是等边三角形, BD 是中线,延长 BC 至E ,使 CE CD = ,则下列结论错误的是( )A .30CED ∠=︒B .120BDE ∠=︒C .DE BD =D .DE AB=【答案】D 【完整解答】解:∵△ABC 是等边三角形,∴∠ABC=∠ACB =60°,∵BD 是AC 上的中线,∴∠ADB =∠CDB =90°,∠ABD =∠CBD =30°,∵∠ACB =∠CDE +∠DEC =60°,又CD =CE ,∴∠CDE =∠CED =30°,∴∠CBD =∠DEC ,∴DE=BD ,∠BDE =∠CDB +∠CDE =120°,故A 、B 、C 均正确.故答案为:D .【思路引导】利用等边三角形性质得∠ABC=∠ACB =60°,∠ADB =∠CDB =90°;∠ABD =∠CBD =30°,再利用三角形的外角的性质及等腰三角形的性质可得到∠CDE =∠CED =30°,可对A 作出判断;由此可推出∠CBD=∠DEC ,同时可求出∠BDE 的度数,可对B 作出判断;利用等角对等边可证得DE=DB ,可对C 作出判断;不能证明DE=AB ,可对D 作出判断.2.(2分)(2021八上·凉山期末)三角形中,最大角 α 的取值范围是( )A .090α︒<<︒B .60180α︒<<︒C .6090α︒≤<︒D .60180α︒≤<︒【答案】D【完整解答】解:根据题意得:最大角180α<︒ , 当三角形为等边三角形时,三角形的三个内角相等,且60α=︒ ,∴最大角a 的取值范围是 60180α︒≤<︒ .故答案为:D. 【思路引导】根据三角形的内角和定理可得α<180°,当三角形为等边三角形时,α=60°,据此可得α的范围.3.(2分)(2021八上·遵义期末)点D 、E 分别是等边三角形 ABC 的边 BC 、 AB 的中点, 6AD = ,F 是AD 上一动点,则 BF EF + 的最小值是( )A .6B .7C .8D .9【答案】A 【完整解答】解:连接CE ,交AD 于F ,连接BF ,则BF+EF 最小(根据两点之间线段最短;点到直线垂直距离最短),∵E 是AB 的中点,△ABC 是等边三角形,CE AB∴⊥由于C 和B 关于AD 对称,则BF+EF=CF ,∵等边△ABC 中,BD=CD ,∴AD ⊥BC ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CEB=90°,在△ADB 和△CEB 中,ADB CEB ABD CBE AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEB (AAS ),∴CE=AD=6,即BF+EF=6.故答案为:A.【思路引导】连接CE ,交AD 于F ,连接BF ,则BF+EF 最小,根据等边三角形的性质可得CE ⊥AB ,根据轴对称的性质可得BF+EF=CF ,推出AD 是BC 的垂直平分线,得到CF=BF ,则BF+EF=CF+EF=CE ,证明△ADB ≌△CEB ,得到CE=AD=6,据此解答.4.(2分)(2021八上·松桃期末)如图,△ABC 是等边三角形,点E 是AC 的中点,过点E 作EF ⊥AB 于点F ,延长BC 交EF 的反向延长线于点D ,若EF=1,则DF 的长为( )A .2B .2.5C .3D .3.5【答案】C 【完整解答】解:连接BE,∵△ABC是等边三角形,点E是AC的中点,∴∠ABC=60°,∠ABE=∠CBE=30°,∵EF⊥AB,∴∠D=90°-∠ABC=30°,即∠D=∠CBE=30°,∴BE=DE,在Rt△BEF中,EF=1,∴BE=2EF=2,∴BE=DE=2,∴DF=EF+DE=3,故答案为:C.【思路引导】连接BE,根据等边三角形的性质得∠ABC=60°,∠ABE=∠CBE=30°,易求∠D=30°,即得∠D=∠CBE,由等角对等边可得BE=DE,根据含30°角的直角三角形的性质可得BE=2EF=2,即得DE=2,从而得出DF=EF+DE=35.(2分)(2021八上·灌阳期末)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为( )A.8B.10C.11D.12【答案】B【完整解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC 为等边三角形,∴AB=BC=AC=5,∠ACB=∠A=60°,∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC ,∠HGC=180°-∠C-∠GHC =120°-∠GHC ,∴∠AHF=∠HGC ,在△AFH 和△CHG 中A C AHF HGC FH GH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFH ≌△CHG (AAS ),∴AF=CH.∵△BDE 和△FGH 是两个全等的等边三角形,∴BE=FH ,∴五边形DECHF 的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF ,=(BD+DF+AF)+(CE+BE),=AB+BC=10.故答案为:B.【思路引导】利用AAS 证明△AFH ≌△CHG ,可得AF=CH ,由于△BDE 和△FGH 是两个全等的等边三角形,可得BE=FH ,由于五边形DECHF 的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE)=AB+BC ,据此计算即可.6.(2分)(2021八上·河东期末)如图,过边长为4的等边ABC V 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .95B .2C .115D .125【答案】B【完整解答】解:过P 作PM BC P ,交AC 于M,∵ABC V 是等边三角形,∴60APM B ∠=∠=︒,60A ∠=︒,∴APM V 是等边三角形,又∵PE AM ⊥,∴12AE EM AM ==,∵PM CQ P ,∴PMD QCD ∠=∠,MPD Q ∠=∠,∵PA PM =,PA CQ =,∴PA PM CQ ==,在PMD V 和QCD V 中,PDM CDQ PMD DCQ PM CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PMD QCD V V ≌,∴12CD DM CM ==,∴11()222DM ME AM MC AC +=+==,故答案为:B .【思路引导】过P 作PM BC P ,交AC 于M ,得出APM V 是等边三角形,推出PA PM CQ ==,根据等腰三角形的性质证出PMD QCD V V ≌,推出12CD DM CM ==,即可得出结论。
专题11等边三角形常考作辅助线法【例1】(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【答案】详见解答【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.【练1】(2020秋•句容市期中)如图,在等边三角形ABC中,点E是边AC上一定点,点D是射线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,点D与点B重合,求证:AE=FC;【类比探究】(1)如图2,点D在边BC上,求证:CE+CF=CD;(2)如图3,点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?直接写出你的结论.【答案】详见解答【解答】证明:【问题解决】∵△ABC和△DEF是等边三角形,∴AB=BC,∠ABC=∠EDC=60°,DE=DF,∴∠ABC﹣∠EBC=∠EDC﹣∠EBC,即∠ABE=∠CBF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS)∴AE=CF;【类比探究】(1)如图2,在CD上截取CH=CE,连接EH,∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;(2)线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图3所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.【练2】(2020秋•天心区期中)如图,在等边△ABC中,点D是边AC上一定点,点E是直线BC上一动点,以DE为一边作等边△DEF,连接CF.