等边三角形和等腰三角形专题练习
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
专题18 等腰、等边三角形问题一、等腰三角形1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角.2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.二、等边三角形1. 定义:三边都相等的三角形叫等边三角形.2. 性质性质1:等边三角形的三个内角都相等,并且每一个角都等于60°;性质2:等边三角形是轴对称图形,并且有三条对称轴,分别为三边的垂直平分线。
3.判定(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形;(3)有两个角是60°的三角形是等边三角形。
三、解题方法要领1.等腰(边)三角形是一个特殊的三角形,具有较多的特殊性质,有时几何图形中不存在等腰(边)三角形,可根据已知条件和图形特征,适当添加辅助线,使之构成等腰(边)三角形,然后利用其定义和有关性质,快捷地证出结论。
2.常用的辅助线有:(1)作顶角的平分线、底边上的高线、中线。
(2)在三角形的中线问题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。
3.分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的情况下求其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是根据边是腰还是底来分类。
等边三角形和等腰梯形周长计算的练习题
本文档旨在提供关于等边三角形和等腰梯形周长计算的练题。
以下是一些问题和答案供练使用:
问题1:
求边长为10的等边三角形的周长是多少?
答案1:
一个等边三角形的周长可通过将三个边长相加来计算。
因此,边长为10的等边三角形的周长为10 + 10 + 10 = 30。
问题2:
若等腰梯形的上底为8,下底为12,腰长为10,请计算该等腰梯形的周长。
答案2:
一个等腰梯形的周长可通过将所有边长相加来计算。
根据给定的参数,上底为8,下底为12,腰长为10。
因此,等腰梯形的周长为8 + 12 + 10 + 10 = 40。
问题3:
假设等边三角形的边长为x,求其周长与边长x的关系。
答案3:
一个等边三角形的周长等于其三个边长之和。
因此,等边三角形的周长为x + x + x = 3x。
这意味着等边三角形的周长与边长x成正比。
问题4:
若等腰梯形的上底为x,下底为y,腰长为z,请计算该等腰梯形的周长与x、y、z的关系。
答案4:
一个等腰梯形的周长等于所有边长之和。
因此,等腰梯形的周长为x + y + z + z。
这可以简化为周长等于x + y + 2z。
因此,等腰梯形的周长与x、y、z成正比。
以上是关于等边三角形和等腰梯形周长计算的练习题及答案。
希望通过这些练习,您能更好地理解和应用周长计算公式。
2019中考金牌教育复习资料:考点20 等腰三角形等边三角形和直角三角形一.选择题(共5小题)1.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°2.(2018•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.63.(2018•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC4.(2018•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C. D.85.(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2二.填空题(共12小题)6.(2018•成都)等腰三角形的一个底角为50°,则它的顶角的度数为.7.(2018•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.8.(2018•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD 为直角三角形,则∠ADC的度数为.9.(2018•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.10.(2018•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于°.11.(2018•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.12.(2018•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.13.(2018•徐州)边长为a的正三角形的面积等于.15.(2018•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=.16.(2018•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.17.(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=.三.解答题(共2小题)18.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.例2等腰三角形ABC中,∠A=40°,求∠B的度数,19.(2018•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.。
考点22 等腰三角形与等边三角形真题回顾1.(2020·呼伦贝尔)如图,的垂直平分线交于点D,若,则的度数是()A. 25°B. 20°C. 30°D. 15°【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°-65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC-∠ABD=15°,故答案为:D.【分析】根据等要三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.2.(2019·南充)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 17【答案】B【考点】线段垂直平分线的性质【解析】【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故答案为:B.【分析】根据线段垂直平分线的性质可得AE=BE,则△ACE的周长=EC+AE+AC=BC+AC,因而得解。
3.(2020·南充)如图,在等腰三角形ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A. B. C. a-b D. b-a【答案】C【考点】等腰三角形的判定与性质【解析】【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC-AD=a-b,故答案为:C.【分析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.4.(2019·苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A. 30°B. 40°C. 45°D. 60°【答案】B【考点】等腰三角形的性质【解析】【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C= = =40°.故选:B.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.5.(2018·雅安)如图所示,底边BC为2 ,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A. 2+2B. 2+C. 4D. 3【答案】A【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2 ,∴△ACE的周长=AC+AE+CE=AC+BC=2+2 ,故选:A.【分析】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.6. (2019·连云港)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A. 6B. 4C. 6D. 4【答案】C【考点】线段垂直平分线的性质【解析】【解答】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.【分析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.7.(2017·海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A. 3B. 4C. 5D. 6【答案】B【考点】等腰三角形的判定【解析】【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.8.(2018·镇江)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D. 【答案】A【考点】等边三角形的判定与性质【解析】【解答】解:连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD= ×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是 a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN= a,∵GF= AF= × a= a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ= GF= a,同理IN= a,∴GI= a+ a+ a= a,即第二个等边三角形的边长是 a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是× a;同理第第三个等边三角形的边长是× a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是×× a;同理第四个等边三角形的边长是×× a,第四个正六边形的边长是××× a;第五个等边三角形的边长是××× a,第五个正六边形的边长是×××× a;第六个等边三角形的边长是×××× a,第六个正六边形的边长是××××× a,即第六个正六边形的边长是×a,故选:A.【分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN= a,求出GI 的长,求出第一个正六边形的边长是 a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.9.(2018·苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A. (,)B. (,)C. (,)D. (,4 )【答案】C【考点】等腰三角形的性质【解析】【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC= ,由勾股定理得,OA= = =3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4× = ,BD=4×= ,∴OD=OB+BD=4+ = ,∴点O′的坐标为(,).故选:C.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.10.(2018·六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A. B. C. D.【答案】C【考点】等腰三角形的性质【解析】【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1= =35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3= ×17.5°= ,∴∠A n﹣1A n B n﹣1= .故选:C.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.11.(2020·十堰)如图,在中,是的垂直平分线.若,的周长为13,则的周长为________.【答案】19【考点】线段垂直平分线的性质【解析】【解答】解:是的垂直平分线. ,的周长故答案为:19【分析】由线段的垂直平分线的性质可得,从而可得答案.12.(2013·无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=________°.【答案】45【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC= (180°﹣∠BAC)= (180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF= BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.13.(2018·株洲)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.【答案】6【考点】等腰三角形的判定与性质【解析】【解答】解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP= AM=6,故答案为:6.【分析】根据平行四边形的性质及BD=CD得出BD=BA,根据等腰三角形两腰上的高相等得出DN=AM=3,根据三角形的外角的定理,及∠ABD=∠MAP+∠PAB得出∠P=∠PAM,从而判断出△APM 是等腰直角三角形,根据等腰直角三角形的边之间的关系得出AP的长。
2021年中考数学专题19 等腰、等边三角形、直角三角形(基础巩固练习,共50个小题)一、选择题(共20小题):1.(2020•毕节市)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或102.(2020•福建)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10 B.5 C.4 D.33.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°4.(2020•兰州)如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°5.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°6.(2020•临沂)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°7.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°8.(2020•巴中)如图,在△ABC中,∠BAC=120°,AD平分∠BAC,DE∥AB,AD=3,CE=5,则AC的长为()A .9B .8C .6D .79.(2020•铜仁市)已知等边三角形一边上的高为2√3,则它的边长为( )A .2B .3C .4D .4√310.(2019•天水)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(1,√3)C .(√3,1)D .(√3,√3)11.(2019•铜仁市)如图,四边形ABCD 为菱形,AB =2,∠DAB =60°,点E 、F 分别在边DC 、BC 上,且CE =13CD ,CF =13CB ,则S △CEF =( )A .√32B .√33C .√34D .√39 12.(2018•扬州)在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( )A .BC =ECB .EC =BE C .BC =BED .AE =EC13.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4 C.5 D.614.(2019•陕西)如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°15.(2020•赤峰)如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C',则四边形ABC'A'的面积是()A.15 B.18 C.20 D.2216.(2020•绵阳)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.417.(2020•包头)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,BE⊥CD,交CD的延长线于点E.若AC=2,BC=2√2,则BE的长为()A.2√63B.√62C.√3D.√218.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.1013√13B.913√13C.813√13D.713√1319.(2020•德阳)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2√2−2 C.2√2+2 D.2√220.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.1003cm2C.50cm2D.75cm2二、填空题(共16小题):21.(2020•齐齐哈尔)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是.22.(2020•眉山)如图,等腰△ABC中,AB=AC=10,边AC的垂直平分线交BC于点D,交AC于点E.若△ABD的周长为26,则DE的长为.23.(2020•滨州)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.24.(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.25.(2020•黄冈)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.26.(2020•常州)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.27.