2014年上海市徐汇区中考二模数学试题及答案
- 格式:doc
- 大小:399.50 KB
- 文档页数:8
2014年上海市初中毕业生统一学业考试模拟测试数学试卷参考答案 (2014.6)说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做到这一步可得到的分数; 4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原.则上不超过后继部分应得分数的一半................. 一、填空题(本大题共6题,每题4分,满分24分)1. B ;2. A ;3. A ;4. B ;5. C ;6. C . 二、选择题(本大题共12题,每题4分,满分48分)7.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+23234x x ; 8.3->x ; 9.1-; 10.75; 11.︒1440; 12.1)2(22+-=x y ; 13.554或3148; 14.b a 6161+; 15.12; 16.213±; 17.如1-=k 等,不唯一; 18.()a 12±.三、解答题(本大题共7题,满分78分) 19.解:原式aba b a b a b b a +⋅-+-+=))((………………………………………………………(3分) ba -=1………………………………………………………………………(6分) 将2=a 、1=b 代入,上式12121+=-=……………………………(10分)20.解:1232322--=+-x x x x …………………………………………………………(2分) 0322=-+x x ……………………………………………………………………(3分) ()()0132=-+x x …………………………………………………………………(5分)解得:231-=x ,12=x …………………………………………………………(7分) 经检验,当1=x 时,方程无解,舍去……………………………………………(9分)故原方程的解为23-=x …………………………………………………………(10分) 21.解:(1)22……………………………………………………………………………(2分) (2) 过O 作AB OD ⊥、过C 作OB CE ⊥,D 、E 为垂足 由题意可知:︒=∠=∠45B A22)32(2222222=+⋅==∴AO OD ……………………………(3分))32,2(A 3232tan ==∠AOC ︒=∠︒=∠∴30,60COB AOC设x EB CE ==,则x EO 3=,x OB )13(+=4)13(=+∴x 解得)13(2-=x ………………………………………(4分) )13(42-==∴x OC426sin +==∠OC OD OCA ………………………………………………(5分) (3) 过A 、B 分别作x 轴的垂线,D 、E 为垂足;过O 作AB OF ⊥,F 为垂足 ︒=90AOB ︒=∠+∠∴90COB AOC 又︒=∠+∠90OAD AOC OAD COB ∠=∠∴易证BOE OAD ∆≅∆,m BE OD ==、n OE AD ==),(m n B -∴ ……………………………………………………………………(6分)因而可求得直线AB 解析式为n m nm x n m n m y -+-⎪⎭⎫ ⎝⎛-+=22…………………(7分) 令0=y 则n m n m x ++=22 即nm n m OC ++=22……………………………… (8分)又由(2)同理可得2222n m OF +⋅=)(2)()(2sin 2222n m n m n m OC OFOCA ++⋅+==∠∴……………………………(10分)22.证明:连接GE ;过A 作BC AH ⊥,H 为垂足 47103422=+⋅=+=BC AD S AH ABCD ,3=-=AD BC BH ……………………(2分)522=+=∴BH AH AB ……………………………………………………(3分) F 为AE 中点xyOABC DExyOABC DE FEF AF =∴易证EBF AGF ∆≅∆,BE AG =……………………………………………(4分) E 为BC 中点, AB BE ==∴5ABEG ∴为菱形,GBC ABG ∠=∠,︒=∠90BFE ……………………(6分) 又CE AG //且CE AG =AECG ∴为平行四边形,GC AE //……(7分) D BFE BGC ∠=︒=∠=∠∴90……(8分) GCB DGC ∠=∠CBG GCD ∠=∠∴…………(9分) GCD ABC ∠=∠∴2………(10分) 23.解:(1) 当100≤≤x 时,设函数解析式为)0(2≠++=a c bx ax y将点)20,0(、)39,5(、)48,10(代入⎪⎩⎪⎨⎧=+=+=28101001952520b a b a c 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=2052451c b a20524512++-=∴x x y ……………………………………………………(1分) 当2010≤≤x 时,由于函数图像为平行于x 轴的线段,故函数解析式为48=y ………………………………………………………(2分)当20≥x 时,设函数解析式为)0(≠=k xky 将点)48,20(代入解得960=k xy 960=∴……………………………………………………………………(3分) 画图正确………………………………………………………………………(4分)(2) 将6=x 代入20524512++-=x x y ,解得5208=y ……………………(5分) 将25=x 代入x y 960=,解得5192=y ……………………………………(6分)51925208> 故第6分钟学生的听课注意力更集中………………………………………(8分)(3) 把36=y 代入20524512++-=x x y 解得41=x ,202=x (不符题意,舍去)……………………………………(9分)F ABCEGDH把36=y 代入x y 960= 解得380=x ……………………………………(10分) 243684380<=-∴…………………………………………………………(11分) 故老师无法经过适当的安排,从而能使学生在听这道题时的听课注意力指数都不 低于36.…………………………………………………………………………(12分)25.解:(1)ADEF的值保持不变,证明过程如下:………………………………………(1分) 【解法一】延长FO 、DB ,相交于点G BD AB = ,D A ∠=∠∴ 易证AFO RT ∆∽DFG RT ∆DGAODF AF =∴,G AOF ∠=∠……………………………………………(2分) 又BOG AOF ∠=∠,G BOG ∠=∠∴,5==BO BG ………………(3分)315105=+=+=∴BG DB AO DF AF 又由垂径定理可知EF AF =41=+=∴DF AF AF AD EF ,是定值…………………………………………(4分) 【解法二】连接OE 、BE OB OE AO ==AEO EAB ∠=∠∴、EBO OEB ∠=∠︒=∠+∠=∠∴90OEB AEO AEB …………………………………………(2分) 又BD AB =E ∴为AD 中点,ED AE =………………………………………………(3分) 由垂径定理可知EF AF =4142===∴EF EF AE EF AD EF ,是定值………………………………………(4分). OA BCF E DG. OABCFE D(2) 连接AC 、CE ,并过E 作CD EG ⊥,G 为垂足 由(1)同理可证︒=∠90ACD 又由(1)可知E 为AD 中点【注:若上述结论在(1)中未证明,则需在(2)中给予证明】ED AD CE ==∴21…………………………………………………………(5分) y CD DG 2121==∴…………………(6分) 易证AFO RT ∆∽DGE RT ∆AODEAF DG =∴………………(7分) 5221x x y=∴ 整理得254x y =……………(9分)(3) 若圆F 与圆D 相切,这里只存在外切的可能……………………………(10分) 若两圆外切,则DE DC =易证DCE ∆为等边三角形,︒=∠60DABD ∆∴也为等边三角形,10==BD AD ………………………………(11分)521===∴AD AE BC ……………………………………………………(12分) 故当50<<BC 时,圆F 与圆D 相交;…………………………………(13分) 当5=BC 时,圆F 与圆D 相切;当105<<BC 时,圆F 与圆D 相离.…………………………………(14分). OA BCF ED G。