(1)如图1,若点E在边BC上,且DE⊥BC,垂足为E,求证:CD=2CE;(2)如图1,若点E在边BC上,且DE⊥BC,垂足为E,求证:CE+CF=CD;(3)如图2,若点E在射线CB上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【答案】详见解答【解答】证明:(1)∵△ABC是等边三角形,∴∠ACB=60°,又∵DE⊥BC,∴∠DEC=90°,∠EDC=30°,∴CD=2CE;(2)∵△DEF是等边三角形,∴DE=DF,∠EDF=60°∵∠EDC=30°,∴∠FDC=30°=∠EDC,DC=DC,∴△EDC≌△FDC(SAS),∴CE=CF,∴CD=2CE=CE+CF;(3)当点E在线段BC上,如图2,结论:CD=CE+CF,理由如下:如图2,在BC上截取CG=CD,连接GD,∵∠DCG=60°,∴△DCG是等边三角形,∴DG=DC,∠GDC=60°,∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∵∠GDE+∠EDC=60°=∠EDC+∠CDF,∴∠GDE=∠CDF,∴△GDE≌△CDF(SAS),∴GE=CF,∴CD=CG=CE+EG=CE+CF;当点E在射线BC延长线上,如图3,结论:CE=CD+CF,理由如下:如图3,在BC上截取CG=CD,连接GD,∵∠DCG=60°,∴△DCG是等边三角形,∴DG=DC,∠GDC=60°,∵△DEF是等边三角形,∴DE=DF,∠EDF=60°,∵∠GDE+∠GDF=60°=∠GDF+∠CDF,∴∠GDE=∠CDF,∴△GDE≌△CDF(SAS),∴GE=CF,∴CE=CG+EG=CD+CF.【例2】(2020秋•湖南期末)如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E 同时出发并且运动速度相同.连接CD、DE.(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.【答案】详见解答【解答】(1)证明:∵△ABC是等边三角形,AD=DB,∴∠DCB=∠ACB=30°,AD=DB,由题意得,AD=BE,∴BD=BE,∴∠BDE=∠BED,∵∠BDE+∠BED=∠ABC=60°,∴∠BDE=∠BED=30°,∴∠DCE=∠BED,∴DE=DC.(2)解:DE=DC,理由如下:作DF∥AC交BC于F,则∠BDF=∠A=60°,∠DFB=∠ACB=60°,∴△DBF为等边三角形,∴DB=DF=BF,∠DBF=∠DFB=60°,∴FC=AD=BE,∠DBE=∠DFC,在△DBE和△DFC中,,∴△DBE≌△DFC(SAS),∴DE=DC;(3)解:在BE上截取BH=BD,连接DH,∵∠DBH=∠ABC=60°,∴△BDH为等边三角形,∴DH=DB,∠BDH=∠BHD=60°,∴∠DHE=∠DBC=120°,∵AD=BE,BH=BD,AB=BC,∴HE=BC,在△DHE和△DBC中,,∴△DHE≌△DBC(SAS),∴∠HDE=∠BDC,∵∠EDC=90°,∠HDB=60°,∴∠HDE+∠BDC=30°,∴∠HDE=∠BDC=15°,∴∠DEC=∠DHC﹣∠HDE=45°.【练1】(2019秋•道外区期末)如图,△ABC中,AB=AC,点D在AB边上,点E在AC 的延长线上,且CE=BD,连接DE交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.【答案】详见解答【解答】证明:(1)过点D作DH∥AC,DH交BC于H,如图1所示:则∠DHB=∠ACB,∠DHF=∠ECF,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DHB,∴BD=HD,∵CE=BD,∴HD=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS),∴EF=DF;(2)如图2,由(1)知:BD=HD,∵DG⊥BC,∴BG=GH,由(1)得:△DHF≌△ECF,∴HF=CF,∴GH+HF=BH+CH=BC,∴BC=2FG.【练2】(2020秋•东城区期末)(1)老师在课上给出了这样一道题目:如图1,等边△ABC 边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE 的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为②(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)【答案】详见解答【解答】解:(1)如图,过点P作PF∥BC交AC于点F,∴∠Q=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠Q=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC﹣AF),∴DE=DF+EF=(AC﹣AF)+AF=AC=1;(2)1、补全的图形如下,过点P作PF∥BC交CE的延长线于点F,∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠FAP=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC+AF),∴DE=DF﹣EF=(AC+AF)﹣AF=AC=1;2、过点P作PF∥BC交BC的延长线与点F.∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AF﹣AC),∴DE=EF﹣DF=(AC+CF)﹣CF=AC=1;答案为②.1.(2020秋•旅顺口区期中)如图,在等边三角形ABC中,点E是边CA延长线上一点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.(1)如图1,若点D在边BC上,求证:CE=CF+CD;(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系,并说明理由.【答案】详见解答【解答】(1)证明:在CA上截取CG=CD,连接DG,如图1所示:∵△ABC和△DEF是等边三角形,∴∠B=∠ACB=∠EDF=60°,BC=AC,DE=DF,∵CG=CD,∴△CDG是等边三角形,∴DG=DC=CG,∠GDC=60°=∠EDF,∴∠EDG=∠FDC,在△DEG和△DFC中,,∴△DEG≌△DFC(SAS),∴GE=CF,∵CE=GE+CG,∴CE=CF+CD;(2)解:CD=CF+CE,理由如下:在CA的延长线上截取CG=CD,连接DG,如图2所示:同(1)得:△CDG是等边三角形,△DEG≌△DFC(SAS),∴DG=DC=CG,GE=CF,∵CG=GE+CE,∴CD=CF+CE.2.(2019秋•宽城区期中)在等边三角形ABC中,点P从点B出发沿射线BA运动,同时点Q从点C出发沿线段AC的延长线运动,P、Q两点运动的速度相同,PQ与直线BC相交于点D.(1)如图①,过点P作PE∥AC交BC于点E,求证:EP=CQ.(2)如图②,过点P作直线BC的垂线,垂足为F.①当点P在线段BA上运动时,求证:BF+CD=BC.②当点P在线段BA延长线上运动时,直接写出BF、CD与BC之间的数量关系.【答案】详见解答【解答】(1)证明:由题意得:BP=CQ,∵△ABC是等边三角形,∴∠BAC=∠BCA=∠ABC=60°,∵PE∥AC,∴∠BPE=∠BAC=60°,∠BEP=∠BCA=60°,∴∠B=∠BPE=∠BEP,∴△BPE是等边三角形,∴EP=BP,∴EP=CQ.(2)①证明:过点P作PE∥AC交BC于点E,如图②所示:由(1)得:EP=CQ,∠BEP=∠ACB=60°,△BPE是等边三角形,∴∠DEP=∠DCQ=120°,∵PF⊥BC,∴BF=EF,在△DPE和△DQC中,,∴△DPE≌△DQC(AAS),∴ED=CD,∴BF+CD=EF+ED=BC.②解:当点P在线段BA延长线上运动时,BC+2CD=2BF,理由如下:过点P作PE∥AC交BC于点E,如图③所示:同①得:△BPE是等边三角形,△DPE≌△DQC,∴ED=CD,∴BF=EF,∵BC﹣BF=CF,∴BC﹣BF=EF﹣2CD=BF﹣2CD,∴BC+2CD=2BF.3.(2020•安徽模拟)如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF;=S△ADG+S△ECF.(3)S△DGF【答案】详见解答【解答】证明:(1)∵△ABC是等边三角形,∵DG⊥AC,∴∠AGD=90°,∠ADG=30°,∴AG=AD;(2)过点D作DH∥BC交AC于点H,∴∠ADH=∠B,∠AHD=∠ACB,∠FDH=∠E,∵△ABC是等边三角形,∴∠B=∠ACB=∠A=60°,∴∠A=∠ADH=∠AHD=60°,∴△ADH是等边三角形,∴DH=AD,∵AD=CE,∴DH=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS),∴DF=EF;(3)∵△ABC是等边三角形,DG⊥AC,∴AG=GH,=S△HDG,∴S△ADG∵△DHF≌△ECF,=S△ECF,∴S△DHF=S△DGH+S△DHF=S△ADG+S△ECF.∴S△DGF4.