(整理)高考复习——用样本估计总体.
- 格式:doc
- 大小:323.50 KB
- 文档页数:6
第2讲用样本估计总体1.用样本的频率分布估计总体分布(1)作频率分布直方图的步骤①求极差(01最大值与02最小值的差).03组距与04组数.05分组.06频率分布表.07频率分布直方图.(2)频率分布折线图和总体密度曲线08中点,就得到频率分布折线图.09样本容量的增加,作图时10所分的组数增加,11组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(3)茎叶图12中间的一列数,叶是从茎的13旁边生长出来的数.2.用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x -=14x1+x2+…+xn n ,反映了一组数据的平均水平.(4)标准差:是样本数据到平均数的一种平均距离,s = 15 错误!.(5)方差:s 2=161n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2](x n 是样本数据,n 是样本容量,x -是样本平均数).1.频率分布直方图与众数、中位数与平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.标准差与方差的特点反映了各个样本数据聚集于样本平均数周围的程度.标准差(方差)越小,表明各个样本数据在样本平均数周围越集中;标准差(方差)越大,表明各个样本数据在样本平均数的两边越分散.3.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x -+a .(2)若数据x 1,x 2,…,x n 的方差为s 2,则: ①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数答案 B解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.2.(2020·云川贵百校联考)某课外小组的同学们从社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量/度120140160180200户数2358 2 则这20户家庭该月用电量的众数和中位数分别是()A.180,170 B.160,180C.160,170 D.180,160答案 A解析用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B,C;将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A.3.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为()A.28 B.40 C.56 D.60 答案 B解析设中间一个小长方形的面积为x,其他8个长方形的面积和为52x,因此x+52x=1,所以x=27.所以中间一组的频数为140×27=40.故选B.4.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1C.1 D.10答案 C解析因为数据ax i+b(i=1,2,…,n)的方差是数据x i(i=1,2,…,n)的方差的a2倍,所以所求数据的方差为102×0.01=1.故选C.6.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为 .答案50解析根据题中的频率分布直方图可知,三等品的频率为1-(0.0500+0.0625+0.0375)×5=0.25,因此该样本中三等品的件数为200×0.25=50.多角度探究突破考向一统计图表及应用角度1扇形图例1(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案 A解析设新农村建设前的收入为M,则新农村建设后的收入为2M,新农村建设前种植收入为0.6M,新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A 不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,增加了一倍,所以C正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确.故选A.角度2折线图例2(多选)(2020·海南高考调研)如图所示的折线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的折线图,则下列判断正确的是()A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了1 3B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率答案ABC解析1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例,所以西安市所占比例为3287>13,故A 正确;由折线图可知,1月25日到2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B 正确;2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213-116=97例,故C 正确;2月8日到2月10日西安市新冠肺炎累计确诊病例增加了98-8888=544,2月6日到2月8日西安市新冠肺炎累计确诊病例增加了88-7474=737,显然737>544,故D 错误.角度3 频率分布直方图例3 (1)(2020·天津高考)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .36答案 B解析 根据频率分布直方图可知,直径落在区间[5.43,5.47)之间的频率为(6.25+5.00)×0.02=0.225,则直径落在区间[5.43,5.47)内零件的个数为80×0.225=18.故选B.(2)(多选)(2020·临沂模拟)在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中正确的有( )A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000人C.考生竞赛成绩的平均分约为70.5分D.考生竞赛成绩的中位数为75分答案ABC解析根据频率分布直方图得,成绩出现在[70,80]的频率最大,故A正确;不及格考生数为10×(0.010+0.015)×4000=1000,故B正确;根据频率分布直方图估计考试的平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;0.1+0.15+0.2=0.45<0.5,0.1+0.15+0.2+0.3=0.75>0.5,所以考生竞赛成绩的中位数为70+0.5-0.450.3×10≈71.67,故D错误.故选ABC. 常见统计图的特点(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.(3)准确理解频率分布直方图的数据特点①频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆;②频率分布直方图中各小长方形的面积之和为1,这是解题的关键,常利用频率分布直方图估计总体分布.1.(2020·葫芦岛模拟)书籍是人类的智慧结晶和进步阶梯,阅读是一个国家的文化根基和创造源泉.2014年以来,“全民阅读”连续6年被写入政府工作报告.某高中为了解学生假期自主阅读书籍类型,在全校范围内随机抽取了部分学生进行调查.学生选择的书籍大致分为以下四类:A历史类、B文学类、C科学类、D哲学类.根据调查的结果,将数据整理成如下的两幅不完整的统计图,其中a-b=10.根据上述信息,可知本次随机抽查的学生中选择A历史类的人数为()A.45 B.30C.25 D.22答案 B解析由题可知,样本容量为30-180.1=120,所以选择A历史类的人数为120-42-30-18=30.故选B.2.(2020·汕头二模)新型冠状病毒疫情发生后,口罩的需求量大增,某口罩工厂为提高生产效率,开展技术创新活动,提出两种新的生产方式,为比较两种生产方式的效率,选取80名工人,将他们随机分成两组,每组40人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.