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.12二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_______________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x , 7, y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.3 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .424.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.5 25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、23、(1)求证:四边形ACED 是平行四边形;(2)联结AE,交BD于点G,求证:DG DFGB DB.24、25、6。
2014学年第二学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分) 2015.4一.选择题(本大题共6题,每题4分,满分24分) 1.下列各数中,无理数是( ▲ )A .722; B .9; C . ; D .38. 2.下列运算中,正确的是( ▲ )A .2x -x =1;B .x +x =2x ;C .(x 3)3=x 6 ;D .x 8÷x 2=x 4.3.某反比例函数的图像经过点(-2,3),则此函数图像也经过点( ▲ )A .(2,3) ;B .(-3,-3) ;C .(2,-3) ;D .(-4,6)4.如图,已知△ABC 中,∠ACB =90°,CH 、CM 分别是斜边AB 上的高和中线,则下列结论不正确...的是( ▲ ) A .AB 2= AC 2+BC 2; B .CH 2=AH ·HB ; C .CM =12AB ; D .CB =12AB . 5.某课外小组的同学们实践活动中调查了20户家庭某月用电量 如下表所示:则这20户家庭用电量的众数和中位数分别是( ▲ ) A .180,160;B .160,180;C .160,160;D .180,180.6.下列命题中,假命题...是( ▲ ) A .没有公共点的两圆叫两圆相离;B .相交两圆的交点关于这两个圆的连心线所在直线对称;C .联结相切两圆圆心的直线必经过切点;D .内含的两个圆的圆心距大于零 .二.填空题(本大题共12题,每题4分,满分48分) 7.计算:-22= ▲ .8.用科学记数法表示660 000的结果是 ▲ .用电量(度) 120140 160 180 220 户数236729.函数2y=1xx -中自变量x 的取值范围是 ▲ . 10.分解因式2416a -=_ ▲ .11.不等式组2+51123x x -<⎧⎪-⎨≤⎪⎩的解是▲ .12x =的解是 ▲ .13.某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,则原计划每天销售多少台?若原计划每天销售x 台.则可得方程 ▲ .14.将1、2、3三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表。
崇明县2014学年第二学期教学调研卷九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a -15.216.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+ ……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+ ………………………………………………………………2分∵6302x tan =-6223=⨯-= ………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩ (1)…(2) 解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FAE=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM = 又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485P Q x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=AP —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED356x =……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356.(3)当△PMC 是等腰三角形,存在以下几种情况:1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x =若M 在线段PQ 上时,PM+MQ=PQ∴44855x x x +=- 4013x = ……………………………………………………………………1分若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时 ∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -=8013x = …………………………………………………………………………1分3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH ∵PH ∥BE∴1AP AHBP CH == ∴110xx=- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.奉贤区初三调研考数学卷参考答案 201504一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分)7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9;15.32+; 16.50; 17.2或1; 18.20°.三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分 20. (本题满分10分)解:由①得:2x >- .………………………………………………………………………2分由②得:4x ≤ .………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集. ………………………………………………………………2分所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3 ∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°, sin ∠D =13, BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°, sin ∠D =31=CD CM ∴CM=35.…………………2分即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分 根据题意,得4%)201(1000251000++=-x x . ……………………………………4分 整理,得 0160122=-+x x . ……………………………………………1分解得 20,821-==x x .……………………………………………………2分经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.