(2020秋•花雨区校级月考)我们在前面曾遇到过这样一道题目:小明与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”)(2)一般情况,证明结论:如图2,过点E作EF∥BC,交AC于点F.请你继续完成对以上问题(1)中所填写结论的证明.(3)变式探究:如图3,△ABC是等边三角形,D是边BC上一点,点E在BA的延长线上,且BD=AE,此时,CE和DE有何数量关系?请画出图形,作出判断,并说明理【答案】详见解答【解答】解:(1)∵E为等边三角形AB边的中点,∴∠ECD=30,∵DE=CE,∴∠ECD=∠D=30°∵∠DEB=180°﹣∠D﹣∠DBE=30°∴∠DEB=∠D,∴BD=BE,∴AE=BD.(2)如图2,∵在等边三角形ABC中,EF∥BC∴BE=CF,∵DE=CE,∴∠D=∠ECD∵∠D+∠DEB=60°,∠ECF+∠ECD=60°,∴∠ECF=∠DEB在△CEF和△DBE中,,∴△CEF≌△DBE(SAS)∴AE=DB.(3)如图3,过D做DF∥AC,则△BDF为等边三角形,∴BD=BF=DF,∵BD=AE,∴AB=BF+AF=BD+AF=AE+AF=EF,∴AC=EF,∵DF∥AC,∴∠DFE=∠EAC,在△DEF和△ECA中,,∴△DEF≌△ECA(SAS),∴CE=DE.5.(2020秋•河西区期末)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【解答】(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.6.(2020秋•裕华区校级期末)知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.【解答】解:(1)由题意得,CD=0.5x,则AD=4﹣0.5x;(2)∵△ABC是等边三角形,∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.设x秒时,△ADE为直角三角形,∴∠ADE=90°,BE=0.5x,AD=4﹣0.5x,AE=4+0.5x,∴∠AED=30°,∴AE=2AD,∴4+0.5x=2(4﹣0.5x),∴x=;答:运动秒后,△ADE为直角三角形;(3)如图2,作DG∥AB交BC于点G,∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,∴∠C=∠CDG=∠CGD,∴△CDG是等边三角形,∴DG=DC,∵DC=BE,∴DG=BE.在△DGP和△EBP中,,∴△DGP≌△EBP(ASA),∴DP=PE,∴在运动过程中,点P始终为线段DE的中点.。
专题1.2 等边三角形【十大题型】【北师大版】【题型1 与等边三角形有关的角度的计算】 (1)【题型2 共顶点的等边三角形(手拉手图形)】 (5)【题型3 平面直角坐标系中的等边三角形】 (11)【题型4 与等边三角形有关的线段长度的计算】 (17)【题型5 等边三角形的证明】 (22)【题型6 与等边三角形有关的规律问题】 (26)【题型7 利用等边三角形的性质进行证明】 (31)【题型8 与等边三角形有关的动点问题】 (36)【题型9 含30°角的直角三角形性质】 (41)【题型10 直角三角形斜边的中线】 (45)【题型1 与等边三角形有关的角度的计算】【例1】(2022秋•泰兴市期末)(1)如图1,∠AOB和∠COD都是直角①若∠BOC=60°,则∠BOD= 30 °,∠AOC= 30 °;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=∠COD=80°,若∠AOD=∠BOC+40°,求∠AOC的度数;(3)如图3,将三个相同的等边三角形(三个内角都是60°)的一个顶点重合放置,若∠BAE=10°,∠HAF=30°,则∠1= 20 °.【分析】(1)根据余角的性质即可得到结论;(2)根据角的和差即可得到结果;(3)根据等边三角形的性质得到∠DAH=∠EAF=∠BAC=60°,根据角的和差即可得到结论.【解答】解:(1)∵∠AOB和∠COD都是直角,∠BOC=60°,∴∠BOD=30°,∠AOC=30°,故答案为:30,30;(2)∵∠AOB=∠COD=80°,∴∠AOC=∠BOD=1(∠AOD﹣∠BOC),2∵∠AOD=∠BOC+40°,∴∠AOC=20°;(3)∵∠DAH=∠EAF=∠BAC=60°,∴∠DAE=∠HAF=30°,∴∠1=60°﹣30°﹣10°=20°.故答案为:20.【变式1-1】(2022秋•巫溪县校级月考)已知:如图,△ABC是等边三角形,D是BC延长线上的点,BE、CE分别平分∠ABC和∠ACD,求∠BEC的度数.【分析】△ABC是等边三角形的外角是120°,平分后是60°,又由角平分线与角的对边垂直可知所求角是直角三角形内的一个锐角,故而可解得.【解答】解:∵△ABC是等边三角形,且有BE、CE分别平分∠ABC和∠ACD,AC⊥BE,∴∠ECD=(180°﹣60°)÷2=120°÷2=60°,∴∠ACE=60°,又∵AC⊥BE,∴∠BEC=180°﹣90°﹣60°=30°.【变式1-2】(2022秋•太原期末)问题情境:如图1,点D是△ABC外的一点,点E在BC边的延长线上,BD平分∠ABC,CD平分∠ACE.试探究∠D与∠A的数量关系.(1)特例探究:如图2,若△ABC是等边三角形,其余条件不变,则∠D= 30° ;如图3,若△ABC是等腰三角形,顶角∠A=100°,其余条件不变,则∠D= 50° ;这两个图中,∠D与∠A度数的比是 1:2 ;(2)猜想证明:如图1,△ABC为一般三角形,在(1)中获得的∠D与∠A的关系是否还成立?若成立,利用图1证明你的结论;若不成立,说明理由.【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和用∠A和∠D表示出∠ACE,再根据角平分线的定义得到∠ACE=2∠DCE,∠ABC=2∠DBC,然后整理即可.(2)根据三角形的一个外角等于和它不相邻的两个内角的和用∠A和∠D表示出∠ACE,再根据角平分线的定义得到∠ACE=2∠DCE,∠ABC=2∠DBC,然后整理即可.【解答】解:(1)如图2,∵△ABC是等边三角形,∴∠ABC=60°,∠ACE=120°,∵BD平分∠ABC,CD平分∠ACE.∴∠DBC=30°,∠DCE=60°,∵∠DCE=∠D+∠DBC,∴∠D=30°;如图3,∵△ABC是等腰三角形,∠A=100°,∴∠ABC=∠ACB=40°,∠ACE=140°,∵BD平分∠ABC,CD平分∠ACE.∴∠DBC=20°,∠DCE=70°,∵∠DCE=∠D+∠DBC,∴∠D=50°;故答案为30°,50°,1:2;(2)成立,如图1,在△ABC中,∠ACE=∠A+∠ABC,在△DBC中,∠DCE=∠D+∠DBC, (1)∵CD平分∠ACE,BD平分∠ABC,∴∠ACE=2∠DCE,∠ABC=2∠DBC,又∵∠ACE=∠A+∠ABC,∴2∠DCE=∠A+2∠DBC, (2)由(1)×2﹣(2),∴2∠D+2∠DBC﹣(∠A+2∠DBC)=0,∴∠A=2∠D.【变式1-3】(2022秋•龙港区期末)已知△ABC,△EFG是边长相等的等边三角形,点D是边BC,EF的中点.(1)如图①,连接AD,GD,则∠ADC的大小= 90 (度);∠GDF的大小= 90 (度);AD与GD的数量关系是 AD=GD ;DC与DF的数量关系是 DC=DF ;(2)如图②,直线AG,FC相交于点M,求∠AMF的大小.【分析】(1)如图①中,根据等边三角形的性质解答即可.(2)如图连接AD,DG,利用等边三角形的性质即可解决问题.【解答】解:(1)如图①,连接AD,GD,∵△ABC是等边三角形,BD=DC,则∠ADC的大小=90°;∵△EGF是等边三角形,ED=DF,∴∠GDF=90°;∵BC=EF,∴AD=GD;DC=DF;故答案为:90;90;AD=GD;DC=DF.(2)连接AD,DG,由(1)得:∠ADC=∠GDF=90°,∴∠ADC﹣∠GDC=∠GDF﹣∠GDC,即∠1=∠2,由(1)得:AD=GD,∴∠DGA=∠DAG=180°−∠1,2由(1)得:DC=DF,∴∠3=∠DCF=180°−∠2,2∴∠DGA=∠3,∵∠AMF=∠AGF+∠5,∴∠AMF=∠DGA+∠5+∠4=∠3+∠5+∠4=180°﹣∠GDF=180°﹣90°=90°.【题型2 共顶点的等边三角形(手拉手图形)】【例2】(2022秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有 ①②④⑤ .(注:把你认为正确的答案序号都写上)【分析】①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE,①正确.④先证明△ACP≌△BCQ,即可判断出CP=CQ,即可得④正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.