(2019•哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.28.(2020•岳阳)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=°.29.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.30.(2020•宿迁)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为.31.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.32.(2020•苏州)如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=.33.(2020•安顺)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.34.(2020•丹东)如图,在四边形ABCD中,AB⊥BC,AD⊥AC,AD=AC,∠BAD=105°,点E和点F分别是AC和CD的中点,连接BE,EF,BF,若CD=8,则△BEF的面积是.35.(2020•十堰)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为.36.(2020•青海)如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=cm.三、解答题(共14小题):37.(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40°,求∠BAC的度数.38.(2019•攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.39.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.40.(2019•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.41.(2020秋•河北区期末)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)求证:DC=CF.42.(2020秋•道外区期中)如图1,已知等边△ABC中,D、E分别是AB、AC上的点,连接DE.(1)若DE∥BC,求证:△ADE是等边三角形;(2)如图2,若D、E分别为AB、AC中点,连接CD、BE,CD与BE相交于点F,请直接写出图中所有等腰三角形.(△ADE与△ABC除外)43.(2020•海淀区一模)如图,在▱ABCD中,∠ABC=60°,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接DF.(1)求证:△ABF是等边三角形;(2)若∠CDF=45°,CF=2,求AB的长度.44.(2018•无锡)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.45.(2020秋•齐河县期末)如图,在△ABC中,∠ACB=90°,∠B=30°,CE垂直于AB于点E,D是AB的中点.(1)求证:AE=ED;(2)若AC=2,求DE的长.46.(2020秋•农安县期末)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.47.(2020秋•松江区期末)如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.48.(2020秋•南海区期末)在△ABC中,(1)如图1,AC=15,AD=9,CD=12,BC=20,求△ABC的面积;(2)如图2,AC=13,BC=20,AB=11,求△ABC的面积.49.(2020春•米东区期末)如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.50.(2020秋•锦江区校级期末)如图1,已知Rt△ABC中,∠BAC=90°,点D是AB上一点,且AC=8,∠DCA=45°,AE⊥BC于点E,交CD于点F.(1)如图1,若AB=2AC,求AE的长;(2)如图2,若∠B=30°,求△CEF的面积;(3)如图3,点P是BA延长线上一点,且AP=BD,连接PF,求证:PF+AF=BC。
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
知识回顾微专题专题20等腰三角形与等边三角形考点一:三角形的中位线1. 中位线的定义:三角形任意两边中点的连线段叫做这个三角形的中位线。
2. 中位线的性质:三角形的中位线平行且等于第三边的一半。
1.(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A ,B 两点的距离,同学们在AB 外选择一点C ,测得AC ,BC 两边中点的距离DE 为10m (如图),则A ,B 两点的距离是 m .第1题 第2题2.(2022•福建)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点.若BC =12,则DE 的长为 .3.(2022•西藏)如图,如果要测量池塘两端A ,B 的距离,可以在池塘外取一点C ,连接AC ,BC ,点D ,E 分别是AC ,BC 的中点,测得DE 的长为25米,则AB 的长为 米.第3题 第4题4.(2022•丽水)如图,在△ABC 中,D ,E ,F 分别是BC ,AC ,AB 的中点.若AB =6,BC =8,则四边形BDEF 的周长是( )A .28B .14C .10D .75.(2022•眉山)在△ABC 中,AB =4,BC =6,AC =8,点D ,E ,F 分别为边AB ,AC ,知识回顾微专题BC 的中点,则△DEF 的周长为( )A .9B .12C .14D .166.(2022•广东)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )第6题 第7题 第8题A .41B .21C .1D .27.(2022•沈阳)如图,在Rt △ABC 中,∠A =30°,点D 、E 分别是直角边AC 、BC 的中点,连接DE ,则∠CED 的度数是( )A .70°B .60°C .30°D .20°8.(2022•常州)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点.若DE =2,则BC 的长是( )A .3B .4C .5D .6考点二:等腰三角形3. 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
等边三角形练习题(共10篇)等边三角形练习题(一): 等边三角形、等腰三角形练习题急求关于等边三角形、等腰三角形的练习题,稍微难一点,八年级上学期的, 稍微再提高点难度就好了!1.等腰三角形ABC,D为内部一点,AB=BC,角ABC=80,角DAC=30,角DCA=40,求角ADB延长CD交AB于E,延长AD交BC于F,过A作AG垂直BF于G因为 AB=BC,角ABC=80度所以角BCA=角BAC=50度因为角DCA=40度,角DAC=30度所以角CEA=90度,角EDA=角DCA+角DAC=70度因为角BCA=角BAC=50度,角DCA=40度,角DAC=30度所以角BCE=角BCA-角DCA=10度,角BAF=20度因为角ABC=80度所以角BFA=180-80-20=80度所以角ABC=角BFA所以 AB=AF因为 AG垂直BF所以 BG=GF=1/2BF,角BAG=角FAG=1/2角BAF=10度因为角CEA=90度,BC=BA,角BCE=角BAG=10度所以三角形BCE全等于三角形BAG所以 BE=BG=1/2BF以下是假设和验证的过程:假设 BD=BF要使假设成立,则三角形BDE是直角三角形,即Sin角BDE=BE/BD因为 BD=BF,角BFA=80度所以角CBD=20度因为角BCE=10度所以角BDE=角CBD+角BCE=30度因为 BE=1/2BF,BD=BF所以 Sin角BDE=1/2,BE/BD=1/2所以假设成立所以角BDE=30度成立因为角EDA=70度所以角ADB=角EDA+角BDE=70+30=100度2.已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线于F,那么△ADF是等腰三角形么为什么△ADF是等腰三角形,理由如下:证明:∵AB=AC∴∠B=∠C(等边对等角)又∵DE⊥BC∴∠B+∠BDE=90° ∠F+∠C=90° (直角三角形的两个锐角互余)∴∠BDE=∠C(等角的余角相等)又∵∠BDE=∠ADF(对顶角相等)∴∠BDE=∠ADF∴AD=AF(等角对等边)∴△ADF是等腰三角形(有两边相等的三角形叫做等腰三角形)等边三角形练习题(二): 等边三角形试题如图,在等边三角形ABC中,M、N分别是边AB、AC的中点,D为MN上任意一点,BD、CD的延长线分别交AC、AB于点F、E.若1/CE+1/BF=6,则三角形ABC的边长为特殊值法:设边长为a令点D与点E重合,则CE=AC=a,BF=BE=二分之根号3倍的a所以由条件1/CE+1/BF=6得a=(2倍根号3 +3)/18算错的话请见谅...等边三角形练习题(三): 等边三角形试题已知:如图,△ABC中,AB=AC,D是三角形外一点,且∠ABD=60°,∠ACD=60°.试说明BD+DC=AB选自《朗曼全息题解》106页第3题D点在线段BC下方【等边三角形练习题】要做辅助线延长DC于N(任意一点)使CN=AB我帮你的就这么多等边三角形练习题(四): 人教版八年级数学上册习题11.1第6. 6.一个等腰三角形的一边为6cm,周长人教版八年级数学上册习题11.1第6.6.一个等腰三角形的一边为6cm,周长为20cm,求其他两边的长.7.(1)已知等腰三角形的一边长等于5,一边长等于6,求它的周长;(2)已知等腰三角形的一边长等于4,一边长等于9,求它的周长.【等边三角形练习题】当底边为6厘米时,腰长为(20-6)÷2=7厘米.即其他两边长都为7厘米.当腰长为6厘米时,另外一边为腰长6厘米,底边围20-6-6=8厘米.祝您在新的一年一帆风顺,二龙腾飞,三羊开泰,四季平安,五福临门,六六大顺,七星高照,八方来财,九九同心,十全十美.等边三角形练习题(五): 等边三角形练习1.已知△ABC中,AB=AC,点E是AB上一点,点F是AC延长线上一点,且BE=CF,EF交BC于O,求证:EO=OF.2.在等腰三角形ABC中,AB=AC,CD为腰上的高,若2BD÷BA为整数,试判定△ABC的形状.会哪道就写哪道.急用,1.过点E做辅助线EG‖AC交BC与点G因为EG‖AC所以∠EGB=∠ACB因为AB=AC所以∠B=∠ACB所以∠B=∠EGB所以EG=EB所以EG=CF在三角形EGO和三角形FCO中EG=CF,角EOG=角FOC(对顶角),角EGO=角FCO(EG和AC平行)所以三角形EGO≌三角形FCO所以OE=OF2.三角形为等腰直角三角形.角A为直角.腰上的高CD其实就是CA(点D与点A重合)2BD/AB=2AB/AB=2 为整数所以这个等腰三角形为等腰直角三角形(45度,45度,90度)等边三角形练习题(六): 等腰三角形习题等腰三角形ABC中,点D在AB上,点E在AC上,且BD=AE,CD和BE相交于点0,DF⊥BE,垂足为F,求∠ CDF 的度数(图可以根据题目画出来)用等边三角形假设我也会,30度.你假设它是等边三角行,假设D.E都是中点.就算出来了.这样的题就得这样,算的快还准等边三角形练习题(七): 等腰三角形练习题等腰三角形中AB=AC,O为BC上非中点的一点,过O的直线l平分等腰三角形ABC的面积,问l与三角形的交点位于哪里用相似三角形做过O做直线与AB平行,交AC于M设B0:OC=1:X则OC:BC=X/(1+x)则S三角形AMO:S三角形ABC=X^2/(1+X)^2四边形OMAB=(1+X)^2-X^2=X^2解出x即可等边三角形练习题(八): 全等三角形的练习题帮出几道练习题 8道填空题 5道证明题全都是有关全等的!难度中等可以的话有追加看题如何回答者: 5154225 - 魔法学徒一级 7-29 15:371 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等 \x1d4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕\x1e84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)等边三角形练习题(九): 圆的周长练习题一、填一填.(1)等边三角形的边长为3.5分泌,它的周长是()分米.(2)一个等腰梯形上底长4.5厘米,下底长6厘米,腰长3厘米,这个等腰梯形的周长是()厘米.(3)圆的()除以()的商是一个固定的数,通常叫做(),它大约等于().二、对号入座.(1)想要求圆的周长,就必须知道().A.圆周率B.直径和半径C.直径或半径(2)π是一个()小数A.有限B.无限循环C.无限不循环三、应用题.1.校园里有一个圆形花圃,它的直径是4.5m,这个花圃的周长是多少米2.小强每天绕直径为20m的花坛跑15圈,则小强每天要跑多少米一、填一填.(1)等边三角形的边长为3.5分泌,它的周长是( 10.5 )分米.(2)一个等腰梯形上底长4.5厘米,下底长6厘米,腰长3厘米,这个等腰梯形的周长是( 16.5 )厘米.(3)圆的(周长)除以(直径)...等边三角形练习题(十): 全等三角形练习题八年级数学三角形全等测试题一、填空(3分×10=30分)1、如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm.∠E=∠B,则AC=________.2、如图,某人把一块三角形的玻璃打碎成了三块,现在你要到玻璃店去配一块完全一样的玻璃,则应带哪块玻璃去__________(填上玻璃序号).3、已知△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°,如图所示,则△BAC′的度数为______.4、如图,点D、E、F、B在同一直线上,AB‖CD、AE‖CF,且AE=CF,若BD=10,BF=2,则EF=____________.5、△ABC中,AC=4,中线AD=6,则AB边的取值范围是______________.6、已知如图,CD⊥AB,BE⊥AC,垂足分别为D、E、BE、CD相交于O点,∠1=∠2,图中全等的三角形共有________对.7、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为_________.8、如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是________(填序号).9、如图,已知铁路上A、B两站(视为线上两点)相距45km,C、D为铁路同旁的两个村庄(视为两点),DA⊥AB于A,CB⊥AB于B,DA=25km,CB=20km,现在要在铁路AB上建一个收购站E,使C、D两村庄到E站的距离相等,则E站应建在距A 站_______km处.10、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BD于D,DE⊥AB于E,且AB=10,则△DEB周长为_______.二、选择题(3分×10=30分)11、如图△ABC≌△BAD,点A和点B,点C和点D是对应点,若AB=6cm,BD=5cm,AD=4cm,则BC长为()A、4cmB、5cmC、6cmD、无法确定12、如图△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A、120°B、70°C、60°D、50°13、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A、若添加条件AC=A′C′,则△ABC≌△A′B′C′B、若添加条件BC=B′C′,则△ABC≌△A′B′C′C、若添加条件∠B=∠B′,则△ABC≌△A′B′C′D、若添加条件∠C=∠C′,则△ABC≌△A′B′C′14、工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A、SSSB、SASC、ASAD、HL15、下列命题错误的是()A、全等三角形的对应线段相等B、全等三角形的面积相等C、一个锐角和相邻的直角边对应相等的两个直角三角形全等D、两角对应相等的两个三角形全等16、不能确定两三角形全等的条件是()A、三条边对应相等B、两条边及其夹角对应相等C、两角和一条边对应相等D、两条边和一条边所对应的角对应相等17、在△ABC和△A′B′C′中,①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′()A、①②③B、①②⑤C、①⑤⑥D、①②④18、如图△ABC中,∠C=90°,AB=2BC,D为AB中点过点D作DE⊥AB交AC于点E,下列结论:①CE=DE;②AE=BC;③∠B=2∠A;④∠A=30°中正确个数为()A、1个B、2个C、3个D、4个19、如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α ,则下列结论正确的是()A、2 α+∠A=180°B、α +∠A=90°C、2α +∠A=90°D、α+∠A=180°20、如图,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,RS⊥AC于S,则三个结论:①AS=AR;②QP‖AR;③△BRP≌△QSP()A、全部正确B、仅①和②正确C、仅①正确D、仅①和③正确三、解答题21、已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=58°,∠E=62°,MN=10cm,求∠P的度数及DE的长.(5分)22、如图,D是AB上一点,DF交AC于点E,AE=CE,FC‖AB,求证:DE=EF.(5分)23、如图,△ABC为等边三角形,点M、N,分别在BC、AC上,且BM=CN,AM与BN 交于Q点,求∠AQN的度数.(6分24、如图,点E在△ABC的外部,点D在BC边上,DE交AC于点F,若∠1=∠2 =∠3,AC=AE,求证:AB=AD.(6分)25、如图,在正方形ABCD中,E是AD中点,F是BA延长线上一点,AF= AB,则线段BE与DF大小,位置有什么关系并证明你的结论.(7分)26、如图,AB‖CD,BE平分∠ABC,点E为AD中点,且BC=AB+CD,求证:CE平分∠BCD.(7分)27、如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图,①过A的直线与斜边BC不相交时,求证:EF=BE+CF(4分)(2)如图,②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求:FE长.(4分)28、在直角坐标系xOy中,O为坐标原点直线AB平行直线:y = x,且与x轴交于点A(-3,0),与y轴交于B点,点M、N在x轴上,(点M在点N的左边),点N在原点的右边作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B 不重合)直线MP与y轴交于点G,MG=BN.(1)求直线AB的解析式及B点坐标;(4分)(2)求点M的坐标;(4分)(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;(4分)(4)若以A为锐角顶点,直角顶点D在x轴上的直角三角形ADF与以A、O、B为顶点的直角三角形全等,设F(a、b),求a、b值(只需写出结果,不必写出解答过程).(4分)。