第一种生产方式40名工人完成同一生产任务所用时间(单位:min)如表:68728577838290838984 88877691799087918692 88878176959463878571 96637485929987827569 第二种生产方式40名工人完成同一生产任务所用时间(单位:min)如扇形图所示:(1)请填写第一种生产方式完成任务所用时间的频数分布表并作出频率分布直方图:生产时间[60,70)[70,80)[80,90)[90,100]频数(2)试从扇形图中估计第二种生产方式的平均数;(3)根据频率分布图和扇形图判断哪种生产方式的效率更高?并说明理由.解(1)第一种生产方式完成任务所用时间的频数分布表如下:生产时间[60,70)[70,80)[80,90)[90,100]频数481810频率分布直方图如下:(2)从扇形图中估计第二种生产方式的平均数为65×0.25+75×0.5+85×0.2+95×0.05=75.5 min.(3)从频率分布直方图中估计第一种生产方式的平均数为65×0.1+75×0.2+85×0.45+95×0.25=83.5 min,从平均数的角度发现:用第一种生产方式的工人完成生产任务所需要的时间高于80分钟;用第二种生产方式的工人完成生产任务所需要的时间低于80分钟,因此第二种生产方式的效率更高.考向二用样本估计总体例4(1)(多选)为了了解某校高一年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论正确的是()A.该校高一年级学生1分钟仰卧起坐的次数的中位数为26.25次B.该校高一年级学生1分钟仰卧起坐的次数的众数为27.5次C.该校高一年级学生1分钟仰卧起坐的次数超过30次的约有320人D.该校高一年级学生1分钟仰卧起坐的次数少于20次的约有32人答案ABC解析由题图可知中位数是26.25次,众数是27.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校高一年级学生1分钟仰卧起坐的次数超过30次的约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校高一年级学生1分钟仰卧起坐的次数少于20次的约有160人.故A,B,C正确,D错误,故选ABC.(2)(2020·香坊区校级二模)2020年初新冠病毒疫情爆发,全国范围开展了“停课不停学”的线上教学活动.哈六中数学组积极研讨网上教学策略:先采取甲、乙两套方案教学,并对分别采取两套方案教学的班级的7次线上测试成绩进行统计如图所示:①请填写如表(要求写出计算过程)平均数方差甲乙②从下列三个不同的角度对这次方案选择的结果进行分析:a.从平均数和方差相结合看(分析哪种方案的成绩更好);b.从折线图上两种方案的走势看(分析哪种方案更有潜力).解①由图象可得,x-甲=17×(109+111+113+115+117+119+121)=115,x-乙=17×(121+115+109+115+113+117+115)=115,则s2甲=17×(62+42+22+02+22+42+62)=16,s2乙=17×(62+02+62+02+22+22+02)=807≈11.43,故表格第一行:115,16;第二行:115,约为11.43.②a.因为x-甲=x-乙,s2甲>s2乙,故乙方案更好.b.由折线图可知甲走势稳定上升,故甲方案更好.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述数据的集中趋势,方差和标准差描述数据的波动大小.(2)方差的简化计算公式:s2=1n[(x21+x2+…+x2n)-n x-2],或写成s2=1n(x21+x2+…+x2n)-x-2,即方差等于原始数据平方的平均数减去平均数的平方.3.某学校共有学生2000人,其中高一800人,高二、高三各600人,学校对学生在暑假期间每天的读书时间做了调查统计,全体学生每天的读书时间的平均数为x-=3小时,方差为s2=1.966,其中三个年级学生每天读书时间的平均数分别为x-1=2.7,x-2=3.1,x-3=3.3,又已知高一学生、高二学生每天读书时间的方差分别为s21=1,s2=2,则高三学生每天读书时间的方差s23= .答案 3解析由题意可得,1.966=8002000×[1+(2.7-3)2]+6002000×[2+(3.1-3)2]+6002000×[s23+(3.3-3)2],解得s23=3.4.(2020·南宁模拟)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间(x--2s,x-+2s)之外,则认为该零件属于“不合格”的零件,其中x-,s分别为样本平均数和样本标准差,计算可得s≈15(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100 cm ,试判断该零件是否属于“不合格”的零件.解 (1)x -=35×10×0.005+45×10×0.010+55×10×0.015+65×10×0.030+75×10×0.020+85×10×0.015+95×10×0.005=66.5.(2)x -+2s =66.5+30=96.5,x --2s =66.5-30=36.5,100>96.5,∴该零件属于“不合格”的零件.一、单项选择题1.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A.x -A >x -B ,s A >s BB .x -A <x -B ,s A >s B C.x -A >x -B ,s A <s BD .x -A <x -B ,s A <s B答案 B解析 由图可得样本A 的数据都在10及以下,样本B 的数据都在10及以上,所以x -A <x -B ,样本B 的数据比样本A 的数据波动幅度小,所以s A >s B ,故选B.2.在高一期中考试中,甲、乙两个班的数学成绩统计如下表: 班级 人数 平均数 方差甲20x-甲2乙30x-乙3其中x-甲=x-乙,则两个班数学成绩的方差为()A.3 B.2C.2.6 D.2.5答案 C解析由题意可知两个班的数学成绩的平均数为x-=x-甲=x-乙,则两个班数学成绩的方差为s2=2020+30[2+(x-甲-x-)2]+3020+30[3+(x-乙-x-)2]=2020+30×2+3020+30×3=2.6.3.(2020·河南省名校联考)如图给出的是某小区居民一段时间内访问网站的比例图,则下列选项中不超过21%的为()A.腾讯与百度的访问量所占比例之和B.网易与搜狗的访问量所占比例之和C.淘宝与论坛的访问量所占比例之和D.新浪与小说的访问量所占比例之和答案 B解析由于网易与搜狗的访问量所占比例之和为18%,不超过21%,故选B.4.(2020·安庆模拟)某单位统计了本单位的职工一天行走步数(单位:百步)得到如图所示的频率分布直方图,估计该单位职工一天行走步数的平均值为(同一组中的数据用该组区间的中点值为代表)()A.125 B.125.6C.124 D.126答案 B解析由频率分布直方图,估计该单位职工一天行走步数的平均值为x-=60×0.002×20+80×0.006×20+100×0.008×20+120×0.012×20+140×0.010×20+160×0.008×20+180×0.002×20+200×0.002×20=125.6.故选B.5.(2020·威海一模)恩格尔系数是食品支出总额占个人消费支出总额的比重,其数值越小说明生活富裕程度越高.统计改革开放40年来我国历年城镇和农村居民家庭恩格尔系数,绘制了如图的折线图.根据该折线图,下列结论错误的是()A.城镇居民家庭生活富裕程度不低于农村居民家庭B.随着改革开放的不断深入,城镇和农村居民家庭生活富裕程度越来越高C.1996年开始城镇和农村居民家庭恩格尔系数都低于50%D.随着城乡一体化进程的推进,城镇和农村居民家庭生活富裕程度差别越来越小答案 C解析由折线图可知,对于A,因为城镇的恩格尔系数较小,故城镇居民家庭生活富裕程度不低于农村居民,A正确;对于B,城镇和农村的恩格尔系数整体上都在下降,说明城镇和农村居民家庭生活富裕程度越来越高,B正确;对于C,1996~2000年我国农村居民家庭恩格尔系数高于50%,C错误;对于D,结合图形得到城镇和农村家庭恩格尔系数之间的差距越来越小,说明城镇和农村家庭生活富裕程度差别越来越小,D正确.故选C.6.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案 D解析由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;平均最高气温高于20 ℃的月份为六月、七月、八月,只有3个,D错误.7.