③没有条件证出OP=OQ,得出③错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°﹣60°﹣60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,∠ACP=∠BCQ,∠CAP=∠CBQ,AC=BC,∴△ACP≌△BCQ(AAS),∴AP=BQ,CP=CQ,又∵∠PCQ=60°,∴△PCQ为等边三角形,结论④正确;∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出OP=OQ,③错误;综上,可得正确的结论有4个:①②④⑤.故答案为:①②④⑤.【变式2-1】(2022秋•西青区期末)如图,△ABC和△CDE都是等边三角形,点E在△ABC内部,连接AE,BE,BD.若∠EBD=50°,则∠AEB的度数是 110° .【分析】由已知条件推导出△ACE≌△BCD,从而∠DBC=∠CAE,再通过角之间的转化,利用三角形内角和定理能求出∠AEB的度数.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠ABC=∠ACB=∠BAC=∠ECD=60°,又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,在△ACE和△BCD中,AC=BC∠BCD=∠ACE,CE=CD∴△ACE≌△BCD(SAS),∴∠CAE=∠DBC,∴∠EBD﹣∠EBC=∠BAC﹣∠BAE,∵∠EBD=50°,∴50°﹣∠EBC=60°﹣∠BAE,∴50°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=70°,∴∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣70°=110°,故答案为:110°.【变式2-2】(2022秋•兴化市校级月考)如图1,等边△ABC中,D是AB边上的点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△DBC≌△EAC;(2)求证:AE∥BC;(3)如图2,若D在边BA的延长线上,且AB=6,AD=2,试求△ABC与△EAC面积的比值.【分析】(1)首先证明∠BCD=∠ACE,然后利用SAS证明△DBC≌△EAC即可;(2)根据全等的性质可得∠EAC=∠B=60°,进而可得∠EAC=∠ACB,从而可得AE∥BC;(3)利用等边三角形的性质可得BC=AC,DC=CE,∠BCA=∠DCE=60°,然后再证明△DBC≌△EAC,再推出∠EAC=∠ACB,进而可得AE∥BC,进而利用三角形面积解答即可.【解答】证明:(1)∵∠ACB=60°,∠DCE=60°,∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD,∴∠BCD=∠ACE,在△DBC 和△EAC 中,BC=AC∠BCD=∠ACEEC=DC∴△DBC≌△EAC(SAS);(2)∵△DBC≌△EAC,∴∠EAC=∠B=60°,又∠ACB=60°,∴∠EAC=∠ACB,∴AE∥BC;(3)∵△ABC、△EDC 为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°,∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DBC 和△EAC 中BC=AC∠BCD=∠ACE CD=CE,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°,AE=BD=AB+AD=8,又∵∠ACB=60°,∴∠EAC=∠ACB,∴AE∥BC.∴△ABC与△EAC面积比=BCAE =662=34.【变式2-3】(2022秋•赫山区期末)如图,△ABC和△CDE都为等边三角形,E在BC上,AE的延长线交BD于F.(1)求证:AE=BD;(2)求∠AFB的度数;(3)求证:CF平分∠AFD;(4)直接写出EF,DF,CF之间的数量关系.【分析】(1)要证明边相等可证明边所在的三角形全等,由△ABC和△CDE都为等边三角形,可得∠ACE=∠BCD=60°,AC=BC,CE=CD,继而证明三角形全等,即可解答题目;(2)由三角形全等可得∠CAE=∠CBD,结合∠AEC=∠BEF即可证明;(3)作CM⊥AF于点M,CN⊥DF于点N,连接CF,利用全等三角形的性质证明CM=CN,即可解答题目;(4)延长AF到点Q,使FQ=DF,连接DQ,则只需证明CF=EQ,所以考虑证明△CDF≌△EDQ,自己试着解答.【解答】(1)证明:△ABC和△CDE都为等边三角形,∴∠ACE=∠BCD=60°,AC=BC,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:∵△ACE≌△BCD,∴∠CAE=∠CBD,又∠AEC=∠BEF,∴∠AFB=∠ACB=60°.(3)证明:作CM⊥AF于点M,CN⊥DF于点N,连接CF,∵∠CAE=∠CBD,∠AMC=∠BNC=90°,AC=BC,∴△CAM≌△CBN(SAS),则CM=CN,∴CF平分∠AFD.(4)解:延长AF到点Q,使FQ=DF,连接DQ,∵∠AFB=∠ACB=60°,则∠DFQ=60°,∴△DFQ是等边三角形,则DQ=DF,∠FDQ=∠CDE=60°,∴∠CDF=∠EDQ,∵CD=DE,∠CDF=∠EDQ,DQ=DF,∴△CDF≌△EDQ(SAS),∴CF=EQ,则CF=EF+FQ=EF+DF.【题型3 平面直角坐标系中的等边三角形】【例3】(2022春•禅城区校级月考)如图,在平面直角坐标系中,点C的坐标为(2,0),以线段OC为边在第一象限内作等边△OBC,点D为x轴正半轴上一动点(OD>2),连结BD,以线段BD为边在第一象限内作等边△BDE,直线CE与y轴交于点A,则点A的坐标为( )A.(0,B.(0,C.(0,﹣2)D.(0,【分析】根据“手拉手”全等可得∠BCE=∠BOD=60°,进而可得∠OCA=60°,即可求解A点坐标.【解答】解:∵△OBC,△BDE为等边三角形,∴BO=BC,BD=BE,∠OBC=∠DBE=∠BCO=60°,∴∠OBD=∠CBE,在△OBD和△CBE中,BO=BC∠OBD=∠CBE,BD=BE∴△OBD≌△CBE(SAS),∴∠BCE=∠BOD=60°,∴∠OCA=60°,∵∠COA=90°,∴OA=即A点坐标为:(0,故选:B.【变式3-1】(2022春•龙口市期末)如图,在直角坐标系xOy 中,直线MN 分别与x 轴,y 轴交于点M ,N ,且OM =4,∠OMN =30°,等边△AOB 的顶点A ,B 分别在线段MN ,OM 上,点A 的坐标为( )A .(1B .(1C 1)D .(32,【分析】根据∠OMN =30°和△AOB 为等边三角形,证明△OAM 为直角三角形,即可得出答案.【解答】解:∵直线MN 分别与x 轴正半轴、y 轴正半轴交于点M 、N ,OM =4,∠OMN =30°,∴∠ONM =60°,∵△AOB 为等边三角形,∴∠AOB =60°,∠AMO =30°,∴∠OAM =90°,∴OA ⊥MN ,即△OAM 为直角三角形,∴OA =12OM =12×4=2,过点A 作AC ⊥OB 于点C ,∴OC =12OA =1,∴AC =∴点A 的坐标为(1故选:A .【变式3-2】(2022秋•新洲区期末)在平面直角坐标系中,已知点A 在y 轴的正半轴上,点B 在第二象限,AO=a,AB=b,BO与x轴正方向的夹角为150°,且a2﹣b2+a﹣b=0.(1)试判定△ABO的形状;(2)如图1,若BC⊥BO,BC=BO,点D为CO的中点,AC、BD交于E,求证:AE=BE+CE;(3)如图2,若点E为y轴的正半轴上一动点,以BE为边作等边△BEG,延长GA交x轴于点P,问:AP与AO之间有何数量关系?试证明你的结论.【分析】(1)△ABO为等边三角形,理由为:根据(a2﹣b2)+(a﹣b)=0,得到a=b,再由BO与x 轴正方向的夹角为150°得到∠AOB=60°,即可得证;(2)在AC上截取AM=CE,先证∠AEB=60°,方法是根据题意得到△ABO为等边三角形,△BOC为等腰直角三角形,确定出∠ABD度数,根据AB=BC,且∠ABC=120°,得到∠BAE度数,进而确定出∠AEB为60°,再由AM=CE,得到AE=CM,再由AB=CB,且夹角∠BAC=∠BCA,利用SAS得到△BCM与△BAE全等,利用全等三角形的对应边相等得到BM=BE,得到△BEM为等边三角形,得到BE =EM,由AE=EM+AM,等量代换即可得证;(3)AP=2AO,理由为:由题意得到BG=BE,AB=OB,利用等式的性质得到∠ABG=∠OBE,利用SAS得到△ABG与△OBE全等,利用全等三角形的对应角相等得到∠GAB=∠BOE=60°,利用外角的性质得到∠APO=30°,在Rt△AOP中,利用30度角所对的直角边等于斜边的一半得到AP=2AO.