等腰三角形和等边三角形练习题一、选择题1、等腰三角形的一个角是 80°,则它顶角的度数是()A 80°B 80°或 20°C 80°或 50°D 20°解析:分两种情况讨论。
若 80°角是顶角,则顶角就是 80°;若 80°角是底角,则顶角为 180° 80°×2 = 20°。
所以顶角的度数为 80°或 20°,答案选 B。
2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18解析:因为等腰三角形两腰长度相等,当腰长为3 时,3 +3 =6,不能构成三角形;当腰长为 6 时,周长为 6 + 6 + 3 = 15。
所以答案选 B。
3、下列说法正确的是()A 等边三角形是等腰三角形B 等腰三角形是等边三角形C 等腰三角形的两角相等D 等边三角形的三个角不相等解析:等边三角形是特殊的等腰三角形,A 选项正确;等腰三角形不一定是等边三角形,B 选项错误;等腰三角形两底角相等,C 选项说法不全面;等边三角形的三个角都相等,D 选项错误。
所以答案选A。
4、若一个等腰三角形的一个外角为 100°,则这个等腰三角形的底角为()A 50°B 80°C 50°或 80°D 40°或 80°解析:若外角 100°是顶角的外角,则顶角为 80°,底角为(180°80°)÷2 = 50°;若外角 100°是底角的外角,则底角为 80°。
所以答案选 C。
5、等腰三角形一腰上的高与另一腰的夹角为 45°,则这个等腰三角形的顶角为()A 45°B 135°C 45°或 675°D 45°或 135°解析:分两种情况。
专题05 高分必刷题-等腰三角形、等边三角形压轴题真题(原卷版)题型一:等腰三角形、等边三角形中的动点问题1.(湘一芙蓉)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A 向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等?请说明理由;(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为16cm,设运动时间为t,问:是否存在某一时刻t,使得△CPQ是等腰三角形?如存在,请求出t的值,若不存在,请说明理由.2.(中雅)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.3.(青竹湖)已知,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.①如图2,设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?②如图3,连接PC,请你猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.4.(广益)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接F A并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.5.(长郡、雅礼)如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q 分别为AO、AB边上的动点,点P、点Q同时从点A出发,且当其中一点停止运动时,另一点也立即停止运动;若P以2个单位长度每秒的速度从点A向终点O运动,点Q以3个单位长度每秒的速度从点A向终点B运动,设运动时间为t,已知点A坐标为(a,b),且满足(a﹣6)2+|a﹣b|=0.(1)求A点坐标;(2)如图1,连接BP、OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形,若能,求运动时间t并直接写出四边形APDQ的面积:若不能,请说明理由.6.(师梅)如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接QD并延长,交y轴于点P,当点C运动到什么位置时,满足PD=DC?请求出点C 的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.7.(郡维)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.(1)如图(1),已知C点的横坐标为﹣1,直接写出点A的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB =∠CDE;(3)如图(3),若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD 交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.8.(长郡)如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C=45°,在(2)的条件下,求△AFP周长的最小值.9.(广益)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.题型二:等腰三角形、等边三角形综合类压轴题10.(雅境)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为②猜想线段AD,BE之间的数量关系为:,并证明你的猜想.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请求出∠AEB的度数及线段CM,AE,BE之间的数量关系.11.(郡维)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.12.(北雅)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,求证:BD=CD;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.13.(中雅)已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.14.(雅实)如图1,△ABC为等腰三角形,∠ABC=90°,点P在线段BC上(不与B、C 重合),以点A为直角顶点作等腰直角△P AQ,且点Q在AP的左下方,过点Q作QE⊥AB于点E.(1)求证:△P AB≌△AQE;(2)连接CQ交AB于M,若PC=2PB,求的值.(3)如图2,过点Q作QF⊥AQ于AB的延长线于点F,过P点作DP⊥AP交AC于点D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由.15.(师梅)如图1,在平面直角坐标系中,点A在y轴上,点B在x轴上,AB=AC,16.∠BAC=90°,CM⊥y轴,交y轴于点M.(1)求证∠ABO=∠CAM;(2)如图2,D,E为y轴上的两个点,BD=BE,BD⊥BE,求∠CEM的度数;(3)如图3,△P AQ是等腰直角三角形,∠P AQ为顶角,点Q在x轴负半轴上,连接CB,交y轴于点H,AC与x轴交于点G,连接PC,交AQ于点K,交x轴于点N,若CN=CM,NG=3,HM=2,求GH.16.(博才)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,P A为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.17.(青竹湖)如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B (b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y 轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.。
专题20 等腰三角形与等边三角形考点一:三角形的中位线1. 中位线的定义:三角形任意两边中点的连线段叫做这个三角形的中位线。
2. 中位线的性质:三角形的中位线平行且等于第三边的一半。
1.(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10m(如图),则A,B两点的距离是 m.【分析】利用三角形中位线定理解决问题即可.【解答】解:∵CD=AD,CE=EB,∴DE是△ABC的中位线,∴AB=2DE,∵DE=10m,∴AB=20m,故答案为:20.2.(2022•福建)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为 .【分析】直接利用三角形中位线定理求解.【解答】解:∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴DE=BC=×12=6.故答案为:6.3.(2022•西藏)如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为 米.【分析】应用三角形的中位线定理,计算得结论.【解答】解:∵D,E分别是AC,BC的中点,∴DE是△ABC的中位线.∴AB=2DE=2×25=50(米).故答案为:50.4.(2022•丽水)如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.若AB=6,BC=8,则四边形BDEF的周长是( )A.28B.14C.10D.7【分析】根据三角形中位线定理解答即可.【解答】解:∵D,E,F分别是BC,AC,AB的中点,∴DE=BF=AB=3,∵E、F分别为AC、AB中点,∴EF=BD=BC=4,∴四边形BDEF 的周长为:2×(3+4)=14,故选:B .5.(2022•眉山)在△ABC 中,AB =4,BC =6,AC =8,点D ,E ,F 分别为边AB ,AC ,BC 的中点,则△DEF 的周长为( )A .9B .12C .14D .16【分析】根据三角形的中位线平行于第三边,并且等于第三边的一半,可得出△ABC 的周长=2△DEF 的周长.【解答】解:如图,点D ,E ,F 分别为各边的中点,∴DE 、EF 、DF 是△ABC 的中位线,∴DE =BC =3,EF =AB =2,DF =AC =4,∴△DEF 的周长=3+2+4=9.故选:A .6.(2022•广东)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .41B .21C .1D .2【分析】由题意可得DE 是△ABC 的中位线,再根据三角形中位线的性质即可求出DE 的长度.【解答】解:∵点D ,E 分别为AB ,AC 的中点,BC =4,∴DE 是△ABC 的中位线,∴DE =BC =×4=2,故选:D .7.(2022•沈阳)如图,在Rt △ABC 中,∠A =30°,点D 、E 分别是直角边AC 、BC 的中点,连接DE ,则∠CED 的度数是( )A .70°B .60°C .30°D .20°【分析】根据直角三角形的性质求出∠B ,根据三角形中位线定理得到DE ∥AB ,根据平行线的性质解答即可.【解答】解:在Rt △ABC 中,∠A =30°,则∠B =90°﹣∠A =60°,∵D 、E 分别是边AC 、BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AB ,∴∠CED =∠B =60°,故选:B .8.(2022•常州)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点.若DE =2,则BC 的长是( )A .3B .4C .5D .6【分析】根据三角形中位线定理解答即可.【解答】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE ,∵DE =2,∴BC =4,故选:B .考点二:等腰三角形3. 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
专题1 有关等腰三角形、等边三角形和直角三角形的常见压轴题1.(2021·武汉一初慧泉中学九年级月考)问题背景(1)如图1,已知△ABC ,△ADE 均为等边三角形,且点D 在线段BC 上,求证:△ABD ≌△ACE ;尝试应用(2)如图2,已知△ABC 中,AB =AC ,∠BAC =120°,P 为线段BC 上一点,以BP 为边作等边三角形BPQ ,连接CQ ,M 为线段CQ 的中点,连接AM ,AP .求证:AP =2AM ;拓展创新(3)已知△ABC 中,AB =AC ,∠BAC =120°,G 为平面内一点,若∠AGB =90°,∠BGC =150°,请直接写出AG BG的值.2.(2021·湖北新洲·九年级月考)已知关于x 的一元二次方程2()20()b c x ax b c ---=+有两个相等的实数根,且a 、b 、c 分别是ABC D 中A Ð、B Ð、C Ð的对边.(1)求证:ABC D 直角三角形;(2)若a b =,设点P 为AB 边上任一点,PE BC ^于E ,M 为AP 的中点,过A 作BC 的平行线,MD ME ^交此平行线于D .当点P 在线段AB 上运动的时候,求32MD ME的值.3.(2021·武汉市卓刀泉中学九年级月考)如图1,点P 为等腰Rt △ABC 斜边AB 下侧一个动点,连AP 、BP,且∠APB =45°,过C 作CE ⊥AP 于点E ,AB =12.(1)若∠ACE =15°,求△ABP 的面积;(2)求CE AP的值;(3)如图2,当△APC 为等腰三角形时,则其面积为 .4.(2021·重庆十八中两江实验中学九年级月考)已知:在△ABC 中,∠ABC =90°,点D 为直线BC 上一点,连接AD 并延长,过点C 作AC 的垂线交AD 的延长线于点E .(1)如图1,若∠BAC =60°,CE =12AC ,AB =1,求线段AE 的长度;(2)如图2,若AC =EC ,点F 是线段BA 延长线上一点,连接EF 与BC 交于点H ,且∠BAD =∠ACF ,求证:AF =2BH ;(3)如图3,AB =2,BC =6,点M 为AE 中点,连接BM ,CM ,当|CM -BM |最大时,直接写出△BMC 的面积.5.(2021·吉林省第二实验学校九年级月考)如图,在ABC V 中,90ACB Ð=°,10AB =,6BC =,动点P 从点A 出发,沿AC 以每秒5个单位长度的速度向终点C 匀速运动,设点P 的运动时间为t 秒(0t >),过点P 作AB 的垂线交AB 于点M .(1)AC =________.(2)求PM 的长,(用含有t 的代数式表示)(3)若将点P 绕点M 逆时针旋转90°于点N .①求BN 的长(用含t 的代数式表示)②在点P 运动的同时,作点B 关于点N 的对称点Q ,连结PQ .当AQP V 为等腰三角形时,直接写出t 的值.6.(2021·西安市铁一中学九年级开学考试)如图1.在△ABC 中,∠A =120°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接BE ,点M 、N 、P 分别为DE 、BE 、BC 的中点,连接NM 、NP .(1)图1中,线段NM 、NP 的数量关系是 ,∠MNP 的度数为 ;(2)将△ADE 绕点A 顺时针旋转到如图2所示的位置.连接MP .你认为△NMP 是什么特殊三角形,请写出你的猜想并证明你的结论;(3)把△ADE 绕点A 在平面内旋转,若AD =3,AB =5,请写出△MNP 面积的最大值.7.(2021·沙坪坝·重庆八中九年级月考)已知,在等腰直角三角形ABC 中,90ACB Ð=°,AC BC =,点D 在边AC 上运动,连接BD ,过C 作//CM AB 交BD 的延长线于点M .(1)如图1,点D为AC边上的中点,BD=CM的长;(2)如图2,过点A作AE BM^于点E,交CM于点F,连接DF,求证:BD AF DF=+;(3)如图3,过点A作AE BD^交BD的延长线于点E,P为BE的中点,AB=CP的最小值.8.(2021·诸暨市开放双语实验学校九年级期中)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为 ;②线段AD,BE之间的数量关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DC E中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.9.(2021·重庆字水中学九年级三模)如图,在等边ABCV中,AD是BC边上的高,点E为线段AD上一点,连EB、EC.(1)如图1,将线段EB绕点E顺时针旋转至EF,使点F落在BA的延长线上.Ð的度数;①求CEF②求证:AB AF=+;=时,请直接写出(2)如图2,若4AB=,将线段EB绕点E旋转过程中与边AC交于点H,当AE CH+的最小值.BH CE10.(2021·吉林省第二实验学校九年级月考)已知Rt△ABC中,∠CAB=90°,AB=4,AC=3,点P从点B处出发,以每秒2个单位长度的速度沿B﹣A﹣C,运动时间为t秒,以AP为斜边作等腰直角三角形PQA,点Q始终在点A的右上方,(1)用t表示线段AP的长.(2)点Q落在线段BC上时,求t的值.(3)点P在线段AB上运动时,点A'是点A关于直线QP的对称点,当点A'与△ACB的顶点所连线段平行△ACB△重叠部分的面积S的值.的一条直角边时,求△ABC与AA P(4)点E是线段AC中点,当直线QE把△ABC的面积分为 2:3 两部分时,直接写出t的值.11.(2021·长春市第二实验中学九年级月考)如图,在Rt△ABC中,∠C=90°,BC=4cm,AC=8cm,点P从点A出发,沿AC方向以2cm/s的速度向终点C运动,PD⊥AC,PD=PA,点F在射线AC上,FP=2PA,以PD、PF为邻边构造矩形PDEF,设点P的运动时间为t(s).