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布扇形图和90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是()注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多答案 D解析由题图易知互联网行业从业人员90后占56%,A正确;仅90后从事技术岗位的人数占总人数的0.22176,超过20%,B正确;90后从事运营岗位的人数占总人数的0.56×0.17=0.0952>0.03,C正确;90后从事技术岗位的人数占总人数的0.22176<0.41,而题中未给出80后从事互联网行业岗位分布情况,故D不一定正确.二、多项选择题8.(2020·青岛模拟)近几年,在国家大力支持和引导下,中国遥感卫星在社会生产和生活各领域的应用范围不断扩大,中国人民用遥感卫星系统研制工作取得了显著成绩,逐步形成了气象、海洋、陆地资源和科学试验等遥感卫星系统.如图是2007~2018年中国卫星导航与位置服务产业总体产值规模(万亿)及增速(%)的统计图,则下列结论中正确的是()A.2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%B.若2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,总体产值规模将达3672亿元C.2007~2018年中国卫星导航与位置服务产业总体产值规模逐年增加,但不与时间成正相关D.2007~2018年中国卫星导航与位置服务产业总体产值规模的增速中有些与时间成负相关答案ABD解析对于A,根据图中数据可知2017年中国卫星导航与位置服务产业总体产值规模达到2550亿元,较2016年增长20.40%,故A正确;对于B,2019年中国卫星导航与位置服务产业总体产值规模保持2018年的增速,即为20%,故2019年总体产值规模为3060×(1+20%)=3672(亿元),故B正确;对于C,根据正相关的定义,散点位于从左下角到右上角区域,则两个变量具有正相关关系,故C错误;对于D,根据负相关的定义,散点位于从左上角到右下角区域,则两个变量具有负相关关系,故D 正确.故选ABD.9.为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论正确的是()A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5次C.该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人D.该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有32人答案ABC解析由题图可知中位数是26.25次,众数是27.5次,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有160人.故A,B,C正确,D错误.故选ABC.10.在发生某公共卫生事件期间,我国有关机构规定:“该事件在一段时间没有发生规模群体感染的标志为连续10天,每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,不一定符合该标志的是() A.甲地总体均值为3,中位数为4B.乙地总体均值为2,总体方差大于0C.丙地中位数为3,众数为3D.丁地总体均值为2,总体方差为3答案ABC解析由于平均数和中位数不能确定某一天的病例不超过7人,A不一定符合该标志;当总体方差大于0,不知道总体方差的具体数值,因此不能确定数据的波动大小,B不一定符合该标志;中位数和众数也不能确定某一天的病例不超过7人,C不一定符合该标志;当总体平均数是2,若有一个数据超过7,则方差就超过3,D一定符合该标志.故选ABC.三、填空题11.(2021·湖北宜昌高三月考)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):人入选,则入选的最佳人选应是 . 答案 甲解析 因为x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.12.已知30个数据的60%分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是 .答案 8.6解析 由30×60%=18,设第19个数据为x ,则7.8+x 2=8.2,解得x =8.6,即第19个数据是8.6.四、解答题13.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.14.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整; (2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)解 (1)(2)月均用水量的最低标准应定为2.5 t .样本中月均用水量不低于2.5 t 的居民占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5 t.(3)这100位居民的月均用水量的平均数为0.5×⎝ ⎛⎭⎪⎪⎫14×0.10+34×0.20+54×0.30+74×0.40+94×0.60+114×0.30+134×0.10=1.875(t).。
1.6 用样本估计总体用样本估计总体(两种):1.一种是:用样本的频率分布估计总体的分布。
2.另一种是:用样本的数字特征(平均数标准差等)估计总体的数字特征。
例1 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为 A.0.6 h B.0.9 h C.1.0 h D.1.5 h 解析:505.020)5.11(1025⨯++⨯+⨯=0.9.例2 把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为___________.分析:已知前七组的累积频率为0.79,而要研究后三组的问题,因此应先求出后三组的频率之和为1-0.79=0.21,进而求出后三组的共有频数,或者先求前七组共有频数后,再计算后三组的共有频数.解:由已知知前七组的累积频数为0.79×100=79, 故后三组共有的频数为21,依题意qq a --⋅1)1(31=21,a 1(1+q +q 2)=21(整解方程)∵q>2, ∴1+q +q 2>7 .∴a 1=1,q =4.∴后三组频数最高的一组的频数为16. 答案:16点评:此题分析只按第二种思路给出了解答。
例3 某班学生在一次数学考试中成绩分布如下表:那么分数在[100,110)中的频率和分数不满110分的累积频率分别是_____、_______(精确到0.01).解析:由频率计算方法知:总人数=45. 分数在[100,110)中的频率为458=0.178≈0.18. 分数不满110分的累积频率为458652+++=4521≈0.47.答案:0.18 0.47例4 对某电子元件进行寿命追踪调查,情况如下: (1)列出频率分布表;(2)画出频率分布直方图和累积频率分布图; (3)估计电子元件寿命在100~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.分析:通过本题可掌握总体分布估计的各种方法和步骤. 解:(1)频率分布表如下:(2)频率分布直方图如下:(3)由累积频率分布图可以看出,寿命在100~400 h 内的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100~400 h 内的概率为0.65.(4)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的概率为0.35.点评:画频率分布条形图、直方图时要注意纵、横坐标轴的意义.例5 1936年,美国进行总统选举,竞选的是民主党的罗斯福和共和党的兰登·罗斯福是在任的总统.美国权威的《文学摘要》杂志社,为了预测总统候选人谁能当选,采用了大规模的模拟选举,他们以电话簿上的地址和俱乐部成员名单上的地址发出1000万封信,收到回信200万封,在调查史上,样本容量这么大是少见的,杂志社花费了大量的人力和物力,他们相信自己的调查统计结果,即兰登将以57%对43%的比例获胜,并大力进行宣传.最后选举结果却是罗斯福以62%对38%的巨大优势获胜,连任总统. 这个调查使《文学摘要》杂志社威信扫地,不久只得关门停刊. 试分析这次调查失败的原因.解:失败的原因:抽样方法不正确.样本不是从总体(全体美国公民)中随机地抽取,1936年,美国有私人电话和参加俱乐部的家庭,都是比较富裕的家庭.1929~1933年的世界经济危机,使美国经济遭到沉重打击,“罗斯福新政”动用行政手段干预市场经济,损害了部分富人的利益,但广大的美国人民却从中得到了好处.所以,从这部分富人中抽取的样本严重偏离了总体,导致样本不具有代表性.例6.1895年,在伦敦有106块男性头盖骨被挖掘出土,经考证,头盖骨的主人死于1665年~1666年之间的大瘟疫,人类学家分别测量了这些头盖骨的宽度,数据如下所示(单位:mm ):hh请你估计在1665年~1666年之间,英国男性头盖骨宽度的分布情况。