【解答】(1)解:结论:△ABO为等边三角形,理由:∵a2﹣b2+a﹣b=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1)=0∴a﹣b=0,得到a=b,即AO=AB∵OB与x轴正半轴夹角为150°∴∠AOB=150°﹣90°=60°∴△AOB为等边三角形;(2)证明:在AC上截取AM=EC,可得AM+EM=CE+EM,即AE=CM.∵△AOB为等边三角形,△BOC为等腰直角三角形∴∠OBC=90°,∠ABO=60°∵D为CO的中点∴BD平分∠OBC,即∠CBD=∠OBD=45°∴∠ABD=105°,∠ABC=150°∴∠BAC=∠BCA=15°∴∠AEB=60°在△ABE和△CBM中AB=CB∠BAE=∠BCM,AE=CM∴△ABE≌△CBM(SAS)∴BM=BE∴△BEM为等边三角形∴BE=EM∴AE=AM+EM=CE+BE;(3)解:结论:AP=2AO,理由:∵△AOB与△BGE都为等边三角形∴BE=BG,AB=OB,∠EBG=∠OBA=60°∴∠EBG+∠EBA=∠OBA+∠EBA即∠ABG=∠OBE在△ABG和△OBE中AB=OB∠ABG=∠OBE,BE=BG∴△ABG≌△OBE(SAS)∴∠BAG=∠BOE=60°∴∠GAO=∠GAB+∠BAO=120°∵∠GAO为△AOP的外角且∠AOP=90°∴∠APO=30°在Rt△AOP中,∠APO=30°∴AP=2AO.【变式3-3】(2022秋•汉阳区校级期中)如图,平面直角坐标系中,已知A(﹣2,0),B(2,0),C (6,0),D为y轴正半轴上一点,且∠ODB=30°,延长DB至E,使BE=BD.P为x轴正半轴上一动点(P在C点右边),M在EP上,且∠EMA=60°,AM交BE于N.(1)求证:BE=BC;(2)求证:∠ANB=∠EPC;(3)当P点运动时,求BP﹣BN的值.【分析】(1)根据点A、B的坐标求出AD=BD,根据直角三角形两锐角互余求出∠ABD=60°,然后判断出△ABD是等边三角形,根据等边三角形的性质可得BD=AB=4,再求出BC=4,从而得到BC=BD,然后等量代换即可得证;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAN+∠ANB=∠ABD=60°,∠BAN+∠EPC=∠EMA=60°,即可得证;(3)求出△BCE是等边三角形,根据等边三角形的性质可得BC=CE,然后求出AB=CE,再求出∠ABN =∠ECP=120°,然后利用“角角边”证明△ABN和△ECP全等,根据全等三角形对应边相等BN=CP,再根据BP﹣CP=BC等量代换即可得解.【解答】(1)证明:∵A(﹣2,0),B(2,0),∴AD=BD,AB=4,∵∠ODB=30°,∴∠ABD=90°﹣30°=60°,∴△ABD是等边三角形,∴BD=AB=4,∵B(2,0),C(6,0),∴BC=6﹣2=4,∴BC=BD,又∵BE=BD,∴BE=BC;(2)证明:由三角形的外角性质得,∠BAN+∠ANB=∠ABD=60°,∠BAN+∠EPC=∠EMA=60°,所以,∠ANB=∠EPC;(3)解:∵BE=BD=BC,∠CBE=∠ABD=60°,∴△BCE是等边三角形,∴BC=CE,∵AB=BC=4,∴AB=CE,∵∠ABD =∠BCE =60°,∴∠ABN =∠ECP =120°,在△ABN 和△ECP 中,∠ANB =∠EPC ∠ABN =∠ECP AB =CE,∴△ABN ≌△ECP (AAS ),∴BN =CP ,∵BP ﹣CP =BC ,∴BP ﹣BN =BC =4,故BP ﹣BN 的值为4,与点P 的位置无关.【题型4 与等边三角形有关的线段长度的计算】【例4】(2022•南陵县模拟)如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且BD =12CD .点E ,F 分别在边AB ,AC 上,且∠EDF =90°,M 为边EF 的中点,连接CM 交DF 于点N .若DF ∥AB ,则CM 的长为( )A B C D 【分析】根据等边三角形边长为2,在Rt △BDE 中求得DE 的长,再根据CM 垂直平分DF ,在Rt △CDN 中求得CN ,最后根据线段和可得CM 的长.【解答】解:∵等边三角形边长为2,BD =12CD ,∴BD =23,CD =43,∵等边三角形ABC 中,DF ∥AB ,∴∠FDC =∠B =60°,∵∠EDF =90°,∴∠BDE =30°,∴DE ⊥BE ,∴∠BED =90°,∵∠B =60°,∴∠BDE =30°,∴BE =12BD =13,∴DE 如图,连接DM ,则Rt △DEF 中,DM =12EF =FM ,∵∠FDC =∠FCD =60°,∴△CDF 是等边三角形,∴CD =CF =43,∴CM 垂直平分DF ,∴∠DCN =30°,DN =FN ,∴Rt △CDN 中,DN =23,CN =∵M 为EF 的中点,∴MN =12DE∴CM =CN +MN +故选:C .【变式4-1】(2022春•西乡县期末)如图,△ABC 是等边三角形,BD 是中线,过点D 作DE ⊥AB 于E 交BC 边延长线于F ,AE =1,求BF 的长.【分析】根据等边三角形的性质和中线的性质解答即可.【解答】解:∵△ABC是等边三角形,BD是中线,AC,∴∠A=∠ACB=60°,AC=BC,AD=CD=12∵DE⊥AB于E,∴∠ADE=90°﹣∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB﹣∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.【变式4-2】(2022•浙江模拟)如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长【分析】过P点作PF∥BC交AC于F点,根据等边三角形的性质和判定求出△APF是等边三角形,推出AP=AF=PF=CQ,根据等腰三角形性质求出AE=EF,根据AAS证△PFD和△QCD全等,求出FD AC,代入求出即可.=CD,推出DE=12【解答】解:过P点作PF∥BC交AC于F点,∵等边△ABC的边长为10,点P是边AB的中点,CQ:BC=1:2,∴AB=BC,∠B=∠ACB=∠A=60°,∴AP =CQ ,∵PF ∥AB ,∴∠APF =∠B =60°,∠AFP =∠ACB =60°,∴∠A =∠APF =∠AFP =60°,∴△APF 是等边三角形,∵PE ⊥AC ,∴EF =12AF ,∵△APF 是等边三角形,AP =CQ ,∴PF =CQ∵PF ∥AB ,∴∠Q =∠FPD ,在△PDF 和△QDC 中∵∠FPD =∠Q ∠FDP =∠QDC PF =CQ,∴△PDF ≌△QDC ,∴DF =CD ,∴DF =12CF ,∴DE =EF +DF =12AF +12CF =12AC ,∴ED =5.【变式4-3】(2022秋•崇川区校级月考)如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =30cm ,DE =2cm ,则BC = 32 cm .【分析】作出辅助线后根据等腰三角形的性质得出BE=30,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=30,DE=2,∴DM=28,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=14,∴BN=16,∴BC=2BN=32,故答案为32.【题型5 等边三角形的证明】【例5】(2022秋•建水县校级期中)如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE交于点E,连接AE.求证:△ADE是等边三角形.【分析】过D作DG∥AC交AB于G,得出∠3=∠2,再利用AAS得出△AGD≌△DCE,进而得出答案.【解答】解:过D作DG∥AC交AB于G,则∠1=∠3,△GDB为等边三角形,∠AGD=∠DCE=120°,AG=DC.又∵∠ADE=∠ACE=60°,∠ACE=∠ECF,∴∠1=∠2,∴∠3=∠2.在△AGD和△DCE中,∠3=∠2∠AGD=∠DCE,AG=DC∴△AGD≌△DCE(AAS),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形.【变式5-1】如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.【分析】根据△ACD≌△BCE,得出AD=BE,AM=BN;又△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三角形;【解答】证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,AC=BC∠ACD=∠BCE,CD=CE∴△ACD≌△BCE,∴AD=BE,AM=BN;∴AC=BC,∠CAD=∠CBE,AM=BN,∴△AMC≌△BNC(SAS),∴CM=CN,∠ACM=∠BCN;又∵∠NCM=∠BCN﹣∠BCM,∠ACB=∠ACM﹣∠BCM,∴∠NCM=∠ACB=60°,∴△CMN是等边三角形.