(1)AF= (用含t的代数式表示).(2)当点B落在DE上时,求t的值.(3)连接BF,△ABF是等腰三角形时,求t的值.(4)当点E在△ABC的边的垂直平分线上时,直接写出t的值.12.(2021·南师附中树人学校九年级月考)如图1,若△DEF的三个顶点D,E,F分别在△ABC各边上,则称△DEF是△ABC的内接三角形.(1)如图2,点D,E,F分别是等边三角形ABC各边上的点,且AD=BE=CF,则△DEF是△ABC的内接 .A.等腰三角形B.等边三角形C.等腰三角形或等边三角形D.直角三角形(2)如图3,已知等边三角形ABC,请作出△ABC的边长最小的内接等边三角形DEF.(保留作图痕迹,不写作法)(3)问题:如图4,△ABC是不等边三角形,点D在AB边上,是否存在△ABC的内接等边三角形DEF?如果存在,如何作出这个等边三角形?①探究1:如图5,要使△DEF是等边三角形,只需∠EDF=60°,DE=DF.于是,我们以点D为角的顶点任作∠EDF=60°,且DE交BC于点E,DF交AC于点F.我们选定两个特殊位置考虑:位置1(如图6)中的点F与点C重合,位置2(如图7)中的点E与点C重合.在点E由位置1中的位置运动到位置2中点C的过程中,DE逐渐变大而DF逐渐变小后再变大,如果存在某个时刻正好DE=DF,那么这个等边三角形DEF就存在(如图8).理由: 是等边三角形.②探究2:在BC上任取点E,作等边三角形DEF(如图9),并分别作出点E与点B、点C重合时的等边三角形DBF′和DCF″.连接FF',FF″,证明:FF'+FF″=BC.③探究3:请根据以上的探究解决问题:如图10,△ABC是不等边三角形,点D在AB边上,请作出△ABC的内接等边三角形DEF.(保留作图痕迹,不写作法)13.(2021·合肥实验学校九年级二模)等腰直角△AOB和等腰直角△COD按如图方式放置,∠AOB=∠C OD=90°,连接AC、BD,二者交于点P.(1)求证:BD=AC;(2)连接OP,若OP平分∠AOD,且角∠AOD=40°,求∠BDO的度数;(3)点M、N分别是AB、CD的中点,连接MN,求MNBD的值.14.(2021·湖南郴州·中考真题)如图1,在等腰直角三角形ABC 中,90BAC Ð=°.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG Ð=°;②若4AB AC ==,当EH 的长度为多少时,AQG D 为等腰三角形?15.(2021·河南安阳·九年级一模)在ABC D 中,3AB AC ==,90BAC Ð=°,将边AB 绕点A 逆时针旋转至AB ',记旋转角为a .分别过A ,C 作直线BB '的垂线,垂足分别是E ,F ,连接B C '交直线AF 于点Q .(1)如图1,当45a =°时,AEF D 的形状为____________;(2)当0360a °<<°时,①(1)中的结论是否成立?如果成立,请就图2的情形进行证明;如果不成立,请说明理由;②在旋转过程中,当线段1AE =时,请直接写出CF 的长.。
等腰三角形和等边三角形专项练习60题(有答案)1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF 的度数为()A.90°B.80°C.68°D.60°3.如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°4.下列说法正确的是()A.等腰三角形的两条高相等B.等腰三角形一定是锐角三角形C.有一个角是60°的锐角三角形是等边三角形D.三角形三条角平分线的交点到三边的距离相等5.已知等腰三角形ABC,∠A是顶角,且∠A等于∠C的一半,BD是△ABC的角平分线,则该图中共有等腰三角形的个数是()A.4个B.3个C.2个D.1个6.边长为2的等边三角形的面积是()A.B.C.3D.67.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12.5°C.15°D.20°8.如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC等于()A.B.C.3D.9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°10.如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4B.5C.6D.711.如图,已知等边△ABC的周长为6,BD是AC边的中线,E为BC延长线上一点,CD=CE,那么△BDE的周长是()A.5+2B.5+C.3+2D.3+12.以下关于等边三角形的判定:①三条边相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形④三个角相等的三角形是等边三角形其中正确的是()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是()A.B.C.20+10D.20﹣1014.已知△ABC是等腰三角形,BC边上的高恰好等于BC的一半,则∠BAC的度数是()A.75°B.90°或75°或25° C.75°或15°D.90°或75°或15°15.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN 的度数是()A.70°B.80°C.90°D.100°16.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°17.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B.C.5D.2.518.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.2219.如图所示,共有等腰三角形()A.4个B.5个C.3个D.2个20.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1B.2C.3D.421.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1B.3C.2D.422.如图,在Rt△ABC中,已知,∠ACB=90°,∠B=15°,AB边的垂直平分线交AB于E,交BC于D,且BD=13cm,则AC的长是()A.13cm B.6.5cm C.30cm D.6cm23.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③24.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形25.如图,△ABC中,AB=BC=AD,D在BC的延长线上,则角α和β的关系是()A.α+β=180°B.3α+2β=180°C.3α+β=180°D.2β=α26.如图,等边三角形ABC内有一点P,过点P向三边作垂线,垂足分别为S、Q、R,且PQ=6,PR=8,PS=10,则△ABC的面积等于()A.190B.192C.194D.19627.在边长为1的等边三角形内任意放一些点,要使得至少存在2个点之间的距离不超过,那么至少应该放几个点()A.n2+1 B.2n+1 C.2n D.n+128.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.29.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36 B.32 C.30 D.2830.等腰△ABC中,∠B=50°,那么另外两个角的度数分别是_________.31.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC=_________.32.如图,在△ABC中,∠BAC=135°,AD⊥BC于D,且AB+BD=DC,那么∠C=_________°.33.如图,Rt△ABC中,∠C=90°,BD=2CD,AD是∠BAC的角平分线,则∠B=_________度.34.若一腰上的中线把一个等腰三角形的周长分为12cm和21cm两部分,则其底边长为_________cm.35.等腰三角形顶角80°,一腰上的高与底边的夹角的度数是_________.36.如果一个三角形三边长为a、b、c,且满足(a+b+c)(a﹣c)=0,则该三角形的形状是_________.37.边长为a的等边三角形的面积为_________.38.如图,△ABC中,AB=AC,点P、Q分别在AC、AB上,且AP=PQ=QC=BC,则∠A的大小是_________.39.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D,BD=8,则AC=_________.40.如右图,以等边△OAB的高OC为边向逆时针方向作等边△OCD,CD交OB于点E,再以OE为边向逆时针方向作等边△OEF,EF交OD于点G,再以OG为边向逆时针方向作等边△OGH,…,按此方法操作,最终得到△OMN,此时ON在OA上.若AB=1,则ON=_________.41.如图,在△ABC中,∠ACD=90°,CA=CB,AD是△ABC的角平分线,点E在AB上,如果DE=2CD,那么∠ADE= _________度.42.等腰三角形的周长为24,腰长为x,则x的取值范围是_________.43.如图,点C、E和点B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=12°,则∠GEF=_________度.44.如图,AB=AC,∠BAC=120°,点D在BC上,DB=DA=4,那么BC=_________.45.如图,D是等边△ABC的AC边上的中点,点E在BC的延长线上,DE=DB,△ABC的周长是9,则∠E=_________°,CE=_________.46.如图,在△ABC中,AB=AC=5,BC=6,AD=4,点E、F是中线AD上的两点,则图中阴影部分的面积是_________.47.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是_________三角形.48.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数为_________.49.如图,等边△RST的顶点R、S、T分别在等腰△ABC的边AB、BC、CA上,设∠ART=x度,∠RSB=y度,∠STC=z 度,用含y、z的代数式表示x是:_________.50.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为2,则其底边的高为_________.51.如图所示,△ABC是等边三角形,点是AC的中点,过D点作DM⊥BE,垂足是MD;延长BC到E,使CE=CD,求证:BM=EM.52.如图,△ABC中,AB=AC,DE是AB的垂直平分线,D为垂足,交AC于E.若AD=5cm,△ABC的周长为27cm,求△BCE的周长.53.小明在找等边三角形ABC一边的三等分点时,他是这样做的,先做∠ABC、∠ACB的角平分线并且相交于点O,然后做线段BO、CO的垂直平分线,分别交BC于E、F,他说:“E、F就是BC边的三等分点.”你同意他的说法吗?请说明你的理由.54.如图,已知:等边三角形ABC,点D是AB的中点,过点D作DF⊥AC,垂足为F,过点F作FE⊥BC,垂足为E,若三角形ABC的边长为4.求:(1)线段AF的长度;(2)线段BE的长度.55.如图AF是△ABC的角平分线,BD⊥AF,交AF的延长线于D,DE∥AC交AB于E,求证:AE=BE.56.已知如图,△ABC中,AB=AC,D是AB的中点,DE⊥AB交AC于E,(1)若BE平分∠ABC,求∠A的度数.(2)若△ABC的周长为10,△BCE的周长为6,求BC的长度.57.如图,在△ABC中,∠B=45°,AD是∠BAC的角平分线,EF垂直平分AD,交BC的延长线于点F.求∠FAC的大小.58.如图,在△ABC中,AB=AC,CD平分∠ACB交加于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,求∠B 的度数.59.已知:如图,∠ACB=90°,D、E是AB上的两点,且AE=AC,BD=BC,EF⊥CD于F,求证:CF=EF.60.已知:如图,Rt△ABC中,∠ACB=90°,边AC的垂直平分线DE交AB于点D,交AC于E,连接DC.求证:DA=DC=DB.61.如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数.62.等腰三角形中,一边与另一边之比为3:2,该三角形周长为56,求腰长是多少?63.如图:△ABC中,∠B=2∠C,AD是BC边上的高.求证:AB+BD=DC.64.如图,在△ABC中,AB=BC=AC,BD是中线,延长BC到E,使CE=CD.(1)已知CD=3,求BE的长;(2)求证:BD=ED;(3)若点F是BE边的中点,试判断DF与BE的位置关系并简要说明理由.65.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.66.如图,△ABC为等边三角形,D为BC上一点,∠ADE=60°,DE交∠ACB外角平分线于E.(1)AB与CE平行吗?请说明理由.(2)请说明∠BAD=∠EDC的理由.67.如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC.68.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.69.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DE∥AB交AC于点E,DE∥AC交AB于点F.求四边形AFDE的周长.70.如图,AD是△ABC的角平分线,且∠B=∠ADB,过点C作AD的延长线的垂线,垂足为M.(1)若∠DCM=α,试用α表示∠BAD;(2)求证:AB+AC=2AM.71.王宏和张新是同学,他们两家和学校正好构成一个等腰三角形,而且王宏家距学校2千米,张新家距学校4千米,你知道王宏与张新两家的距离吗?如果王宏家与学校相距2千米,而张新家与学校相距3千米,其他条件不变,王宏与张新两家相距多少千米?72.已知:如图,在△ABC中,∠B=∠C,点D、E、F分别是边BC、AB、AC上的点,BE=CD,连接DE、DF,有∠EDF=∠C,那么DE和DF相等吗?试说明理由.73.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)74.已知一个等腰三角形的周长为18cm.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?75.△ABC中,∠B=40°,过点A的直线将这个三角形分成2个等腰三角形,试确定∠C的度数.76.已知一个等腰三角形的两个内角分别为(2x﹣2)°和(3x﹣5)°,求这个等腰三角形各内角的度数.77.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.78.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.79.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.80.如图,已知在△ABC中,AB=AC,D是AB上一点,DE⊥BC,E是垂足,ED的延长线交CA的延长线于点F,求证:AD=AF.参考答案:1.∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B.2.∵AB=AC∴∠B=∠C∵FD⊥BC于D,DE⊥AB于E∴∠BED=∠FDC=90°∵∠AFD=158°∴∠EDB=∠CFD=180°﹣158°=22°∴∠EDF=90°﹣∠EDB=90°﹣22°=68°.故选C3.∵AB=AD,∴∠B=∠ADB,由∠BAD=80°得∠B==50°=∠ADB,∵AD=DC,∴∠C=∠ACD,∴∠C=∠ADB=25°故选D.4.A、等腰三角形两腰上的高相等,故错误;B、等腰三角形不一定是锐角三角形,故错误;C、有一个角是60°的等腰三角形是等边三角形,故错误;D、三角形三条角平分线的交点到三边的距离相等,故正确,故选D5.∵AB=AC,∴△ABC是等腰三角形,∵∠A是顶角,且∠A等于∠C的一半,∴∠A+∠C+∠ABC=∠A+2∠A+2∠A=180°,∴∠A=36°,∠C=∠ABC=72°,BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.6.AB=2,∵等边三角形高线即中点,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD==,∴等边△ABC 的面积为BC•AD=×2×=,故选:B.7.∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵∠BAD=20°,∴∠DAE=∠BAC﹣∠BAD=40°,∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠AED+∠DAE=180°,∴∠ADE=∠AED=×(180°﹣40°)=70°,∵∠ADC=∠B+∠BAD=60°+20°=80°,∴∠CDE=∠CDA﹣∠ADE=80°﹣70°=10°.故选A8.连接AD.∵DE垂直平分AB,BD=3,∴BD=AD=3;∴∠B=∠BAD(等边对等角);又∵∠ABC=15°,∴∠BAC=15°;∴∠ADC=2∠BAC=30°(外角定理),∴=cos∠ADC,∴DC=AD•cos30°=.故选A.9.过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.10.∵∠A=∠P1P2A=16°∴∠P2P1P3=32°,∠P1P3P2=32°∴∠P1P2P3=116°∴∠P3P2P4=48°∴∠P3P2P4=48°∴∠P2P3P4=96°∴∠P4P3P5=52°∴∠P3P5P4=52°∴∠P3P4P5=52°∴∠P5P4P6=76°∴∠P4P6P5=76°∴∠P4P5P6=28°∴∠P6P5P7=86°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选B.11.△ABC的周长为6,∴AB=BC=AC=2,DC=CE=1,又∵∠ACB=∠CDE+∠CED ∴BD+DE+BE=2+2+1=3+2.故选C12.①三条边相等的三角形是等边三角形符合等边三角形的定义,故正确;②有一个角是60°的等腰三角形是等边三角形,正确;③有两个角为60°的三角形是等边三角形,正确;④三个角相等的三角形是等边三角形,正确.故选D13.