⾼考数学⽤样本估计总体知识点⼤全 ⾼中数学课程标准中,⽤样本估计总体已经成为必修内容,下⾯是店铺给⼤家带来的⾼考数学⽤样本估计总体知识点⼤全,希望对你有帮助。
⾼考数学⽤样本估计总体知识点 ⼀、频率分布的概念 1、概念:频率分布是指⼀个样本数据在各个⼩范围内所占⽐例的⼤⼩.⼀般⽤频率分布直⽅图反映样本的频率分布.其⼀般步骤为: (1)计算⼀组数据中最⼤值与最⼩值的差,即求极差 (2)决定组距与组数 (3)将数据分组 (4)列频率分布表 (5)画频率分布直⽅图 2、频率分布直⽅图的特征: (1)从频率分布直⽅图可以清楚的看出数据分布的总体趋势. (2)从频率分布直⽅图得不出原始的数据内容,把数据表⽰成直⽅图后,原有的具体数据信息就被抹掉了。
注; (1)直⽅图中各⼩长⽅形的⾯积之和为1. (2)直⽅图中纵轴表⽰频率频率,故每组样本的频率为组距×,即矩形的⾯积. 组距组距。
(3)直⽅图中每组样本的频数为频率×总体数. 3、频率分布折线图、总体密度曲线 (1)频率分布折线图的定义: 连接频率分布直⽅图中各⼩长⽅形上端的中点,就得到频率分布折线图。
(2)总体密度曲线的定义: 在样本频率分布直⽅图中,样本容量越⼤,所分组数越多,相应的频率折线图会越来越接近于⼀条光滑曲线,统计中称这条光滑曲线为总体密度曲线。
⼆、茎叶图 当数据是两位有效数字时,⽤中间的数字表⽰⼗位数,即第⼀个有效数字,两边的数字表⽰个位数,即第⼆个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶⼦,因此通常把这样的图叫做茎叶图。
1、茎叶图的特征: (1)⽤茎叶图表⽰数据有两个优点:⼀是在统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;⼆是茎叶图中的数据可以随时记录,随时添加,⽅便记录与表⽰。
(2)茎叶图只便于表⽰两位有效数字的数据,⽽且茎叶图只⽅便记录两组的数据,两个以上的数据虽然能够记录,但是没有表⽰两个记录那么直观,清晰。
用样本估算总体
◎ 用样本估算总体的定义
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的知识扩展
用样本估计总体的两个手段:
(1)用样本的频率分布估计总体的分布;
(2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。
◎ 用样本估算总体的教学目标
1、通过实例,体会用样本估计总体的思想。
2、能够根据统计结果作出合理的判断和推测,能与同学进行交流,用清晰的语言表达自己的观点。
3、根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。
◎ 用样本估算总体的考试要求
能力要求:了解
课时要求:40
考试频率:选考
分值比重:2。
2025年高考数学一轮复习课时作业-用样本估计总体【原卷版】(时间:45分钟分值:70分)【基础落实练】1.(5分)为加强学校体育工作,推动青少年文化学习和体育锻炼协调发展.某学校对高一年级6名学生某日在校体育锻炼时长(单位:分钟)进行了统计,记录如下:45,62,51,70,66,59,则该组数据的80%分位数为()A.51B.62C.66D.642.(5分)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.183.(5分)已知一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,则另一组数据3x1-2, 3x2-2,3x3-2,3x4-2,3x5-2的平均数、方差分别为()A.2,12B.2,1C.4,32D.4,924.(5分)某地为践行“绿水青山就是金山银山”的人与自然和谐共生的发展理念,对该地企业已处理的废水进行实时监测.下表是对A,B两家企业10天内已处理的废水的某项指标值的检测结果.下列说法正确的是()A43727398638665758178B82687137616558687794A.A企业该指标值的极差较大B.A企业该指标值的中位数较小C.B企业该指标值的平均数较大D.B企业该指标值的众数与中位数相等5.(5分)(多选题)(2024·湛江模拟)某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列说法正确的有()A.乙同学体温的极差为0.4B.乙同学的体温比甲同学的体温更稳定C.乙同学体温的众数为36.4,中位数与平均数相等D.甲同学体温的第70百分位数为36.56.(5分)某汽车研究院现有300名研究员,他们的学历情况如图所示,该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科生的比例下降到15%,硕士生的比例不变,则该研究院今年计划招聘的硕士生人数为________.7.(5分)(2023·厦门模拟)已知样本数据2,4,8,m的极差为10,其中m>0,则该组数据的方差为__________.8.(10分)甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【能力提升练】9.(5分)某校排球社的同学为训练动作组织了垫排球比赛,以下为根据排球社50位同学的垫球个数画的频率分布直方图,所有同学垫球数都在5至40之间.估计垫球数的样本数据的第75百分位数是()A.17.5B.18.75C.27D.2810.(5分)(多选题)(2023·新高考Ⅰ卷)有一组样本数据x1,x2,x3,x4,x5,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,x3,x4,x5,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,x3,x4,x5,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,x3,x4,x5,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,x3,x4,x5,x6的极差11.(5分)(2024·重庆模拟)某学校为了更好地关注青少年的心理健康,对某年级的全体同学进行了一次心理健康测试,测试成绩满分为100分,其中1600名同学的测试成绩的频率分布直方图如图所示,则这1600名同学测试成绩的第65百分位数为__________.12.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的成绩(成绩均为整数,满分为100分)进行统计,所有学生的成绩都不低于60分,将这50名学生的成绩(单位:分)进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100],得到如图所示的频率分布直方图.(1)求图中m的值,并估计此次竞赛活动学生成绩的中位数;(2)根据频率分布直方图,估计此次竞赛活动成绩的平均数.若对成绩不低于平均数的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.2025年高考数学一轮复习课时作业-用样本估计总体【解析版】(时间:45分钟分值:70分)【基础落实练】1.(5分)为加强学校体育工作,推动青少年文化学习和体育锻炼协调发展.某学校对高一年级6名学生某日在校体育锻炼时长(单位:分钟)进行了统计,记录如下:45,62,51,70,66,59,则该组数据的80%分位数为()A.51B.62C.66D.64【解析】选C.将6名学生该日在校体育锻炼时长记录从小到大排列为45,51,59,62,66,70,因为80%×6=4.8,所以该组数据的80%分位数为66.2.