【变式5-2】(2022春•龙口市期末)如图,E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F,若∠AOB=60°.(1)求证:△OCD是等边三角形;(2)若EF=5,求线段OE的长.【分析】(1)根据角平分线的性质得出DE=CE,然后根据HL证得Rt△ODE≌Rt△OCE,得出OD=OC,由∠AOB=60°,证得△OCD是等边三角形;(2)根据三线合一的性质得出∠AOE=∠BOE=30°,OE⊥DC,进而证得∠EDF=30°,然后根据30°的直角三角形的性质即可求得OE的长.【解答】解:(1)∵点E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,垂足分别是C,D,∴DE=CE,在Rt△ODE与Rt△OCE中,DE=CEOE=OE∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∵∠AOB=60°,∴△OCD是等边三角形;(2)∵△OCD是等边三角形,OF是∠COD的平分线,∴OE⊥DC,∵∠AOB=60°,∴∠AOE=∠BOE=30°,∵∠ODF=60°,ED⊥OA,∴∠EDF=30°,∴DE=2EF=10,∴OE=2DE=20.【变式5-3】(2022秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.【分析】(1)根据等边三角形性质得出AC=BC,CD=CE,∠ACB=∠DCE=60°,求出∠ACD=∠BCE,证△ACD≌△BCE即可;(2)根据全等求出∠ADC=∠BEC,求出∠ADE+∠BED的值,根据三角形的内角和定理求出即可;(3)求出AM=BN,根据SAS证△ACM≌△BCN,推出CM=CN,求出∠NCM=60°即可.【解答】解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中AC=BC∠ACD=∠BCE,CD=CE∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°﹣(∠ADE +∠BED )=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE ,∴AM =BN ,在△ACM 和△BCN 中AC =BC ∠CAM =∠CBN AM =BN,∴△ACM ≌△BCN ,∴CM =CN ,∠ACM =∠BCN ,又∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.【题型6 与等边三角形有关的规律问题】【例6】(2022秋•思明区校级期中)如图,已知∠MON =30°,点A 1,A 2,A 3…在射线ON 上,点B 1,B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,若OA 1=2,则△A 7B 7A 8的边长为 27 .【分析】据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32…,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,…∴△A n B n A n+1的边长为2n,∴△A7B7A8的边长为27.故答案为27.【变式6-1】(2022秋•简阳市 期中)一只电子青蛙在如图的平面直角坐标系做如下运动:从坐标原点开始起跳记为A 1,然后沿着边长为1的等边三角形跳跃即A 1→A 2→A 3→A 4→A 5……已知A 3的坐标为(1,0),则A 2018的坐标是 (1008.5,) .【分析】根据已知图形得出A 2,A 4,A 6的坐标,进而得出变化规律求出点A 2018的坐标.【解答】解:过点A 2作A 2B ,交y 轴于点B ,由题意可得出:A 2B =12OA 3=12,∴BO ∴A 2坐标为:(12,A 4坐标为:(32,A 6坐标为:(52,…∴点A 2018的坐标为(1008.5故答案是:(1008.5【变式6-2】(2022•定兴县二模)如图,△ABC 是一个边长为2的等边三角形,AD 0⊥BC ,垂足为点D 0.过点D 0作D 0D 1⊥AB ,垂足为点D 1;再过点D 1作D 1D 2⊥AD 0,垂足为点D 2;又过点D 2作D 2D 3⊥AB ,垂足为点D 3;…;这样一直作下去,得到一组线段:D 0D 1,D 1D 2,D 2D 3,…,则线段D 1D 2的长为 34 ,线段D n ﹣1D n 的长为 (n (n 为正整数).【分析】由三角形ABC 为等边三角形,AD 0⊥BC ,利用等边三角形的性质及三线合一得到BD 0=1,∠B =60°,再由D 0D 1⊥AB ,得到∠D 1D 0B =30°,求出D 1D 0的长,同理求出D 1D 2的长,依此类推得出D n ﹣1D n 的长.【解答】解:∵△ABC 是一个边长为2的等边三角形,AD 0⊥BC ,∴BD 0=1,∠B =60°,∵D 0D 1⊥AB ,∴∠D 1D 0B =30°,∴D 1D 0同理∠D 0D 1D 2=30°,D 1D 22=34,依此类推,线段D n ﹣1D n n .故答案为:34;(n【变式6-3】(2022•齐齐哈尔模拟)如图,点A 1是面积为3的等边△ABC 的两条中线的交点,以BA 1为一边,构造等边△BA 1C 1,称为第一次构造;点A 2是△BA 1C 1的两条中线的交点,再以BA 2为一边,构造等边△BA 2C 2,称为第二次构造;以此类推,当第n 次构造出的等边△B n A n ∁n 的边B ∁n 与等边△CBA 的边AB 第一次在同一直线上时,构造停止.则构造出的最后一个三角形的面积是 127 .【分析】设等边△ABC 的边长为a ,根据等边三角形的性质求出A 1C ,∠ABA 1=30°,同理判断出B 顺时针旋转30°,然后求出4次构造后构造停止,用a 表示出构造停止后的等边三角形的边长,再根据相似三角形面积的比等于相似比的平方列式计算即可得解.【解答】解:设等边△ABC 的边长为a ,则等边△ABC ,∵A 1是两条中线的交点,∴A 1C =23,∠ABA 1=30°,∵第n 次构造出的等边△B n A n ∁n 的边B ∁n 与等边△CBA 的边AB 第一次在同一直线上时,构造停止,∴(180°﹣60°)÷30°=120°÷30°=4,即4次构造后,构造停止,4a ,设最后一个三角形的面积为S ,则S 3=(34aa)2,解得S =127.故答案为:127.【题型7 利用等边三角形的性质进行证明】【例7】(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中BE=EF∠B=∠F=60°BC=DF∴△ECB≌△EDF(SAS),∴EC=ED.【变式7-1】如图,在等边三角形ABC中,BO,CO分别平分∠ABC,∠ACB,OE∥AB,OF∥AC,试说明BE=EF=FC.【分析】由题可证△OEF为等边三角形,从而得到∠EOF=60°,OE=OF=EF.又因为BO,CO分别平分∠ABC,∠ACB,所以∠ABO=∠OBE,∠ACO=∠OCF.所以OE∥AB,OF∥AC,根据两直线平行,内错角相等,得到∠ABO=∠BOE,∠ACO=∠COF,即∠OBE=∠BOE,∠OCF=∠COF.根据等角对等边得OE=BE,OF=CF,所以BE=EF=FC.【解答】证明:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵OE∥AB,OF∥AC,∴∠OEF=∠ABC=60°,∠OFE=∠ACF=60°,∴∠OEF=∠OFE,∴∠EOF=60°,∴△OEF为等边三角形,∴OE=OF=EF,∵BO,CO分别平分∠ABC,∠ACB,∴∠ABO=∠OBE,∠ACO=∠OCF,∵OE∥AB,OF∥AC,∴∠ABO=∠BOE,∠ACO=∠COF,∴∠OBE=∠BOE,∠OCF=∠COF,∴OE=BE,OF=CF,∴BE=EF=FC.【变式7-2】(2022秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D 在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.【分析】(1)由等边三角形的性质得出AE=BE,∠BCE=30°,再根据ED=EC,得出∠D=∠BCE=30°,再证出∠D=∠DEB,得出DB=BE,从而证出AE=DB;(2)作辅助线得出等边三角形AEF,得出AE=EF,再证明三角形全等,得出DB=EF,证出AE=DB.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点E是AB的中点,∴CE平分∠ACB,AE=BE,∴∠BCE=30°,∵ED=EC,∴∠D=∠BCE=30°.