∵ED⊥BC,∠C=60°,∴∠CED=30°,设DE=x,则AE=x,且CE=x,又∵AE+CE=5,∴x+x=5,解得x=10﹣15,∴CE=5﹣(10﹣15)=20﹣10.故选D14.①BC边为底边时,AD=BC=BD=CD,所以△ABD和△ADC为等腰直角三角形,∠BAC=∠BAD+∠CAD=90°.②BC 边为腰时可分为和两种情况,垂足在三角形内部时,AD==AC,所以∠C=30°,又因为AC=BC,所以∠BAC=∠ABC=(180°﹣∠C)=75°.垂足落在三角形外时,由图知AD=AB,所以∠ABD=30°,所以∠BAC=∠C=∠ABD=15°.故答案为D15.∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D16.当顶角为∠A=50°时,∠B=65°,当顶角为∠B=70°时,∠A=55°所以A选项错误.当顶角为∠B=40°时,∠A=70°,所以B选项正确.当顶角为∠A=30°时,∠B=75°,当顶角为∠B=90°时,∠A=45°所以C选项错误.当顶角为∠A=80°时,∠B=50°,当顶角为∠B=60°时,∠A=60°所以D选项错误.故选B17.∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选C.18.4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.19.根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选B20.∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选D21.∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选C22.∵AB边的垂直平分线交AB于E,交BC于D(已知)∴AD=BD(线段垂直平分线的性质)∴∠DAE=∠B=15°且AD=BD=13cm(等腰三角形的性质)∴∠ADC=30°(外角性质)∴AC=AD=6.5cm.故选B23.在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B24.原式可化为2a2+2b2+2c2=2ab+2ac+2bc,即a2+b2+c2+a2+b2+c2﹣2ab﹣2ac﹣2bc=0;由非负数的性质,可知:a﹣b=0,c﹣a=0,b﹣c=0;即:a=b=c.所以△ABC是等边三角形.故选C.25.∵AB=AD,∴∠B=∠D=α,∵AB=BC∴∠BAC=∠BCA,∵∠ACB=α+β∴在等腰三角形ABC中,2(α+β)+α=180°∴3α+2β=180°,故选B26.连接AP、BP、CP,过点A作AD⊥BC于D,等边三角形面积S=BC•(PQ+PR+PS)=BC•AD故PQ+PR+PS=AD,∴AD=6+8+10=24,∵∠ABC=60°∴AB=24×=16,∴△ABC的面积S=BC•AD=×24×16=192,故选B.27.把三角形每条边分成n份,相应点之间连线,可以把三角形分成n2个边长为的小三角形,至少n2+1个点可以保证至少有两个点落在同一个小三角形内,所以那两个点的距离是不超过的.故选A28.设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D.∴EF AB,ED AC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选C30. 当∠B=50°为顶角时,此时∠A=∠C==65°;当∠B=50°为底角时,此时另一底角为50°,顶角为80°,故答案为:50°,80°或65°,65°31.根据题意,可以以点A为圆心,以AB为半径作圆,即可得出点B、C、D均在圆周上,故有∠BAC=2∠BDC=50°,即∠BDC=25°.故答案为:25°32.在DC上截取DE=BD,连接AE,∵AD⊥BC,∴∠ADB=∠ADE=90°,∵AD=AD,∴△ADB≌△ADE,∴∠B=∠AED,AE=AB,∵AB+BD=DC,DE+EC=DC,∴AE=AB=EC,∴∠AEB=2∠EAC=2∠C,∴∠B=2∠C,∵∠BAC=135°,∠B+∠C+∠BAC=180°,∴3∠C=45°,∴∠C=15°.故答案为:1533.过D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB,∴BD=2DE,∵∠BED=90°,∴∠B=30°.故答案为:3034.设等腰三角形的腰长是xcm,底边是ycm.根据题意,得:或,解得或.再根据三角形的三边关系,知:8,8,17不能组成三角形,应舍去.所以它的底边是5cm.故答案为:535.如图:△ABC中,AB=AC,BD是边AC上的高.∵∠A=80°,且AB=AC,∴∠ABC=∠C=(180°﹣80°)÷2=50°;在Rt△BDC中,∠BDC=90°,∠C=50°;∴∠DBC=90°﹣50°=40°.故答案为:40°36.∵(a+b+c)(a﹣c)=0,∴a+b+c=0或a﹣c=0,∵a、b、c,为三角形三边,∴a+b+c=0(舍去),∴a=c∴该三角形为等腰三角形,故答案为:等腰三角形37.如图作AD⊥BC于点D.∵△ABC为等边三角形,∴∠B=60°,∴AD=AB×sin∠B=a,2故答案为:a238.∵AB=AC,AP=PQ,QP=QC,QC=BC,∴∠ABC=∠ACB,∠A=∠AQP,∠QPC=∠QCP,∠BQC=∠B(等边对等角),设∠A=x°,则∠AQP=x°,∵在△AQP中,∠QPB是外角,∴∠QPC=∠A+∠AQP=2x°(三角形的一个外角等于和它不相邻的两个内角的和),∵在△BCQ中,∠BQC是外角,∴∠BQC=∠ACQ+∠A(三角形的一个外角等于和它不相邻的两个内角的和),∴∠BQC=3x°,∴∠B=3x°,∴∠ABC=3x°,∵在△ABC中,∠A+∠ACB+∠B=180°,∴x°+3x°+3x°=180°(三角形三个内角的和等于180°),解得x=()°,∴∠A=()°.39.∵△ABC中,∠C=90°,∠B=15°,∴∠BAC=180°﹣∠C﹣∠B=180°﹣90°﹣15°=75°.连接AD.∵ED是AB的垂直平分线,∴AD=BD=8,∠B=∠1=15°,∴∠2=∠BAC﹣∠1=75°﹣15°=60°.在Rt△ACD中,∠2=60°,∠C=90°,∴∠3=180°﹣∠C﹣∠2=180°﹣90°﹣60°=30°.∴AC=AD=BD=×8=4.40.∵OC为等边三角形的高,且等边三角形的边长为1,∴NC=,∵△OCD为等边三角形,∴∠OCD=60°,∴OE⊥CD,2∴ON 的长为()10,故答案为()1041.作DF⊥AB于点F∵△ABC中,∠ACD=90°,CA=CB,∴∠CAB=∠B=45°,∵AD是△ABC的角平分线,∴DF=DC,∠DAB=22.5°,∵DE=2CD,∴DE=2DF,∴∠DEB=30°,∴∠ADE=∠DEB=﹣∠DAB=30°﹣22.5°=7.5°,故答案为7.5°.42.底边是24﹣2x,根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.得:0<24﹣2x<2x.解得6<x<12.故填6<x<1243.∵∠A=12°,AB=BC,∴∠A=∠ACB=12°,∠CBD=∠A+∠ACB=12°+12°=24°;∵BC=CD,∴∠CBD=∠CDB=24°,∴∠ECD=∠A+∠CDA=36°(外角定理);∵CD=DE,∴∠DCE=∠DEC=36°,∴∠EDF=∠A+∠AED=48°;又∵DE=EF,∴∠EDF=∠EFD=48°,∴∠GEF=∠A+∠EFD=12°+48°=60°.故答案是:6044.∵AB=AC,∠BAC=120°,∴∠B═∠C=(180°﹣∠A)=30°,∵DB=DA=4,∴∠B=∠BAD=30°,∴∠ADC=∠B+∠BAD=60°,∴∠DAC=180°﹣∠C﹣∠ADC=90°,∵∠C=30°,∴DC=2AD=2×4=8,∴BC=BD+DC=4+8=12,故答案为:12即∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为9,∴AC=3,且∠ACB=60°,∴∠CDE=∠ACB﹣∠E=30°,即∠CDE=∠E,∴CD=CE=AC=.故答案为:30;46.∵AB=AC,BC=6,AD是△ABC的中线,∴BD=DC=BC=3,AD⊥BC,∴△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S△BEF=S△CEF,∵△ABC 的面积是:×BC×AD=×6×4=12,∴图中阴影部分的面积是S△ABC=6.故答案为:647.∵BD=CD,AD⊥BC,∴AB=AC,即三角形是等腰三角形.故填等腰.48.∵AB=AC,∴∠ABC=∠ACB,故2∠ABC+∠BAC=180°,∵等边三角形各内角为60°,∠DAE=∠DBC,∴120°+∠BAC=60°+∠ABC,又∵2∠ABC+∠BAC=180°,∴∠BAC=20°.故答案为:20°49.∵∠BRS+y=∠TSC+z,∴∠BRS﹣∠TSC=z﹣y,又∠BRS+x=y+∠TSC=120°,∴∠BRS﹣∠TSC=y﹣x,故答案为:x=2y﹣z.50.①如图1,已知AB=AC=2,BD为腰AC上的高,可知∠ABD=30°,可得∠A=60°,即证△ABC为正三角形,即可得出底边AC 上的高等于腰上的高等于.②如图2,AB=AC=2,CD⊥BA交BA是延长线于点D,且∠CAD=30°,可得AD=1,CD=,可得BC=2,即BE=,在Rt△ABE中,AB=2,BE=,即AE=1.故答案为:1或.51.∵△ABC是等边三角形,D是AC的中点,∴BD平分∠ABC(三线合一),∴∠ABC=2∠DBE;∵CE=CD,∴∠CED=∠CDE.又∵∠ACB=∠CED+∠CDE,∴∠ACB=2∠E;又∵∠ABC=∠ACB,∴2∠DBC=2∠E,∴∠DBC=∠E,∴BD=DE.又∵DM⊥BE,∴BM=EM.52.∵DE是AB的垂直平分线.∴AB=2AD,EA=EB.∵AD=5cm,∴AB=10cm.∵△ABC的周长为27cm,∴AC+BC+AB=2cm7,AC+BC=17cm即AE+EC+BC=17cm.∴EB+EC+BC=17.即△BCE的周长为17cm53.E,F是BC的三等分点.理由:连接OE,OF,∵DE垂直平分OB∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),同理OF=CF,∴∠EBO=∠BOE,∠FCO=∠FOC,∵等边三角形ABC中,∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)∵BO平分∠ABC,CO平分∠ACB∴∠EBO=∠ABC=30°,∠FCO=∠ACB=30°∴∠BOE=∠EBO=30°,∠FOC=∠FCO=30°∴∠OEF=∠BOE+∠EBO=60°,∠OFE=∠FOC+∠FCO=60°,∴△OEF是等边三角形(有两个内角60°的三角形是等边三角形)∴OE=OF=EF(等边三角形各边相等)∴BE=EF=FC,即E,F是BC的三等分点54.(1)∵D是AB的中点,∴AD==2,∵等边三角形ABC中∠A=∠C=60°,且DF⊥AC,∴∠ADF=180°﹣90°﹣60°=30°,在Rt△ADF中,AF==1;(2)FC=AC﹣AF=4﹣1=3,同理,在Rt△FEC中,EC==1.5,∴BE=BC﹣EC=4﹣1.5=2.5.故答案为:AF=1,BE=2.555.∵AF平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD=∠BAD,∴AE=ED,∵∠EDB+∠ADE=90°,∴∠BDE+∠BAD=90°,∵∠EBD+∠BAD=90°,∴∠BDE=∠EBD,∴BE=ED,∴AE=BE.56.(1)∵D是AB的中点,DE⊥AB交AC于E,∴EB=EA,∴∠A=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AB=AC,∴∠C=∠ABC=2∠ABE=2∠A,∵∠A+∠ABC+∠C=180°,即:5∠A=180°∴∠A=36°;(2)∵△ABC的周长为10,∴AB+AC+BC=10,∵△BCE的周长为6,∴BE+EC+BC=AE+EC+BC=AC+BC=6,∴AB=AC=4.∴BC=257.∵EF垂直平分AD,∴FA=FD,∴∠ADF=∠DAF,又∵∠ADF=∠B+∠BAD,∠DAF=∠FAC+∠DAC,∵∠BAD=∠DAC,∴∠FAC=∠B=45°.58.∵AE∥DC,∴∠BCD=∠E=36°,又∵CD平分∠ACB,∴∠ACB=2∠BCD=72°,∵AB=AC,∴∠B=∠ACD=72°.答:∠B的度数为72°.59.连接CE.∵AE=AC,∴∠1+∠2=∠AEC=∠3+∠B.①同理,∠2+∠3=∠1+∠A.②①+②得2∠2=∠A+∠B.∵∠ACB=90°,∴∠A+∠B=90°.∴∠2=45°.∵EF⊥CD,∴∠CFE=90°.∴∠CEF=45°=∠2,∴EF=CF.60.∵AC的垂直平分线DE,∴AD=DC,∴∠A=∠ACD,∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴DC=BD,∴DA=DC=DB61.∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得:∠A=21°62.∵等腰三角形中,一边与另一边之比为3:2,∴设两边分别为3x,2x,根据题意得:3x+3x+2x=56或3x+2x+2x=56解得:x=7,此时腰长3x=21,或x=8,此时腰长2x=16,所以腰长为21或1663.在线段DC上取一点E,使DE=DB,连接AE,∵AD⊥BC,∴AD垂直平分BE,∴AB=AE,∴∠AEB=∠B,∵∠B=2∠C,∴∠AEB=2∠C,∴∠EAC=∠AEB﹣∠C=2∠C﹣∠C=∠C,∴AE=CE,∴CE=AE=AB,∴DC=DE+CE=AB+BD,∴AB+BD=DC.64.(1)∵AB=BC=AC,BD是中线,∴BC=AC=2CD∵CD=3,∴BC=2CD=6,CE=CD=3∴BE=BC+CE=6+3=9(2)∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).(3)∵点F是BE边的中点,∴DF是BE边的中线,∵BD=ED∴DF⊥BE65.∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF66.(1)∵等边三角形各内角为60°∴∠ACF=180°﹣60°=120°,CE为∠ACF的角平分线,∴∠ECF=60°,∵∠ABC=60°∴EC∥AB.(2)∵∠EDC+∠ADE+∠ADB=180°,∴∠EDC+∠ADB=120°,∵∠ABD+∠BAD+∠ADB=180°,∴∠BAD+∠ADB=120°,∴∠BAD=∠EDC.67.(1)连接AO,∵在等腰△ABC中,∠B和∠C的平分线相交于点O,∴等腰△ABC关于线段AO所在的直线对称,∵∠A=80°,∴∠OAC=40°(2)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.∴当∠A=80°时,=130°.68.证明:∵AD是△ABC的角平分线,AF平分△ABC的外角,∴∠1=∠2,∠3=∠4,∵DF∥BA,∴∠4=∠ADE,∠1=∠F∴∠3=∠ADE,∠2=∠F∴DE=EA EF=EA∴DE=EF69.∵AB=AC=10,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=10+10=20.∴四边形AFDE的周长为2070.(1)∵CM⊥AM,∠DCM=α,∴∠CDM=∠ADB=∠B=90°﹣α,∴∠BAD=180°﹣2∠ABD=180°﹣2(90°﹣α)=2α;(2)延长AM到F使MF=AM,则有AC=CF∵AD平分∠CAB∴∠CAF=∠BAF=∠F∴CF∥AB∴∠FCD=∠ABD=∠ADB=∠CDF∴CF=DF∵AD+DF=2MA∴AB+AC=2MA71.∵王宏和张新他们两家和学校正好构成一个等腰三角形,而且王宏家距学校2千米,张新家距学校4千米,∴此等腰三角形的底边长为2,两腰均为4,∴王宏与张新两家的距离是4千米;当王宏家与学校相距2千米,而张新家与学校相距3千米时,王宏与张新两家相距可能是2千米也可能是3千米72.DE=DF.证明:∵∠CDF+∠EDF+∠BDE=180°,∠CDF+∠C+∠CFD=180°∴∠BDE=∠CFD在△EBD和△DCF中∠BDE=∠CFDBE=CD∠B=∠C∴△EBD≌△DCF∴DE=DF73.(1)解:∵∠BAC=90°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=45°,∴∠ADC=∠B+∠BAD=45°+30°=75°,∵∠DAC=∠BAC﹣∠BAD=90°﹣30°=60°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠DAC)=60°,∴∠EDC=∠ADC﹣∠ADE=75°﹣60°=15°,答:∠EDC的度数是15°.(2)解:与(1)类似:∠B=∠C=(180°﹣∠BAC)=90°﹣α,∴∠ADC=∠B+∠BAD=90°﹣α+30°=120°﹣α,∵∠DAC=∠BAC﹣∠BAD=α﹣30°,∴∠ADE=∠AED=(180°﹣∠DAC)=105°﹣α,∴∠EDC=∠ADC﹣∠ADE=(120°﹣α)﹣(105°﹣α)=15°,答:∠EDC的度数是15°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.74.(1)解:设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=,答:等腰三角形的三边长是cm ,cm ,cm.(2)解:设BC=acm,AB=AC=2bcm,∵中线BD将△ABC的周长分为1:2两部分,18×=12,18×=6,∴2b+b=6,b+a=12或2b+b=12,b+a=6,解得:a=10,b=2或b=4,a=2,∴①三角形三边长是10cm,4cm,4cm,因为4+4<10,不符合三角形三边关系定理,∴此种情况舍去,②三角形的三边长是2cm,8cm,8cm,符合三角形的三边关系定理,综合上述:符合条件的三角形三边长是8cm,8cm,2cm,答:等腰三角形的边长是8cm,8cm,2cm.75.分成两类进行研究:(1)∠B为△ABD的底角,如果∠BAD=40°,那么∠ADC=80°;如果∠ADC为△ACD的底角,那么∠C=80°或20°;如果∠ADC为△ACD的顶角,那么∠C=50°;如果∠ADB=70°,那么∠ADC=140°,所以∠C=20°(2)∠B为△ABD的顶角,这时∠ADB=70°,∠ADC=110°,所以∠C=35°;综上所述,∠C的值为20°或35°或50°或80°76.①当(2x﹣2)°和(3x﹣5)°是两个底角时,2x﹣2=3x ﹣5,x=3°,∴三个内角分别是4°,4°,172°;②当2x﹣2是顶角时,2x﹣2+2(3x﹣5)=180°,解得x=24°,∴三个内角分别是46°,67°,67°;③当3x﹣5是顶角时,3x﹣5+2(2x﹣2)=180°,解得x=27°,∴三个内角分别是76°52°,52°77.(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC 长是5 78.1)解:∵AB=AC , ∴∠B=∠C=30°, ∵∠C+∠BAC+∠B=180°, ∴∠BAC=180°﹣30°﹣30°=120°, ∵∠DAB=45°, ∴∠DAC=∠BAC ﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°, ∴∠ADC=∠B+∠DAB=75°, ∴∠DAC=∠ADC , ∴DC=AC , ∴DC=AB79.(1)DE+DF=CG . 证明:连接AD ,则S △ABC =S △ABD +S △ACD,即AB •CG=AB •DE+AC •DF ,∵AB=AC , ∴CG=DE+DF .(2)当点D 在BC 延长线上时,(1)中的结论不成立,但有DE ﹣DF=CG .理由:连接AD ,则S △ABD =S △ABC +S △ACD , 即AB •DE=AB •CG+AC •DF∵AB=AC , ∴DE=CG+DF , 即DE ﹣DF=CG .同理当D 点在CB 的延长线上时,则有DE ﹣DF=CG ,说明方法同上.80.证明:∵AB=AC , ∴∠B=∠C , ∵DE ⊥BC ,∴∠C+∠F=90°,∠B+∠BDE=90°, ∵∠ADF=∠BDE , ∴∠F=∠ADF , ∴AD=AF。