(5分)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.18【解析】选B.志愿者的总人数为20=50,所以第三组的人数为50×0.36=18,(0.24+0.16)×1有疗效的人数为18-6=12.3.(5分)已知一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,则另一组数据3x1-2, 3x2-2,3x3-2,3x4-2,3x5-2的平均数、方差分别为()A.2,12B.2,1C.4,32D.4,92【解析】选D.因为一组数据x1,x2,x3,x4,x5的平均数为2,方差为12,所以另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数为3×2-2=4,方差为32×12=92.4.(5分)某地为践行“绿水青山就是金山银山”的人与自然和谐共生的发展理念,对该地企业已处理的废水进行实时监测.下表是对A,B两家企业10天内已处理的废水的某项指标值的检测结果.下列说法正确的是()A43727398638665758178B82687137616558687794A.A企业该指标值的极差较大B.A企业该指标值的中位数较小C.B企业该指标值的平均数较大D.B企业该指标值的众数与中位数相等【解析】选D.将A,B两家企业10天内已处理的废水的某项指标值的检测结果从小到大排列:A企业:43,63,65,72,73,75,78,81,86,98.B企业:37,58,61,65,68,68,71,77,82,94.A企业该指标值的极差为98-43=55,B企业该指标值的极差为94-37=57,A错误;A企业该指标值的中位数为73+752=74,B企业该指标值的中位数为68+682=68,B错误;A企业该指标值的平均数为43+63+65+72+73+75+78+81+86+9810=73.4,B企业该指标值的平均数为37+58+61+65+68+68+71+77+82+9410=68.1,C错误;由上可知,B企业该指标值的众数与中位数都为68,D正确.5.(5分)(多选题)(2024·湛江模拟)某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列说法正确的有()A.乙同学体温的极差为0.4B.乙同学的体温比甲同学的体温更稳定C.乙同学体温的众数为36.4,中位数与平均数相等D.甲同学体温的第70百分位数为36.5【解析】选BCD.选项A,乙同学体温的极差为36.5-36.3=0.2,故A错误;选项B,从题中折线图上可以看出,乙同学的体温比甲同学的体温更稳定,故B正确;选项C,乙同学的体温从低到高依次为36.3℃,36.3℃,36.4℃,36.4℃,36.4℃, 36.5℃,36.5℃,故众数为36.4,而中位数和平均数都是36.4,故C正确;选项D,甲同学的体温从低到高依次为36.2℃,36.2℃,36.4℃,36.4℃,36.5℃, 36.5℃,36.6℃,由70%×7=4.9,可知数据的第70百分位数为第5项数据36.5,故D 正确.6.(5分)某汽车研究院现有300名研究员,他们的学历情况如图所示,该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科生的比例下降到15%,硕士生的比例不变,则该研究院今年计划招聘的硕士生人数为________.【解析】根据题意,设今年计划招聘的硕士生为x人,博士生为y人,又由现有研究员300人,其中本科生有300×20%=60(人),硕士生有300×40%=120(人),=0.15,=0.4,解得 =40, =60.答案:407.(5分)(2023·厦门模拟)已知样本数据2,4,8,m的极差为10,其中m>0,则该组数据的方差为__________.【解析】由题意得m-2=10,所以m=12,所以该组数据的平均数为 =2+4+8+124=132,由方差的计算公式可知:s2=14 2-+(4-132)2+(8-132)2+12- =594.答案:5948.(10分)甲、乙两名学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)求两位学生预赛成绩的平均数和方差;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.【解析】(1)甲=18×(82+81+79+78+95+88+93+84)=85,乙=18×(92+95+80+75+83+80+90+85)=85,甲2=18×[(82-85)2+(81-85)2+(79-85)2+(78-85)2+(95-85)2+(88-85)2+(93-85)2+(84-85)2] =35.5,乙2=18×[(92-85)2+(95-85)2+(80-85)2+(75-85)2+(83-85)2+(80-85)2+(90-85)2+(85-85)2] =41.(2)由(1)知甲=乙,甲2< 乙2,甲的成绩较稳定,所以派甲参赛比较合适.【能力提升练】9.(5分)某校排球社的同学为训练动作组织了垫排球比赛,以下为根据排球社50位同学的垫球个数画的频率分布直方图,所有同学垫球数都在5至40之间.估计垫球数的样本数据的第75百分位数是()A.17.5B.18.75C.27D.28【解析】选D.垫球数在区间[5,25)内的人数占总人数的(0.01+0.01+0.04+0.06)×5×100%=60%,垫球数在区间[5,30)内的人数占总人数的(0.01+0.01+0.04+0.06+0.05)×5×100%=85%,所以第75百分位数位于区间[25,30)内,且25+5×0.75-0.60.85-0.6=28,所以估计垫球数的样本数据的第75百分位数是28.10.(5分)(多选题)(2023·新高考Ⅰ卷)有一组样本数据x1,x2,x3,x4,x5,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,x3,x4,x5,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,x3,x4,x5,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,x3,x4,x5,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,x3,x4,x5,x6的极差【解析】选BD.对于A,如1,2,2,2,3,5的平均数为2.5,而2,2,2,3的平均数为2.25,不相等,故A错误;对于B,不妨设x1≤x2≤x3≤x4≤x5≤x6,其中位数为 3+ 42,x2,x3,x4,x5的中位数为 3+ 42,所以B正确;对于C,x1,x2,x3,x4,x5,x6的波动更大,所以C错误;对于D,不妨设x1≤x2≤x3≤x4≤x5≤x6,则x5-x2≤x6-x1,故D正确.11.(5分)(2024·重庆模拟)某学校为了更好地关注青少年的心理健康,对某年级的全体同学进行了一次心理健康测试,测试成绩满分为100分,其中1600名同学的测试成绩的频率分布直方图如图所示,则这1600名同学测试成绩的第65百分位数为__________.【解析】因为(0.01+0.01+m+0.02+0.02)×10=1,所以m=0.04,又0.1+0.1+0.4=0.6, 0.1+0.1+0.4+0.2=0.8,所以第65百分位数位于第4组中,设第65百分位数为a,则0.1+0.1+0.4+(a-80)×0.02=0.65,解得a=82.5.答案:82.512.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有500名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了50名学生的成绩(成绩均为整数,满分为100分)进行统计,所有学生的成绩都不低于60分,将这50名学生的成绩(单位:分)进行分组,第一组[60,70),第二组[70,80),第三组[80,90),第四组[90,100],得到如图所示的频率分布直方图.(1)求图中m的值,并估计此次竞赛活动学生成绩的中位数;(2)根据频率分布直方图,估计此次竞赛活动成绩的平均数.若对成绩不低于平均数的同学进行奖励,请估计在参赛的500名学生中有多少名学生获奖.【解析】(1)由题中频率分布直方图知(0.01+m+0.04+0.02)×10=1,解得m=0.03;设此次竞赛活动学生成绩的中位数为x0,因为数据落在[60,80)内的频率为0.4,落在[60,90)内的频率为0.8,从而可得80<x0<90,由(x0-80)×0.04=0.5-0.4,得x0=82.5,所以估计此次竞赛活动学生成绩的中位数为82.5.(2)由题中频率分布直方图及(1)知, =65×0.1+75×0.3+85×0.4+95×0.2=82,此次竞赛活动学生成绩不低于82的频率为0.2+90-8210×0.4=0.52,则获奖的学生有500×0.52=260(名),所以估计此次竞赛活动成绩的平均数为82,在参赛的500名学生中有260名学生获奖.。