∵∠ABC=∠D+∠BED,∴∠BED=30°,∴∠D=∠BED,∴BD=BE.∴AE=DB.(2)解:AE=DB;理由:过点E作EF∥BC交AC于点F.如图2所示:∴∠AEF=∠ABC,∠AFE=∠ACB.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形.∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF.在△DEB和△ECF中,∠DEB=∠ECF∠DBE=∠EFC,DE=EC∴△DEB≌△ECF(AAS),∴DB=EF,∴AE=BD.【变式7-3】(2022春•建平县期末)如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.【分析】(1)要证两个三角形全等,已知的条件有AC=BC,CE=CD,我们发现∠BCD和∠ACE都是60°减去一个∠ACD,因此两三角形全等的条件就都凑齐了(SAS);(2)要证AE∥BC,关键是证∠EAC=∠ACB,由于∠ACB=∠ACB,那么关键是证∠EAC=∠ACB,根据(1)的全等三角形,我们不难得出这两个角相等,也就得出了证平行的条件.(3)同(1)(2)的思路完全相同,也是通过先证明三角形BCD和ACE全等,得出∠EAC=∠B=60°,又由∠ABC=∠ACB=60°,得出这两条线段之间的内错角相等,从而得出平行的结论.【解答】解:(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD∴∠BCD=∠ACE在△DBC和△EAC中,∵BC=AC∠BCD=∠ACE EC=DC,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠B=60°又∠ACB=60°∴∠EAC=∠ACB∴AE∥BC(3)结论:AE∥BC理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE 在△DBC和△EAC中,∵BC=AC∠BCD=∠ACE CD=EC,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°又∵∠ACB=60°∴∠EAC=∠ACB∴AE∥BC.【题型8 与等边三角形有关的动点问题】【例8】(2022秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?【分析】(1)由三角形ABC为等边三角形,根据等边三角形的三边相等得到AB=BC=9cm,由P的速度和时间t表示出P走过的路程CP的长,然后用边长BC减去CP即可表示出BP;由Q的速度及时间t,即可表示出Q走过的路程BQ;(2)若△PBQ为等边三角形,根据等边三角形的边长相等则有PB=BQ,由(1)表示出的代数式代入即可列出关于t的方程,求出方程的解即可得到满足题意的t的值;(3)同时出发,要相遇其实是一个追及问题,由于Q的速度大于P的速度,即Q要追及上P,题意可知两点相距AB+AC即两个边长长,第一次相遇即为Q比P多走两个三角形边长,设出第一次相遇所需的时间,根据Q运动的路程﹣P运动的路程=18列出关于t的方程,求出方程的解即可求出满足题意的t 的值,然后由求出t的值计算出P运动的路程,确定出路程的范围,进而判断出P的位置即为第一次相遇的位置.【解答】解:(1)∵△ABC是等边三角形,∴BC=AB=9cm,∵点P的速度为2cm/s,时间为ts,∴CP=2t,则PB=BC﹣CP=(9﹣2t)cm;∵点Q的速度为5cm/s,时间为ts,∴BQ=5t;(2)若△PBQ为等边三角形,则有BQ=BP,即9﹣2t=5t,,解得t=97s时,△PBQ为等边三角形;所以当t=97(3)设ts时,Q与P第一次相遇,根据题意得:5t﹣2t=18,解得t=6,则6s时,两点第一次相遇.当t=6s时,P走过得路程为2×6=12cm,而9<12<18,即此时P在AB边上,则两点在AB上第一次相遇.【变式8-1】(2022春•渭滨区期末)如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B 同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N 第一次到达B点时,M,N同时停止运动,设运动时间为t(s).(1)当t为何值时,M,N两点重合?两点重合在什么位置?(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N运动的时间;若不存在,请说明理由.【分析】(1)首先根据M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多12cm,列出方程求解即可;(2)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)由题意,t×1+12=2t,解得:t=12,∴当t=12时,M,N两点重合,此时两点在点C处重合;(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.理由:由(1)知12秒时M、N两点重合,恰好在C处,如图,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∠C=∠B∠AMC=∠ANB,AC=AB∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,∵CM=NB,∴y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.【变式8-2】(2022春•金牛区校级期中)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC 变化吗?若变化,请说明理由;若不变,则求出它的度数.【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,。
《等边三角形》专题2.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =3. (2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC17. (2017河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是()A .3B .4 C. 8 D .910.(2008·菏泽中考)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于一点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:①AD=BE ; ②PQ ∥AE ; ③AP=BQ ;④DE=DP ;⑤∠AOB=60°.恒成立的有________(把你认为正确的序号都填上).16、(2009·义乌中考)如图,在边长为4的正三角形ABC 中,AD ⊥BC 于点D ,以AD 为一边向右作正三角形ADE 。
(1)求△ABC 的面积S ;(2)判断AC 、DE 的位置关系,并给出证明。
《等边三角形》练习题1.(2012•深圳)如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A . 6B . 12C . 32D . 642.(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A . 180°B . 220°C . 240°D . 300°3.(2012•荆门)如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB A . 2 B . 2C .D . 3 A . 2 B . 4 C . D . 25.(2010•随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q 为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定6.(2009•攀枝花)如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A.60°B.45°C.40°D.30°7.(2007•绵阳)如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1=S2D.S1=2S2 8.(2007•娄底)如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,A.4cm2B.2cm2C.3cm2D.3cm2 9.(2006•天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③A.3个B.2个C.1个D.0个10.