中考数学专题复习等腰三角形练习一、选择题1. 如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=( )A .50°B .100°C .120°D .130°2. 已知等腰三角形的一个角等于42°,则它的底角为( )A .42°B .69°C .69°或84°D .42°或69°3. 如图,等边三角形OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(1,) 3C .(,1)D .()33,34.如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°CEF5.如图,在△ABC 中,AB =BC ∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A.B.9C.6D.6.如图,等腰直角三角形ABC 中,∠ABC =90°,BA =BC ,将BC 绕点B 顺时针旋转θ(0°<θ<90°),得到BP ,连结CP ,过点A 作AH ⊥CP 交CP 的延长线于点H ,连结AP ,则∠PAH 的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小7.如图,在中,,观察图中尺规作图的痕迹,可知ABC ∆,40AC BC A =∠=︒的度数为BCG ∠A .B .C .D .40︒45︒50︒60︒8.七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm 2的是( )A.B.C.D.二、填空题9. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是 .10.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是 .11.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC 是等边三角形,则∠B=________°.12.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB 的中点.若BC=12,AD=8,则DE的长为.ECB A13.若等腰三角形的一个底角为,则这个等腰三角形的顶角为__________.72 14. 如图,等边三角形ABC 内有一点P ,分别连接AP ,BP ,CP ,若AP=6,BP=8,CP=10,则S △ABP +S △BPC = .15.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为 .MDC BA 16.如图,在直角坐标系中,点A (1,1),B (3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA =CB ,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为.三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.19.如图,△ABC中,AB=AC,∠B的平分线交AC于D,AE∥BC交BD的延长线于点E,AF⊥AB交BE于点F.(1)若∠BAC=40°,求∠AFE的度数;(2)若AD=DC=2,求AF的长.FDEC AB 20. (12分)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .【问题解决】如图1,若点D 在边BC 上,求证:CE +CF =CD ;【类比探究】如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.21. 如图,在△ABC 中,AB =AC =5 cm ,BC =6 cm ,AD 是BC 边上的高.点P 由C 出发沿CA 方向匀速运动.速度为1 cm/s.同时,直线EF 由BC 出发沿DA 方向匀速运动,速度为1 cm/s ,EF //BC ,并且EF 分别交AB 、AD 、AC 于点E ,Q ,F ,连接PQ .若设运动时间为t (s)(0<t <4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.答案一、选择题1. 【答案】B2. 【答案】D [解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】B [解析]过点B作BH⊥AO于点H,∵△OAB是等边三角形,33∴OH=1,BH=,∴点B的坐标为(1,).4. 【答案】B【解析】可利用三角形的外角性质求∠FEC的度数,结合等腰三角形与平行线的性质,可得∠EDC、∠B均与∠C相等.即:∵AB=AC,∴∠B=∠C=65°.∵DF∥AB,∴∠EDC=∠B=65°.∴∠FEC=∠EDC+∠C=65°+65°=130°.5. 【答案】D【解析】∵分别以点A、C为圆心,AC的长为半径作弧,两弧交于点D,∴AD=AC=CD,∴△ACD是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°.∵∠BAC=30°, AB= ∴,AE=,∴AC=3.32在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=,∴∴BD=32=∴四边形ABCD 的面积为:.3333221=⨯⨯6. 【答案】C【解析】本题考查了等腰三角形的性质,三角形的内角和,旋转的性质.由旋转得BC=BP=BA ,∴△BCP 和△ABP 均是等腰三角形.在△BCP 中,∠CBP=θ,BC=BP ,∴∠BPC=90°-θ.在△ABP 中,∠ABP=90°-θ,同理得∠12APB=45°+θ,∴∠APC=∠BPC +∠APB =135°,又∵∠AHC=90°,∴∠12PAH=45°,即其度数是个定值,不变.因此本题选C .7. 【答案】C【解析】由作法得,∵,∴平分,,CG AB ⊥AB AC =CG ACB ∠A B ∠=∠∵,∴.故选C .1804040100ACB ∠=︒-︒-︒=︒1502BCG ACB ∠=∠=︒8. 【答案】最小的等腰直角三角形的面积42=1(cm 2),平行四边形面=18×12×积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意.故选:D .二、填空题9. 【答案】1 [解析]由勾股定理可得,a 2+b 2=13,直角三角形面积=(13-1)÷4=3,即ab=3,所以ab=6,所以(a -b )2=a 2+b 2-2ab=13-12=1. 1210. 【答案】10或11.【解析】分3是腰长与底边长两种情况讨论求解即可.①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.11. 【答案】30°【解析】本题考查了等边三角形和等腰三角形以及垂直平分线的性质.因为FE 垂直平分BC ,∴ FC =FB ∴∠B =∠BCF ∵△ACF 是等边三角形,∴∠AFC =60° ,∴ ∠B =30°12. 【答案】5【解析】∵AB =AC ,∠BAC 的平分线AD 交BC 于点D ,∴AD ⊥BC ,BD =CD =BC =6.在R t △ABD 中,由勾股定理,得AB =10.又∵E 12为AB 的中点,∴DE =AB =5.故答案为5.1213. 【答案】36°【解析】∵等腰三角形的一个底角为,∴等腰三角形的顶角72︒,180727236=︒-︒-︒=︒故答案为:.36︒14. 【答案】16+24 [解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接3PP',所以P'C=PA=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16,3因为PC=10,所以PP'2+P'C 2=PC 2,所以△PP'C 是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =163+24.15. 【答案】-2【解析】延长AD 、BC 交于点P , 作MH ⊥PB 于H .∵AB ∥CD ,∴=,∠ABC =∠DCP =60°.∵AD =BC =CD =4,∴PD =PD AD PC BCPC ,∴△PDC 为等边三角形,∴PD =PC =CD =4,∠P =60°. 由∠AMD =90°,可知点M 在以AD 为直径的⊙E 上,且在四边形ABCD 内的一个动点,根据垂线段最短可知E 、M 、H 三点共线时MH 最小.在R t △PEH 中,EP =6,∠P=60°,∴EH =EP ·sin 60°=∴MH 的最小值=EH -EM =2.16. 【答案】4+25【解析】先求点C 的坐标,再利用最短路径知识确定D 点位置,最后求四边形ACBD 的最小周长即可.由点A 与点C 的纵坐标均为1,可知AC ∥x 轴,又点A ,B 是第一象限角平分线上的两点,∴∠BAC =45°,又∵CA =CB ,∴∠CBA =45°,∴AC ⊥BC ,∴C(3,1),则AC =BC =2.如图,作点A 关于y 轴的对称点E ,连接BE 交y 轴于点D ,此时AD +BD 的值最小,为线段BE 的长.由轴对称性可知AE=2,则EC=4.在R t △BCE 中,根据勾股定理,得BE ===2.∴四边形ACBD 的最小周长为2+2+222EC BC +2242+5=4+2.55三、解答题17. 【答案】解:(1)(方法一):∵AB=AC ,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B -∠C=180°-42°-42°=96°.∵AD ⊥BC ,∴∠BAD=∠BAC=×96°=48°.1212(方法二):∵AB=AC ,∠C=42°,∴∠B=∠C=42°.∵AD ⊥BC 于点D ,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF ∥AC ,∴∠CAF=∠F ,∵AB=AC ,AD ⊥BC ,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AE=FE.18. 【答案】证明:∵AB =AC ,∴∠ABC =∠C ,∵AD 是BC 边上的中线,∴AD ⊥BC ,∴∠BAD +∠ABC =90°,(3分)∵BE ⊥AC,∴∠CBE +∠C =90°,∴∠CBE =∠BAD.(5分)19. 【答案】解:(1)∵AB =AC ,∠BAC =40°,∴∠ABC =×(180°-40°)=70°.12∵BD 平分∠ABC ,∴∠ABD =∠DBC =×70°=35°.12∵AF ⊥AB ,∴∠BAF =90°.∴∠AFE =∠BAF +∠ABD =90°+35°=125°.(2)∵BD 平分∠ABC ,BD =BD ,AD =CD ,∴△BDA ≌△BDC .∴AB =BC .又AB =AC ,∴AB =BC =AC .∴△ABC 为等边三角形.∴∠ABC =60°,∠ABD =30°.∵AD =DC =2,∴AB =4.在R t △ABF 中,AF =AB ·tan 30°=说明:此题中的条件AE ∥BC 是多余的.【解析】(1)由“等边对等角”求出∠ABC ,由角平分线的定义求出∠ABD ,∠AFE 是△ABF 的外角,因此∠AFE =∠BAF +∠ABD ;(2)由BD 既是△ABC 的角平分线又是中线可知AB =BC ,从而推出△ABC 是边长为2的等边三角形.在R t △ABF 中可解出AF .20. 【答案】【问题解决】在CD 上截取CH =CE ,易证△CEH 是等边三角形,得出EH =EC =CH ,证明△DEH ≌△FEC (SAS ),得出DH =CF ,即可得出结论;【类比探究】过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC =∠DGC =60°,得出△GCD 为等边三角形,则DG =CD =CG ,证明△EGD ≌△FCD (SAS ),得出EG =FC ,即可得出FC =CD +CE .【问题解决】证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG =FC ,∴FC =EG =CG +CE =CD +CE .21. 【答案】(1)如解图①,连接DF ,解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中AD ==4,52-32∵EF //BC ,∴△AEF ∽△ABC ,∴=,EF BC AQ AD ∴=,∴EF =(4-t ),EF 64-t 432∵EF //BD ,∴当EF =BD 时,四边形EFDB 是平行四边形,∴(4-t )=3,32∴t =2,∴当t =2s 时,四边形EFDB 是平行四边形;(2)如解图②,作PN ⊥AD 于N ,解图②∵PN //DC ,∴=,PN DC AP AC ∴=,PN 35-t 5∴PN =(5-t ),35∴y =DC ·AD -AQ ·PN 1212=6-(4-t ) ·(5-t )1235=6-(t 2-t +6)3102710=-t 2+t (0<t <4);3102710(3)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .解图③∵当QN 为AP 的垂直平分线时QA =QP ,QN ⊥AP ,∴AN =NP =AP =(5-t ),1212由题意cos ∠CAD ==,AD AC AN AQ∴=,∴t =,12(5-t )4-t 4573∴当t =s 时,点Q 在线段AP 的垂直平分线上.73∵sin ∠FPH ==sin ∠CAD =,∵PA =5-=,AF =AQ ÷=,FH PF 357383452512∴PF =,∴FH =.712720∴点F 到直线PQ 的距离h =(cm). 720。
等腰三角形和等边三角形专项练习60题(有答案)1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF的度数为()A.90°B.80°C.68°D.60°3.如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°4.下列说法正确的是()A.等腰三角形的两条高相等B.等腰三角形一定是锐角三角形C.有一个角是60°的锐角三角形是等边三角形D.三角形三条角平分线的交点到三边的距离相等5.已知等腰三角形ABC,∠A是顶角,且∠A等于∠C的一半,BD是△ABC的角平分线,则该图中共有等腰三角形的个数是()A.4个B.3个C.2个D.1个6.边长为2的等边三角形的面积是()A.B.C.3D.67.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12.5°C.15°D.20°8.如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=3,则DC 等于()A.B.C.3D.9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°10.如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4B.5C.6D.711.如图,已知等边△ABC的周长为6,BD是AC边的中线,E为BC延长线上一点,CD=CE,那么△BDE的周长是()A.5+2B.5+C.3+2D.3+12.以下关于等边三角形的判定:①三条边相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形④三个角相等的三角形是等边三角形其中正确的是()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是()A.B.C.20+10D.20﹣1014.已知△ABC是等腰三角形,BC边上的高恰好等于BC的一半,则∠BAC的度数是()A.75°B.90°或75°或25°C.75°或15°D.90°或75°或15°15.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN 的度数是()A.70°B.80°C.90°D.100°16.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°17.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10B.C.5D.2.518.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13B.17C.17或者22D.2219.如图所示,共有等腰三角形()A.4个B.5个C.3个D.2个20.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1B.2C.3D.421.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1B.3C.2D.422.