高考数学专题复习:用样本估计总体数字特征一、单选题1.已知一组数据1x ,2x ,3x ,4x ,5x ,6x 的方差是13,那么另一组数据121x -,221x -,321x -,421x -,521x -,621x -的方差是( )A .13B .23C .43D .832.已知样本9,x ,10,y ,11的平均数是10,标准差是2,则xy 的值为( ) A .96B .97C .91D .873.给定一组数据:2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,则这组数据的第25百分位数是( ) A .3.0B .3.2C .4.4D .5.34.若样本1x ,2x ,…n x ,的平均数.方差分别为x 、2s ,则样本135x +,235x +,35n x +,的平均数.方差分别为( ) A .x 、2s B .35x +、2s C .35x +、29sD .35x +、()235s +5.某学校有男生400人,女生600人.为调查该校全体学生每天睡眠时间,采用分层抽样的方法抽取样本,计算得男生每天睡眠时间均值为7.5小时,方差为1,女生每天睡眠时间为7小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为( ). A .0.45B .0.62C .0.7D .0.766.下表是校篮球队某队员若干场比赛的得分数据.则该队员得分的40百分位数是( ) A .5B .6C .7D .87.四名同学各掷骰子5次,记录每次骰子出现的点数并分别对每位同学掷得的点数进行统计处理,在四名同学以下的统计结果中,可以判断出该同学所掷骰子一定没有出现点数1的是( )A .平均数为4,中位数为5B .平均数为5,方差为2.4C .中位数为4,众数为5D .中位数为4,方差为2.88.已知一组数据如下:1,2,5,6,11,则该组数据的方差为( ) A .12.4B .12.3C .12.2D .12.19.已知一组数据的平均数是3,方差是4,且这组数据的平方和是这组数据和的平方的19,则这组数据的个数是( ) A .10B .13C .15D .1610.小明和小红5次考试数学成绩统计如下:则成绩较为稳定的那个同学成绩的方差为( ) A .110B .108C .22D .411.已知一组数据的频率分布直方图如图所示,则估计该组数据的平均数为( )A .64B .65C .66D .6712.已知一组数据为85,87,88,90,92,则这组数据的第60百分位数为( ) A .87 B .87.5 C .89 D .91二、填空题13.数据35124a a a a a ,,,,的方差22222123450.8)20(s a a a a a =++-++,则样本数据121a +,221a +,345212121a a a +++,,的平均数为________. 14.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数小于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差. 上面说法正确的是________.15.在某中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,若不知道样本数据,只知道抽取了男生30人,其身高平均数170x =,抽取了女生20人,其身高平均数160y =.据此估计高一年级全体学生身高的值为________.16.已知样本数据1x ,2x ,3x ,4x ,5x 的方差为2,则样本数据132x -,232x -,332x -,432x -,532x -的方差为________. 三、解答题17.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中x 的值; (2)求月平均用电量的中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18.某校对高一期中数学考试成绩(单位:分)进行分析,随机抽取100名学生,将分数按照[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分成6组,制成了如图所示的频率分布直方图:(1)估计该校高一期中数学考试成绩的均值;(2)估计该校高一期中数学考试成绩的第80百分位数.19.某种产品的质量以其质量指标值m 衡量,并按照质量指标值m 划分等级如下:现在从某企业生产的这种产品中随机抽取了200件作为样本,检验其质量指标值m ,得到的频率分布直方图如图所示(每组只含最小值,不含最大值).(1)求第75百分位数(精确到0.1);(2)在样本中,按照产品等级用比例分配的分层随机抽样的方法抽取8件产品,则这8件产品中,一等品的件数是多少;(3)将频率视为概率,已知该企业的这种产品中每件一等品的利润是10元,每件二等品和三等品的利润都是6元,试估计该企业销售600件这种产品,所获利润是多少元.20.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)90,100.50,60,[)80,90,[]60,70,[)70,80,[)(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数.参考答案1.C 【分析】利用方差的性质求解. 【详解】因为数据1x ,2x ,3x ,4x ,5x ,6x 的方差是13,由方差的性质知,数据121x -,221x -,321x -,421x -,521x -,621x -的方差是214233⨯=.故选:C. 2.C 【分析】由平均数得20x y +=,由标准差得()()22101018x y -+-=,联立可得xy . 【详解】 依题意得91011105x y++++=,则20x y +=①.()()()()()()()222222221129101010111010102101055x y x y ⎡⎤⎡⎤=-+-+-+-+-=+-+-⎣⎦⎣⎦,则()()22101018x y -+-=②.由①②得22218x y +=,所以()()2224002189122x y x y xy +-+-===. 故选:C. 3.B 【分析】根据1025% 2.5⨯=,判断该组数据的第25百分位数即可. 【详解】这组数据是从小到大排序的,共10个数,而1025% 2.5⨯=,所以这组数据的第25百分位数是第3个数据,即3.2. 故选:B. 4.C【分析】由样本数据由i x 变为35i x +,结合平均数、方差的性质,即求新样本中的平均数、方差. 【详解】由题意,12...n x x x x n-+++=,2211()n i i s x x n -==-∑,∴样本135x +,235x +,35n x +的平均数135x x --=+,而2219s s =. 故选:C 5.D 【分析】利用均值的计算公式以及方差的计算公式,准确运算,即可求解. 【详解】由题意,总体的均值为4006007.577.210001000⨯+⨯=, 根据分层抽样的性质,可得总体的方差为:22400600[1(7.57.2)][0.5(7.27)]0.4360.4240.7610001000⨯+-+⨯+-=+=. 故选:D. 6.C 【分析】按所给数据求出各得分的频率,然后根据百分位数定义计算. 【详解】由所给数据,总数为212311111++++++=, 得分3,6,7,10,11,13,30的频率分别为2123111,,,,,,11111111111111, 前3个得分频率和为540%11>,前2个得分的频率和为340%11<,因此40百分位数应该是第三个频率211对应的得分为7分. 故选:C . 7.B 【分析】依据数字特征的定义,依次对选项验证即可. 