(2006•南宁)如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是A.d>h B.d<h C.d=h D.无法确定A.30海里B.40海里C.50海里D.60海里A.25°B.30°C.45°D.60°DF=DE,则∠E=_________度.14.(2008•日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有_________.(把你认为正确的序号都填上)15.(2005•扬州)如图,将边长为4的等边△ABC,沿x轴向左平移2个单位后,得到△A′B′C′,则点A′的坐标为_________.16.(2004•茂名)如图,正三角形A1B1C1的边长为1,△A1B1C1的三条中位线组成△A2B2C2,△A2B2C2的三条中线又组成△A3B3C3,…,如此类推,得到△A n B n C n.则:(1)△A3B3C3的边长a3=_________;(2)△A n B n C n的边长a n=_________(其中n为正整数).17.(2006•嘉峪关)△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且AE=CD=BF,则△DEF为_________三角形.18.(1999•广州)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出_________个.19.如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=_________.20.(2009•浙江)如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.(1)求△ABC的面积S;(2)判断AC、DE的位置关系,并给出证明.21.(2009•辽阳)如图,△ABC为正三角形,D为边BA延长线上一点,连接CD,以CD为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.22.(2008•绍兴)附加题,学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①_________;②_________;③_________.并对②,③的判断,选择一个给出证明.23.(2007•河北)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).24.(2004•苏州)已知:如图,正△ABC的边长为a,D为AC边上的一个动点,延长AB 至E,使BE=CD,连接DE,交BC于点P.(1)求证:DP=PE;(2)若D为AC的中点,求BP的长.25.(2002•黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.26.(2000•河南)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.27.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.28.(2005•临沂)如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.29.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.30.如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?《全等三角形》练习参考答案与试题解析1.C2.C3.C4.15度.14.①②③⑤.15..16.a3=;△A n B n C n的边长a n=(或21﹣n).等边三角形..2个.=3.20.解:(1)在正△ABC中,AD=4×,(2分)∴S=BC×AD=×4×2=4.(3分)(2)AC、DE的位置关系:AC⊥DE.(1分)在△CDF中,∵∠CDE=90°﹣∠ADE=30°,(2分)∴∠CFD=180°﹣∠C﹣∠CDE=180°﹣60°﹣30°=90°.∴AC⊥DE.(3分)(注:其它方法酌情给分).21.解:AE∥BC.理由如下:∵△ABC与△CDE为正三角形,∴BC=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,∴△BCD≌△ACE,∴∠B=∠EAC,∵∠B=∠ACB,∴∠EAC=∠ACB,∴AE∥BC.22.请你作出判断,在下列横线上填写“是”或“否”:①是;②是;③否.并(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN,∴∠AMB=∠BNC.又∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.解:(1)BF=CG;证明:在△ABF和△ACG中∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC∴△ABF≌△ACG(AAS)∴BF=CG;(2)DE+DF=CG;证明:过点D作DH⊥CG于点H(如图2)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形∴DE=HG,DH∥BG∴∠GBC=∠HDC∵AB=AC∴∠FCD=∠GBC=∠HDC又∵∠F=∠DHC=90°,CD=DC∴△FDC≌△HCD(AAS)∴GH+CH=DE+DF=CG,即DE+DF=CG;(3)仍然成立.证明:过点D作DH⊥CG于点H(如图3)∵DE⊥BA于点E,∠G=90°,DH⊥CG∴四边形EDHG为矩形,∴DE=HG,DH∥BG,∴∠GBC=∠HDC,∵AB=AC,∴∠FCD=∠GBC=∠HDC,又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS)∴DF=CH,∴GH+CH=DE+DF=CG,即DE+DF=CG.24.(1)证明:过点D作DF∥AB,交BC于F.∵△ABC为正三角形,∴∠CDF=∠A=60°.∴△CDF为正三角形.∴DF=CD.又BE=CD,∴BE=DF.又DF∥AB,∴∠PEB=∠PDF.∵在△DFP和△EBP中,∵,∴△DFP≌△EBP(AAS).∴DP=PE.(2)解:由(1)得△DFP≌△EBP,可得FP=BP.∵D为AC中点,DF∥AB,∴BF=BC=a.∴BP=BF=a.25.解:(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2+h3=AN+MN=AM=h,即h1+h2+h3=h.(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2﹣理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.∵四边形MNPF是矩形,∴PF=MN,即h3=MN.∴h1+h2﹣h3=AN﹣MN=AM=h,即h1+h2﹣h3=h.26.解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.27.证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN,∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.28.证明:∵△OAB和△OCD为等边三角形,∴CD=OD,OB=AB,∠ADC=∠ABO=60°.∵四边形ODEB是平行四边形,∴OD=BE,OB=DE,∠CBE=∠EDO.∴CD=BE,AB=DE,∠ABE=∠CDE.∴△ABE≌△EDC.∴AE=CE,∠AEB=∠ECD.∵BE∥AD,∴∠AEB=∠EAD.∴∠EAD=∠ECD.在△AFE和△CFD中又∵∠AFE=∠CFD,∴∠AEC=∠ADC=60°.∴△ACE为等边三角形.29.解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.30.解:过P点作PF∥BC交AC于F点,∵等边△ABC的边长为10,点P是边AB的中点,CQ:BC=1:2,∴AB=BC,∠B=∠ACB=∠A=60°,∴AP=CQ,∵PF∥AB,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴∠A=∠APF=∠AFP=60°,∴△APF是等边三角形,∵PE⊥AC,∴EF=AF,∵△APF是等边三角形,AP=CQ,∴PF=CQ∵PF∥AB,∴∠Q=∠FPD,在△PDF和△QDC中∵,∴△PDF≌△QDC,∴DF=CD,∴DF=CF,∴DE=EF+DF=AF+CF=AC,∴ED=5.双基训练1. 如图14-45,在等边ΔABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是。