如图,在Rt△ABC中,已知,∠ACB=90°,∠B=15°,AB边的垂直平分线交AB于E,交BC于D,且BD=13cm,则AC的长是()A.13cm B.6.5cm C.30cm D.6cm23.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③24.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形25.如图,△ABC中,AB=BC=AD,D在BC的延长线上,则角α和β的关系是()A.α+β=180°B.3α+2β=180°C.3α+β=180°D.2β=α26.如图,等边三角形ABC内有一点P,过点P向三边作垂线,垂足分别为S、Q、R,且PQ=6,PR=8,PS=10,则△ABC的面积等于()A.190B.192C.194D.19627.在边长为1的等边三角形内任意放一些点,要使得至少存在2个点之间的距离不超过,那么至少应该放几个点()A.n2+1B.2n+1C.2n D.n+128.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.29.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36B.32C.30D.2830.等腰△ABC中,∠B=50°,那么另外两个角的度数分别是_________.31.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC=_________.32.如图,在△ABC中,∠BAC=135°,AD⊥BC于D,且AB+BD=DC,那么∠C=_________°.33.如图,Rt△ABC中,∠C=90°,BD=2CD,AD是∠BAC的角平分线,则∠B=_________度.34.若一腰上的中线把一个等腰三角形的周长分为12cm和21cm两部分,则其底边长为_________cm.35.等腰三角形顶角80°,一腰上的高与底边的夹角的度数是_________.36.如果一个三角形三边长为a、b、c,且满足(a+b+c)(a﹣c)=0,则该三角形的形状是_________.37.边长为a的等边三角形的面积为_________.38.如图,△ABC中,AB=AC,点P、Q分别在AC、AB上,且AP=PQ=QC=BC,则∠A的大小是_________.39.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D,BD=8,则AC=_________.40.如右图,以等边△OAB的高OC为边向逆时针方向作等边△OCD,CD交OB于点E,再以OE为边向逆时针方向作等边△OEF,EF交OD于点G,再以OG为边向逆时针方向作等边△OGH,…,按此方法操作,最终得到△OMN,此时ON在OA上.若AB=1,则ON=_________.41.如图,在△ABC中,∠ACD=90°,CA=CB,AD是△ABC的角平分线,点E在AB上,如果DE=2CD,那么∠ADE=_________度.42.等腰三角形的周长为24,腰长为x,则x的取值范围是_________.43.如图,点C、E和点B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=12°,则∠GEF=_________度.44.如图,AB=AC,∠BAC=120°,点D在BC上,DB=DA=4,那么BC=_________.45.如图,D是等边△ABC的AC边上的中点,点E在BC的延长线上,DE=DB,△ABC的周长是9,则∠E= _________°,CE=_________.46.如图,在△ABC中,AB=AC=5,BC=6,AD=4,点E、F是中线AD上的两点,则图中阴影部分的面积是_________.47.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是_________三角形.48.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC 的度数为_________.49.如图,等边△RST的顶点R、S、T分别在等腰△ABC的边AB、BC、CA上,设∠ART=x度,∠RSB=y度,∠STC=z度,用含y、z的代数式表示x是:_________.50.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为2,则其底边的高为_________.51.如图所示,△ABC是等边三角形,点是AC的中点,过D点作DM⊥BE,垂足是MD;延长BC到E,使CE=CD,求证:BM=EM.52.如图,△ABC中,AB=AC,DE是AB的垂直平分线,D为垂足,交AC于E.若AD=5cm,△ABC的周长为27cm,求△BCE的周长.53.小明在找等边三角形ABC一边的三等分点时,他是这样做的,先做∠ABC、∠ACB的角平分线并且相交于点O,然后做线段BO、CO的垂直平分线,分别交BC于E、F,他说:“E、F就是BC边的三等分点.”你同意他的说法吗?请说明你的理由.54.如图,已知:等边三角形ABC,点D是AB的中点,过点D作DF⊥AC,垂足为F,过点F作FE⊥BC,垂足为E,若三角形ABC的边长为4.求:(1)线段AF的长度;(2)线段BE的长度.55.如图AF是△ABC的角平分线,BD⊥AF,交AF的延长线于D,DE∥AC交AB于E,求证:AE=BE.56.已知如图,△ABC中,AB=AC,D是AB的中点,DE⊥AB交AC于E,(1)若BE平分∠ABC,求∠A的度数.(2)若△ABC的周长为10,△BCE的周长为6,求BC的长度.57.如图,在△ABC中,∠B=45°,AD是∠BAC的角平分线,EF垂直平分AD,交BC的延长线于点F.求∠FAC 的大小.58.如图,在△ABC中,AB=AC,CD平分∠ACB交加于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,求∠B的度数.59.已知:如图,∠ACB=90°,D、E是AB上的两点,且AE=AC,BD=BC,EF⊥CD于F,求证:CF=EF.60.已知:如图,Rt△ABC中,∠ACB=90°,边AC的垂直平分线DE交AB于点D,交AC于E,连接DC.求证:DA=DC=DB.61.如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数.62.等腰三角形中,一边与另一边之比为3:2,该三角形周长为56,求腰长是多少?63.如图:△ABC中,∠B=2∠C,AD是BC边上的高.求证:AB+BD=DC.64.如图,在△ABC中,AB=BC=AC,BD是中线,延长BC到E,使CE=CD.(1)已知CD=3,求BE的长;(2)求证:BD=ED;(3)若点F是BE边的中点,试判断DF与BE的位置关系并简要说明理由.65.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D 作DF⊥AB于点F,说明:BC=DE+EF成立的理由.66.如图,△ABC为等边三角形,D为BC上一点,∠ADE=60°,DE交∠ACB外角平分线于E.(1)AB与CE平行吗?请说明理由.(2)请说明∠BAD=∠EDC的理由.67.如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC.68.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.69.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DE∥AB交AC于点E,DE∥AC交AB 于点F.求四边形AFDE的周长.70.如图,AD是△ABC的角平分线,且∠B=∠ADB,过点C作AD的延长线的垂线,垂足为M.(1)若∠DCM=α,试用α表示∠BAD;(2)求证:AB+AC=2AM.71.王宏和张新是同学,他们两家和学校正好构成一个等腰三角形,而且王宏家距学校2千米,张新家距学校4千米,你知道王宏与张新两家的距离吗?如果王宏家与学校相距2千米,而张新家与学校相距3千米,其他条件不变,王宏与张新两家相距多少千米?72.已知:如图,在△ABC中,∠B=∠C,点D、E、F分别是边BC、AB、AC上的点,BE=CD,连接DE、DF,有∠EDF=∠C,那么DE和DF相等吗?试说明理由.73.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)74.已知一个等腰三角形的周长为18cm.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?75.△ABC中,∠B=40°,过点A的直线将这个三角形分成2个等腰三角形,试确定∠C的度数.76.已知一个等腰三角形的两个内角分别为(2x﹣2)°和(3x﹣5)°,求这个等腰三角形各内角的度数.77.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.78.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.79.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.80.如图,已知在△ABC中,AB=AC,D是AB上一点,DE⊥BC,E是垂足,ED的延长线交CA的延长线于点F,求证:AD=AF.参考答案:1.∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B.2.∵AB=AC∴∠B=∠C∵FD⊥BC于D,DE⊥AB于E∴∠BED=∠FDC=90°∵∠AFD=158°∴∠EDB=∠CFD=180°﹣158°=22°∴∠EDF=90°﹣∠EDB=90°﹣22°=68°.故选C3.∵AB=AD,∴∠B=∠ADB,由∠BAD=80°得∠B==50°=∠ADB,∵AD=DC,∴∠C=∠ACD,∴∠C=∠ADB=25°故选D.4.A、等腰三角形两腰上的高相等,故错误;B、等腰三角形不一定是锐角三角形,故错误;C、有一个角是60°的等腰三角形是等边三角形,故错误;D、三角形三条角平分线的交点到三边的距离相等,故正确,故选D5.∵AB=AC,∴△ABC是等腰三角形,∵∠A是顶角,且∠A等于∠C的一半,∴∠A+∠C+∠ABC=∠A+2∠A+2∠A=180°,∴∠A=36°,∠C=∠ABC=72°,BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故选B.6.AB=2,∵等边三角形高线即中点,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD==,∴等边△ABC 的面积为BC•AD=×2×=,故选:B.7.∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵∠BAD=20°,∴∠DAE=∠BAC﹣∠BAD=40°,∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠AED+∠DAE=180°,∴∠ADE=∠AED=×(180°﹣40°)=70°,∵∠ADC=∠B+∠BAD=60°+20°=80°,∴∠CDE=∠CDA﹣∠ADE=80°﹣70°=10°.故选A8.连接AD.∵DE垂直平分AB,BD=3,∴BD=AD=3;∴∠B=∠BAD(等边对等角);又∵∠ABC=15°,∴∠BAC=15°;∴∠ADC=2∠BAC=30°(外角定理),∴=cos∠ADC,∴DC=AD•cos30°=.故选A.9.过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.10.∵∠A=∠P1P2A=16°∴∠P2P1P3=32°,∠P1P3P2=32°∴∠P1P2P3=116°∴∠P3P2P4=48°∴∠P3P2P4=48°∴∠P2P3P4=96°∴∠P4P3P5=52°∴∠P3P5P4=52°∴∠P3P4P5=52°∴∠P5P4P6=76°∴∠P4P6P5=76°∴∠P4P5P6=28°∴∠P6P5P7=86°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选B.11.△ABC的周长为6,∴AB=BC=AC=2,DC=CE=1,又∵∠ACB=∠CDE+∠CED∴∠CED=30°,△BDE为等腰三角形,DE=BD=∴BD+DE+BE=2+2+1=3+2.故选C12.①三条边相等的三角形是等边三角形符合等边三角形的定义,故正确;②有一个角是60°的等腰三角形是等边三角形,正确;③有两个角为60°的三角形是等边三角形,正确;④三个角相等的三角形是等边三角形,正确.故选D13.∵ED⊥BC,∠C=60°,∴∠CED=30°,设DE=x,则AE=x,且CE=x,又∵AE+CE=5,∴x+x=5,解得x=10﹣15,∴CE=5﹣(10﹣15)=20﹣10.故选D14.①BC边为底边时,AD=BC=BD=CD,所以△ABD和△ADC为等腰直角三角形,∠BAC=∠BAD+∠CAD=90°.②BC 边为腰时可分为和两种情况,垂足在三角形内部时,AD==AC,所以∠C=30°,又因为AC=BC,所以∠BAC=∠ABC=(180°﹣∠C)=75°.垂足落在三角形外时,由图知AD=AB,所以∠ABD=30°,所以∠BAC=∠C=∠ABD=15°.故答案为D15.∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴∠PMN=2∠C,∠PNM=2∠D,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D16.当顶角为∠A=50°时,∠B=65°,当顶角为∠B=70°时,∠A=55°所以A选项错误.当顶角为∠B=40°时,∠A=70°,所以B选项正确.当顶角为∠A=30°时,∠B=75°,当顶角为∠B=90°时,∠A=45°所以C选项错误.当顶角为∠A=80°时,∠B=50°,当顶角为∠B=60°时,∠A=60°所以D选项错误.故选B17.∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选C.18.4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选D 19.根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选B20.∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选D21.∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选C22.∵AB边的垂直平分线交AB于E,交BC于D(已知)∴AD=BD(线段垂直平分线的性质)∴∠DAE=∠B=15°且AD=BD=13cm(等腰三角形的性质)∴∠ADC=30°(外角性质)∴AC=AD=6.5cm.故选B23.在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B24.原式可化为2a2+2b2+2c2=2ab+2ac+2bc,即a2+b2+c2+a2+b2+c2﹣2ab﹣2ac﹣2bc=0;根据完全平方公式,得:(a﹣b)2+(c﹣a)2+(b﹣c)2=0;由非负数的性质,可知:a﹣b=0,c﹣a=0,b﹣c=0;即:a=b=c.所以△ABC是等边三角形.故选C.25.∵AB=AD,∴∠B=∠D=α,∵AB=BC∴∠BAC=∠BCA,∵∠ACB=α+β∴在等腰三角形ABC中,2(α+β)+α=180°∴3α+2β=180°,故选B26.连接AP、BP、CP,过点A作AD⊥BC于D,等边三角形面积S=BC•(PQ+PR+PS)=BC•AD故PQ+PR+PS=AD,∴AD=6+8+10=24,∵∠ABC=60°∴AB=24×=16,∴△ABC的面积S=BC•AD=×24×16=192,故选B.27.把三角形每条边分成n份,相应点之间连线,可以把三角形分成n2个边长为的小三角形,至少n2+1个点可以保证至少有两个点落在同一个小三角形内,所以那两个点的距离是不超过的.故选A28.设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D.29.①∵DE,EF,FD为等边△ABC三条中位线,∴AB=AC=BC,∴EF AB,ED AC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选C30.当∠B=50°为顶角时,此时∠A=∠C==65°;当∠B=50°为底角时,此时另一底角为50°,顶角为80°,故答案为:50°,80°或65°,65°31.根据题意,可以以点A为圆心,以AB为半径作圆,即可得出点B、C、D均在圆周上,故有∠BAC=2∠BDC=50°,即∠BDC=25°.故答案为:25°32.在DC上截取DE=BD,连接AE,∵AD⊥BC,∴∠ADB=∠ADE=90°,∵AD=AD,∴△ADB≌△ADE,∴∠B=∠AED,AE=AB,∵AB+BD=DC,DE+EC=DC,∴AE=AB=EC,∴∠AEB=2∠EAC=2∠C,∴∠B=2∠C,∵∠BAC=135°,∠B+∠C+∠BAC=180°,∴3∠C=45°,∴∠C=15°.故答案为:1533.过D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB,∴CD=DE,∵BD=2CD,∴BD=2DE,∵∠BED=90°,∴∠B=30°.故答案为:3034.设等腰三角形的腰长是xcm,底边是ycm.根据题意,得:或,解得或.再根据三角形的三边关系,知:8,8,17不能组成三角形,应舍去.所以它的底边是5cm.故答案为:535.如图:△ABC中,AB=AC,BD是边AC上的高.∵∠A=80°,且AB=AC,∴∠ABC=∠C=(180°﹣80°)÷2=50°;在Rt△BDC中,∠BDC=90°,∠C=50°;∴∠DBC=90°﹣50°=40°.故答案为:40°36.∵(a+b+c)(a﹣c)=0,∴a+b+c=0或a﹣c=0,∵a、b、c,为三角形三边,∴a+b+c=0(舍去),∴a=c∴该三角形为等腰三角形,故答案为:等腰三角形37.如图作AD⊥BC于点D.∵△ABC为等边三角形,∴∠B=60°,∴AD=AB×sin∠B=a,∴边长为a 的等边三角形的面积为×a ×a=a2,故答案为:a238.