【详解】解:对于选项A ,1,2,5,6,6符合条件,故A 错,对于选项B ,若平均数为5且出现点数1,则只能为1,6,6,6,6,此时方差为22(15)4(65)45-+⨯-=,故B 对,对于选项C ,1,2,4,5,5符合条件,故C 错, 对于选项D ,1,4,4,5,6,平均数为()11445645++++=,方差()()()2221145464 2.85⎡⎤-+-+-=⎣⎦,符合条件,故D 错, 故选:B . 8.A 【分析】先求出平均数,再根据平均数计算即可求得方差. 【详解】 ()112561155x =++++=,()()()()()2222221621525556511512.455s ⎡⎤=-+-+-+-+-==⎣⎦ 故选:A 9.B 【分析】设这组数据分别为12,,.,n x x x ⋯,根据平均数公式及方差公式即可得的12.3n x x x n ++⋯+=,()()()2221233.34n x x x n -+-+⋯+-=,从而得到22212.n x x x ++⋯+,再依题意得到方程,解得即可; 【详解】解:设这组数据分别为12,,.,n x x x ⋯,则12.3n x x x n ++⋯+=,()()()2221233.34,n x x x n -+-+⋯+-=所以()()()2222221212.6.33.34,n n x x x x x x n ++⋯+-++⋯++++⋯+=所以()22212.1894,n x x x n n n ++⋯+-+=从而22212.13n x x x n ++⋯+=.因为这组数据的平方和是这组数据和的平方的19,所以()2211339n n n ⨯==,解得13n =或0n =(舍去). 故选:B 10.D 【分析】依次求得两位同学的成绩的平均数,再根据结果求得两位同学成绩的方差即可得出结果. 【详解】小明数学成绩的平均值为11(107111110109113)1105x =++++=,所以成绩的方差为22122221(107110)(111110)(110110)(109110)(113110)45s ⎡⎤=-+-+-+-+-=⎣⎦ 小红数学成绩的平均值为21(99110111108112)1085x =++++=,所以成绩的方差为22222221(99108)(110108)(111108)(108108)(112108)225s ⎡⎤=-+-+-+-+-=⎣⎦. 因为2212s s <,所以小明同学的成绩更稳定,方差为21=4s .故选:D 11.D 【分析】根据频率分布直方图的平均数的计算公式,准确计算,即可求解. 【详解】根据频率分布直方图的平均数的计算公式,可得:(550.03650.04750.015850.01950.005)1067x =⨯+⨯+⨯+⨯+⨯⨯=. 故选:D. 12.C 【分析】根据一组数的百分位数的定义直接计算即可. 【详解】该组数据从小到大排序为85,87,88,90,92,共5个数据,而560%3⨯=, 所以这组数据的第60百分位数为8890892+=. 故选:C.13.9或7- 【分析】设样本数据35124a a a a a ,,,,的平均数为a ,推出2580a =,解得4a =±,由此即可求出结果. 【详解】 由题意知,222222123450.2(80)s a a a a a =++++-,设样本数据35124a a a a a ,,,,的平均数为a ,则222222123450.2[()()()()()]s a a a a a a a a a a =-+-+-+-+-22222212345123450.2[2()5]a a a a a a a a a a a a =++++-+++++ 222222123450.2(5)a a a a a a =++++-,所以2580a =,解得4a =±,又12345222221a a a a a ++1,+1,+1,+1,的平均数为21a +, 当4a =时,21=9a +; 当4a =-时,21=-7a +. 故答案为:9或-7 14.①③④ 【分析】根据茎叶图中的数据,对题目中的命题进行分析、判断正误即可. 【详解】解:根据茎叶图中数据知,对于①,甲同学成绩的中位数是1(8082)812⨯+=,乙同学成绩的中位数是1(8788)87.52⨯+=,所以甲的中位数小于乙的中位数,①正确;对于②,甲同学的平均分为1(727680828690)816⨯+++++=, 乙同学的平均分为1(697887889296)856⨯+++++=, 所以甲同学的平均分比乙同学的平均分低,②错误; 对于③,甲同学的平均分比乙同学的平均分低,③正确;对于④,计算甲的方差为2222221107[(9)(5)(1)159]63⨯-+-+-+++=, 乙的方差为2222221244[(16)(7)23711]63⨯-+-++++=, 所以甲的方差小于乙的方差,④正确.所以正确的命题序号是①③④.故答案为:①③④.15.166【分析】根据平均数的计算公式即可求出结果.【详解】 估计高一年级全体学生身高的值为301702016016650⨯+⨯=, 故答案为:16616.18【分析】利用方差的性质求解即可.【详解】样本数据1x ,2x ,3x ,4x ,5x 的方差为22S =, 所以样本数据132x -,232x -,332x -,432x -,532x -的方差为:23218⨯=.故答案为:1817.(1)0.0075;(2)中位数是224;(3)5户.【分析】(1)根据小矩形的面积之和等于1即可求x 的值;(2)根据中位数左右两侧小矩形面积等于0.5可得中位数;(3)先计算每个区间抽取的户数,再计算抽样比例,即可求解.【详解】(1)由直方图的性质得()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=, 解得:0.0075x =;(2)因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+-=,解得:224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户, 抽样比为112515105+++=15, 所以月平均用电量在[)220,240的用户抽取12555⨯=户. 18.(1)93分;(2)115分.【分析】(1)由每组数据中点值乘以频率相加可得均值;(2)计算出110分以下的频率和为0.75,因此80%分位数在[)110130,,还需频率0.05,区间[)110130,的频率是0.2,还需通过计算可得结论. 【详解】解:(1)数学成绩在:[)3050,频率0.0050200.1⨯=, [)5070,频率0.0050200.1⨯=, [)7090,频率0.0075200.15⨯=, [)90110,频率0.0200200.4⨯=, [)110130,频率0.0100200.2⨯=, []130150,频率0.0025200.05⨯=,样本均值为:400.1600.1800.151000.41200.21400.0593⨯+⨯+⨯+⨯+⨯+⨯=,可以估计样本数据中数学成绩均值为93分,据此可以估计该校高一下学期期中数学考试成绩估计93分.(2)由(1)知样本数据中数学考试成绩在110分以下所占比例为0.10.10.150.40.75+++=在130分以下所占比例为0.750.20.95+=因此,80%分位数一定位于[)110130,内,由 0.80.75110201150.950.75-+⨯=-, 可以估计样本数据的第80百分位数约为115分,据此可以估计该校高一下学期期中数学考试成绩第80百分位数约为115分19.(1)109.8;(2)3;(3)4500(元).【分析】(1)先利用频率分布直方图的性质求出0.030x =,由第75百分位数在图中表现为该数的左侧频率为0.75,根据这一点可求第75百分位数;(2)先根据频率分布直方图以及等级划分规则算出三种等级的频率,从而得样本中各等级的件数,再利用分层随机抽样的按比例抽取求解;(3)根据(2)中算出的频率求利润的估计值.【详解】(1)由题得,()0.00250.00900.01000.02000.02600.0025101x ++++++⨯=,解得0.030x =.又[65,105)的频率为0.625,[105,115)的频率为0.26,所以第75百分位数在[105,115)内第75百分位数为0.750.62510510109.80.26-+⨯≈. (2)由频率分布直方图以及等级划分规则可知,样本中三等品、二等品、一等品的频率分别为(0.00250.0100)100.125+⨯=,(0.02000.0300)100.5+⨯=,(0.02600.00900.0025)100.375++⨯=.所以在200件样本中,三等品、二等品、一等品的件数分别为25,100,75,所以按照产品等级用比例分配分层随机抽样的方法抽取8件产品, 则应抽取的一等品的件数分别为7583200⨯=. (3)由(2)知,从该企业的这种产品中任取一件是一等品的概率为0.375,是二等品或三等品的概率为0.625.故该企业销售600件这种产品,所获利润约为6000.375106000.62564500⨯⨯+⨯⨯=(元) 20.(1)0.005;(2)平均分为73,众数为65,中位数为2153. 【分析】(1)根据概率之和等于1,即所以小矩形的面积之和等于1,即可求解;(2)根据平均分,众数,中位数的概念结合频率分布直方图即可求出平均分,众数,中位数.【详解】解:(1)由频率分布直方图可得:()1020.020.030.041a ⨯+++=,∴0.005a =.(2)平均分550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯=+(分) 众数为60702+=65分. 中位数为()0.50.005100.0410215700.033-⨯+⨯+=(分).。