∵AB=AC,AP=PQ,QP=QC,QC=BC,∴∠ABC=∠ACB,∠A=∠AQP,∠QPC=∠QCP,∠BQC=∠B(等边对等角),设∠A=x°,则∠AQP=x°,∵在△AQP中,∠QPB是外角,∴∠QPC=∠A+∠AQP=2x°(三角形的一个外角等于和它不相邻的两个内角的和),∵在△BCQ中,∠BQC是外角,∴∠BQC=∠ACQ+∠A(三角形的一个外角等于和它不相邻的两个内角的和),∴∠BQC=3x°,∴∠B=3x°,∴∠ABC=3x°,∵在△ABC中,∠A+∠ACB+∠B=180°,∴x°+3x°+3x°=180°(三角形三个内角的和等于180°),解得x=()°,∴∠A=()°.39.∵△ABC中,∠C=90°,∠B=15°,∴∠BAC=180°﹣∠C﹣∠B=180°﹣90°﹣15°=75°.连接AD.∵ED是AB的垂直平分线,∴AD=BD=8,∠B=∠1=15°,∴∠2=∠BAC﹣∠1=75°﹣15°=60°.在Rt△ACD中,∠2=60°,∠C=90°,∴∠3=180°﹣∠C﹣∠2=180°﹣90°﹣60°=30°.∴AC=AD=BD=×8=4.40.∵OC为等边三角形的高,且等边三角形的边长为1,∴NC=,∵△OCD为等边三角形,∴∠OCD=60°,∴OE⊥CD,∴OE==()2,以此类推,当ON与OA重合时,一共旋转了10次,∴ON 的长为()10,故答案为()1041.作DF⊥AB于点F∵△ABC中,∠ACD=90°,CA=CB,∴∠CAB=∠B=45°,∵AD是△ABC的角平分线,∴DF=DC,∠DAB=22.5°,∵DE=2CD,∴DE=2DF,∴∠DEB=30°,∴∠ADE=∠DEB=﹣∠DAB=30°﹣22.5°=7.5°,故答案为7.5°.42.底边是24﹣2x,根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.得:0<24﹣2x<2x.解得6<x<12.故填6<x<1243.∵∠A=12°,AB=BC,∴∠A=∠ACB=12°,∠CBD=∠A+∠ACB=12°+12°=24°;∵BC=CD,∴∠CBD=∠CDB=24°,∴∠ECD=∠A+∠CDA=36°(外角定理);∵CD=DE,∴∠DCE=∠DEC=36°,∴∠EDF=∠A+∠AED=48°;又∵DE=EF,∴∠EDF=∠EFD=48°,∴∠GEF=∠A+∠EFD=12°+48°=60°.故答案是:6044.∵AB=AC,∠BAC=120°,∴∠B═∠C=(180°﹣∠A)=30°,∵DB=DA=4,∴∠B=∠BAD=30°,∴∠ADC=∠B+∠BAD=60°,∴∠DAC=180°﹣∠C﹣∠ADC=90°,∵∠C=30°,∴DC=2AD=2×4=8,∴BC=BD+DC=4+8=12,故答案为:1245.∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,即∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为9,∴AC=3,且∠ACB=60°,∴∠CDE=∠ACB﹣∠E=30°,即∠CDE=∠E,∴CD=CE=AC=.故答案为:30;46.∵AB=AC,BC=6,AD是△ABC的中线,∴BD=DC=BC=3,AD⊥BC,∴△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S△BEF=S△CEF,∵△ABC 的面积是:×BC×AD=×6×4=12,∴图中阴影部分的面积是S△ABC=6.故答案为:647.∵BD=CD,AD⊥BC,∴AB=AC,即三角形是等腰三角形.故填等腰.48.∵AB=AC,∴∠ABC=∠ACB,故2∠ABC+∠BAC=180°,∵等边三角形各内角为60°,∠DAE=∠DBC,∴120°+∠BAC=60°+∠ABC,又∵2∠ABC+∠BAC=180°,∴∠BAC=20°.故答案为:20°49.∵∠BRS+y=∠TSC+z,∴∠BRS﹣∠TSC=z﹣y,又∠BRS+x=y+∠TSC=120°,∴∠BRS﹣∠TSC=y﹣x,∴z﹣y=y﹣x,∴x=2y﹣z.故答案为:x=2y﹣z.50.①如图1,已知AB=AC=2,BD为腰AC上的高,可知∠ABD=30°,可得∠A=60°,即证△ABC为正三角形,即可得出底边AC 上的高等于腰上的高等于.②如图2,AB=AC=2,CD⊥BA交BA是延长线于点D,且∠CAD=30°,可得AD=1,CD=,可得BC=2,即BE=,在Rt△ABE中,AB=2,BE=,即AE=1.故答案为:1或.51.∵△ABC是等边三角形,D是AC的中点,∴BD平分∠ABC(三线合一),∴∠ABC=2∠DBE;∵CE=CD,∴∠CED=∠CDE.又∵∠ACB=∠CED+∠CDE,∴∠ACB=2∠E;又∵∠ABC=∠ACB,∴2∠DBC=2∠E,∴∠DBC=∠E,∴BD=DE.又∵DM⊥BE,∴BM=EM.52.∵DE是AB的垂直平分线.∴AB=2AD,EA=EB.∵AD=5cm,∴AB=10cm.∵△ABC的周长为27cm,∴AC+BC+AB=2cm7,AC+BC=17cm即AE+EC+BC=17cm.∴EB+EC+BC=17.即△BCE的周长为17cm53.E,F是BC的三等分点.理由:连接OE,OF,∵DE垂直平分OB∴BE=OE(线段垂直平分线上的点到线段两端点距离相等),同理OF=CF,∴∠EBO=∠BOE,∠FCO=∠FOC,∵等边三角形ABC中,∴∠ABC=∠ACB=60°(等边三角形各角相等且为60°)∵BO平分∠ABC,CO平分∠ACB∴∠EBO=∠ABC=30°,∠FCO=∠ACB=30°∴∠BOE=∠EBO=30°,∠FOC=∠FCO=30°∴∠OEF=∠BOE+∠EBO=60°,∠OFE=∠FOC+∠FCO=60°,∴△OEF是等边三角形(有两个内角60°的三角形是等边三角形)∴OE=OF=EF(等边三角形各边相等)∴BE=EF=FC,即E,F是BC的三等分点54.(1)∵D是AB的中点,∴AD==2,∵等边三角形ABC中∠A=∠C=60°,且DF⊥AC,∴∠ADF=180°﹣90°﹣60°=30°,在Rt△ADF中,AF==1;(2)FC=AC﹣AF=4﹣1=3,同理,在Rt△FEC中,EC==1.5,∴BE=BC﹣EC=4﹣1.5=2.5.故答案为:AF=1,BE=2.555.∵AF平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD=∠BAD,∴AE=ED,∵∠EDB+∠ADE=90°,∴∠BDE+∠BAD=90°,∵∠EBD+∠BAD=90°,∴∠BDE=∠EBD,∴BE=ED,∴AE=BE.56.(1)∵D是AB的中点,DE⊥AB交AC于E,∴EB=EA,∴∠A=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AB=AC,∴∠C=∠ABC=2∠ABE=2∠A,∵∠A+∠ABC+∠C=180°,即:5∠A=180°∴∠A=36°;(2)∵△ABC的周长为10,∴AB+AC+BC=10,∵△BCE的周长为6,∴BE+EC+BC=AE+EC+BC=AC+BC=6,∴AB=AC=4.∴BC=257.∵EF垂直平分AD,∴FA=FD,∴∠ADF=∠DAF,又∵∠ADF=∠B+∠BAD,∠DAF=∠FAC+∠DAC,∵∠BAD=∠DAC,∴∠FAC=∠B=45°.58.∵AE∥DC,∴∠BCD=∠E=36°,又∵CD平分∠ACB,∴∠ACB=2∠BCD=72°,∵AB=AC,∴∠B=∠ACD=72°.答:∠B的度数为72°.59.连接CE.∵AE=AC,∴∠1+∠2=∠AEC=∠3+∠B.①同理,∠2+∠3=∠1+∠A.②①+②得2∠2=∠A+∠B.∵∠ACB=90°,∴∠A+∠B=90°.∴∠2=45°.∵EF⊥CD,∴∠CFE=90°.∴∠CEF=45°=∠2,∴EF=CF.60.∵AC的垂直平分线DE,∴AD=DC,∴∠A=∠ACD,∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∴∠B=∠BCD,∴DC=BD,∴DA=DC=DB61.∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得:∠A=21°62.∵等腰三角形中,一边与另一边之比为3:2,∴设两边分别为3x,2x,根据题意得:3x+3x+2x=56或3x+2x+2x=56解得:x=7,此时腰长3x=21,或x=8,此时腰长2x=16,所以腰长为21或1663.在线段DC上取一点E,使DE=DB,连接AE,∵AD⊥BC,∴AD垂直平分BE,∴AB=AE,∴∠AEB=∠B,∵∠B=2∠C,∴∠AEB=2∠C,∴∠EAC=∠AEB﹣∠C=2∠C﹣∠C=∠C,∴AE=CE,∴CE=AE=AB,∴DC=DE+CE=AB+BD,∴AB+BD=DC.64.(1)∵AB=BC=AC,BD是中线,∴BC=AC=2CD∵CD=3,∴BC=2CD=6,CE=CD=3∴BE=BC+CE=6+3=9(2)∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).(3)∵点F是BE边的中点,∴DF是BE边的中线,∵BD=ED∴DF⊥BE65.∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF66.(1)∵等边三角形各内角为60°∴∠ACF=180°﹣60°=120°,CE为∠ACF的角平分线,∴∠ECF=60°,∵∠ABC=60°∴EC∥AB.(2)∵∠EDC+∠ADE+∠ADB=180°,∴∠EDC+∠ADB=120°,∵∠ABD+∠BAD+∠ADB=180°,∴∠BAD+∠ADB=120°,∴∠BAD=∠EDC.67.(1)连接AO,∵在等腰△ABC中,∠B和∠C的平分线相交于点O,∴等腰△ABC关于线段AO所在的直线对称,∵∠A=80°,∴∠OAC=40°(2)∵BO、CO分别平分∠ABC和∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.∴当∠A=80°时,=130°.68.证明:∵AD是△ABC的角平分线,AF平分△ABC 的外角,∴∠1=∠2,∠3=∠4,∵DF∥BA,∴∠4=∠ADE,∠1=∠F∴∠3=∠ADE,∠2=∠F∴DE=EA EF=EA∴DE=EF69.∵AB=AC=10,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=10+10=20.∴四边形AFDE的周长为2070.(1)∵CM⊥AM,∠DCM=α,∴∠CDM=∠ADB=∠B=90°﹣α,∴∠BAD=180°﹣2∠ABD=180°﹣2(90°﹣α)=2α;(2)延长AM到F使MF=AM,则有AC=CF∵AD平分∠CAB∴∠CAF=∠BAF=∠F∴CF∥AB∴∠FCD=∠ABD=∠ADB=∠CDF∴CF=DF∵AD+DF=2MA∴AB+AC=2MA71.∵王宏和张新他们两家和学校正好构成一个等腰三角形,而且王宏家距学校2千米,张新家距学校4千米,∴此等腰三角形的底边长为2,两腰均为4,∴王宏与张新两家的距离是4千米;当王宏家与学校相距2千米,而张新家与学校相距3千米时,王宏与张新两家相距可能是2千米也可能是3千米72.DE=DF.证明:∵∠CDF+∠EDF+∠BDE=180°,∠CDF+∠C+∠CFD=180°∴∠BDE=∠CFD在△EBD和△DCF中∠BDE=∠CFDBE=CD∠B=∠C∴△EBD≌△DCF∴DE=DF73.(1)解:∵∠BAC=90°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=45°,∴∠ADC=∠B+∠BAD=45°+30°=75°,∵∠DAC=∠BAC﹣∠BAD=90°﹣30°=60°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠DAC)=60°,∴∠EDC=∠ADC﹣∠ADE=75°﹣60°=15°,答:∠EDC的度数是15°.(2)解:与(1)类似:∠B=∠C=(180°﹣∠BAC)=90°﹣α,∴∠ADC=∠B+∠BAD=90°﹣α+30°=120°﹣α,∵∠DAC=∠BAC﹣∠BAD=α﹣30°,∴∠ADE=∠AED=(180°﹣∠DAC)=105°﹣α,∴∠EDC=∠ADC﹣∠ADE=(120°﹣α)﹣(105°﹣α)=15°,答:∠EDC的度数是15°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.74.(1)解:设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=,答:等腰三角形的三边长是cm ,cm ,cm.(2)解:设BC=acm,AB=AC=2bcm,∵中线BD将△ABC的周长分为1:2两部分,18×=12,18×=6,∴2b+b=6,b+a=12或2b+b=12,b+a=6,解得:a=10,b=2或b=4,a=2,∴①三角形三边长是10cm,4cm,4cm,因为4+4<10,不符合三角形三边关系定理,∴此种情况舍去,②三角形的三边长是2cm,8cm,8cm,符合三角形的三边关系定理,综合上述:符合条件的三角形三边长是8cm,8cm,2cm,答:等腰三角形的边长是8cm,8cm,2cm.75.分成两类进行研究:(1)∠B为△ABD的底角,如果∠BAD=40°,那么∠ADC=80°;如果∠ADC为△ACD的底角,那么∠C=80°或20°;如果∠ADC为△ACD的顶角,那么∠C=50°;如果∠ADB=70°,那么∠ADC=140°,所以∠C=20°(2)∠B为△ABD的顶角,这时∠ADB=70°,∠ADC=110°,所以∠C=35°;综上所述,∠C的值为20°或35°或50°或80°76.①当(2x﹣2)°和(3x﹣5)°是两个底角时,2x﹣2=3x﹣5,x=3°,∴三个内角分别是4°,4°,172°;②当2x﹣2是顶角时,2x﹣2+2(3x﹣5)=180°,解得x=24°,∴三个内角分别是46°,67°,67°;③当3x﹣5是顶角时,3x﹣5+2(2x﹣2)=180°,解得x=27°,∴三个内角分别是76°52°,52°77.(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B ,∴BC=EC=5.答:(1)∠ECD 的度数是36°;(2)BC 长是578.1)解:∵AB=AC ,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC ﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC ,∴DC=AC ,∴DC=AB 79.(1)DE+DF=CG .证明:连接AD ,则S △ABC =S △ABD +S △ACD ,即AB •CG=AB •DE+AC •DF ,∵AB=AC ,∴CG=DE+DF .(2)当点D 在BC 延长线上时,(1)中的结论不成立,但有DE ﹣DF=CG .理由:连接AD ,则S △ABD =S △ABC +S △ACD ,即AB •DE=AB •CG+AC •DF∵AB=AC ,∴DE=CG+DF ,即DE ﹣DF=CG .同理当D 点在CB 的延长线上时,则有DE ﹣DF=CG ,说明方法同上.80.证明:∵AB=AC ,∴∠B=∠C ,∵DE ⊥BC ,∴∠C+∠F=90°,∠B+∠BDE=90°,∵∠ADF=∠BDE ,∴∠F=∠ADF ,∴AD=AF。
等边三角形和等腰三角形专题练习
一、选择题
1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;
C .等边三角形
D .等腰直角三角形.
4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°
5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小
的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定
7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对
8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,
PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3
C .2
D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5
C .PQ <5
D .PQ≤5
10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题
11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.
A
O P
A
E
C
B D
13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距
离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC
的周长是____________.
16.等腰梯形的腰长为2,上、下底之和为10且有一底角为
60°,则它的两底长分别为____________.
17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.
18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠
EAF=___________. 三.解答题
19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离
相等.
20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .
21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕
EF 的长.
B
E
C
D A A
C ·
·D O
B
A
C
D
B
22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,
① 若△BCD 的周长为8,求BC 的长;
② 若BC=4,求△BCD 的周长.
23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问
△APQ 是什么形状的三角形?试说明你的结论.
参 考 答 案
第一章 轴对称图形
1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C 11.2 12.30°、75°、120° 13.4 14.5 15.15 16.4、6 17.72° 18.50° 19.提示:作CD 的中垂线和∠AOB 的平分线,两线的交点即为所作的点P ; 20.提示:在CD 上取一点E 使DE =BD ,连结AE ; 21.EF =20㎝; 22.①BC =3,② 9;
23.提示:△APQ 为等边三角形,先证△ABP ≌△ACQ 得AP =AQ ,再证∠PAQ =60°即可.。