一、选择题A .0.35B .0.45C .0.55D .0.65解析:选B.求出样本数据落在区间[10,40)中的频数,再除以样本容量得频率.求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.2.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差 解析:选D.只有标准差不变,其中众数、平均数和中位数都加2.3.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[)10,12内的频数为( )A .18B .36C .54D .72解析:选B.由0.02+0.05+0.15+0.19=0.41,∴落在区间[]2,10内的频率为0.41×2=0.82. ∴落在区间[)10,12内的频率为1-0.82=0.18.∴样本数据落在区间[)10,12内的频数为0.18×200=36.4.(2012·高考陕西卷)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析:选A.从茎叶图可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.5.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为10,则抽取的学生人数为( )A .20B .30C .40D .50解析:选C.前3组的频率之和等于1-(0.0125+0.0375)×5=0.75,第2小组的频率是0.75×21+2+3=0.25,设样本容量为n ,则10n =0.25,即n =40.二、填空题6.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是__________,__________.解析:甲组数据为:28,31,39,42,45,55,57,58,66,中位数为45.乙组数据为:29,34,35,42,46,48,53,55,67,中位数为46. 答案:45 467.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65,s 2甲<s 2乙,故甲更稳定,故填甲. 答案:甲 8.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =______.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为__________.解析:∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人.答案:0.030 3 三、解答题9.某学校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分.解:(1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,频率组距=0.310=0.03,补全后的直方图如下:(2)平均分为x =95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.10.(2012·高考安徽卷)若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm)(1)将上面表格中缺少的数据填在相应位置;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.解:(1)频率分布表(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70.(3)设这批产品中的合格品数为x件,依题意有505000=20x+20,解得x=5000×2050-20=1980.所以该批产品的合格品件数估计是1980件.一、选择题1.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78 B.0.27,83C .2.7,78D .2.7,83解析:选A.由频率分布直方图知,组距为0.1, 4.3~4.4间的频数为100×0.1×0.1=1,4.4~4.5间的频数为100×0.1×0.3=3.又前4组的频数成等比数列,∴公比为3.根据后6组的频数成等差数列,且共有100-13=87人,且4.6~4.7间的频数最大,为1×33=27,∴a =0.27.设公差为d ,则6×27+6×52d =87,∴d =-5,从而b =4×27+4×32×(-5)=78.2.(2012·高考陕西卷)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x 甲、x 乙,中位数分别为m 甲、m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲 >x 乙,m 甲<m 乙解析:选B.由茎叶图可知甲数据集中在10至20之间,乙数据集中在20至40之间,明显x甲<x 乙,甲的中位数为20,乙的中位数为29,即m 甲<m 乙,所以选B.二、填空题 3.(2012·高考广东卷)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)解析:设x 1≤x 2≤x 3≤x 4,根据已知条件得到x 1+x 2+x 3+x 4=8,且x 2+x 3=4,所以x 1+x 4=4.又因为14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2]=1,所以(x 1-2)2+(x 2-2)2=2.又因为x 1,x 2,x 3,x 4是正整数,所以(x 1-2)2=(x 2-2)2=1,所以x 1=1,x 2=1,x 3=3,x 4=3.答案:1,1,3,34.把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比为大于2的整数的等比数列,则剩下三组中频数最高的一组的频数为________.解析:由已知得前七组的共有频数为0.79×100=79, 故后三组共有的频数为21,依题意a 1·(1-q 3)1-q =21,a 1(1+q +q 2)=21.∵q >2,∴1+q +q 2>7. ∴a 1=1,q =4.∴后三组中频数最高的一组的频数为16. 答案:16 三、解答题 5.(2013·日照质检)某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n 名同学进行调查.下表是这n 名同学的日睡眠时间的频率分布表:(1)求n (2)统计方法中,同一组数据常用该组区间的中点值(例如区间[4,5)的中点值是4.5)作为代表.若据此计算的上述数据的平均值为6.52,求a ,b 的值,并由此估计该学校学生的日平均睡眠时间在7小时以上的概率.解:(1)由频率分布表可得n =60.12=50.补全数据如下表:频率分布直方图如下:(2)由题意⎩⎪⎨⎪⎧150×(6×4.5+10×5.5+a ×6.5+b ×7.5+4×8.5)=6.52,6+10+a +b +4=50, 解得a =15,b =15.设“该学校学生的日平均睡眠时间在7小时以上”为事件A ,则P (A )=P (x ≥7)=15+450=0.38,即该学校学生的日平均睡眠时间在7小时以上的概率约为0.38.。