………… 1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形 ………………………………………………………1分 (2)∵ EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形 ∴ AB ∥CD AB=CD ∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分∴顶点A 的坐标为(2,1). ……………………………………………………………2分 (2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中, AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4 …………………………………………………………1分 ∴OP=524222=+ ……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠ ∴△BPF ∽△POE , ∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6 ∴321===CD DH CH …………………………………………………1分 ∵AD=5 ∴ AH=4 ………………………………………………………………1分 ∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分(2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD= x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-= ……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -== …………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵ BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -= 222NF AN AF -= ∴2222)43(5)4()25(x x -=- ∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD .黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b - ; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分)解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5AB ACB AC∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,s i n 56D E A DD A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分)∴点A 坐标为(9,3).…………………………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分)∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分)同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=. 即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分)25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠= .…………………………………………………………………………(1分)在Rt △BDC中,cos 2cos30CD BC BCD =⋅∠=⋅ 1分)在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分)同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CD BC BF =,即CE CDBC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =.…………………………………………………………………………………(1分)∴y =x ≤<.……………………………………………………………(2分)(3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x =.…………………………………………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠= ,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE(1分)2015年宝山嘉定联合模拟考试数学试卷参考答案与评分标准一、1.C ;2.D ;3.B ;4.B ;5.D ;6.A .二、7.41;8.x x 422+-;9.8-=x ;10.2≠x 的一切实数;11.x y 2-=;12.2-;13.15; 14.103;15.33-;16.34;17.3;18.53. 三、19.解:原式x x x x x x x x 1)2()2)(2()1()1(2++-+---=…………4分x x x x x 121+---=………………………2分 x2=…………………………………………2分把13-=x 代入x2得:原式132-=………………………………1分13+=………………………………1分20. ⎩⎨⎧=--=+.,0658222y xy x y x ②① 解:由②得:0))(6(=+-y x y x ……………………2分 即:06=-y x 或0=+y x …………………2分所以原方程组可化为两个二元一次方程组:⎩⎨⎧=+=-;82,06y x y x⎩⎨⎧=+=+;82,0y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧=-=8821x x ,⎩⎨⎧==1612x x …………4分.21.解:(1)过点A 作BC AH ⊥,垂足为点H在Rt △AHB 中,∵︒=∠45B∴︒=∠45BAH …………………………1分∴BH AH =………………………………1分∵222AB BH AH =+ ,216=AB∴16==BH AH …………………………1分 在Rt △AHC 中,HCAH C =∠tan ,∵2tan =∠C ∴8=HC ………………1分∴24=BC ………………1分 答:拐弯点B 与C 之间的距离为24米; (2)联结OC …………………………………1分 ∵BC AH ⊥,点A 是优弧CD 的中点∴AH 必经过圆心O …………………………1分 设圆O 的半径为r 米,则r OH -=16……1分在Rt △OHC 中,222OC HC OH =+∴222)16(8r r -+= ………………………1分∴10=r ………………………………………1分 答:圆O 的半径长为10米.A .O B C DH22.解:(1)设V 关于t 的函数解析式为:b kt V +=………………1分 由题意得:⎩⎨⎧=+=30010100b k b …………………………………1分解此方程组得:⎩⎨⎧==10020b k ……………………………………2分所以V 关于t 的函数解析式为:10020+=t V ……………1分 (2)设这个百分率为x …………………………………………1分 由题意得:726)1(6002=+x ………………………………2分解此方程得:%101.01==x ,1.22-=x (不符合题意舍去)……1分答这个百分率为%10.……………………………………………………1分23.证明:(1)∵△ABC 是等边三角形∴AC AB =,︒=∠=∠=∠60ACB BAC B ……1分 ∵△ADE 是等边三角形∴AE AD =,︒=∠60DAE ……………………1分 ∴DAE BAC ∠=∠∵=∠BAD DAC BAC ∠-∠ DAC DAE CAE ∠-∠=∠∴CAE BAD ∠=∠…………………………1分∴△ABD ≌△ACE ………………………1分 ∴ACE B ∠=∠ ……………………………1分∴︒=∠60ACE ……………………………1分 (2)∵BD BF =,︒=∠60B∴△BDF 是等边三角形∴FD BF BD ==…………………………1分 ∵△ABD ≌△ACE∴CE BD =∴CE FD BF ==…………………………1分 ∵︒=∠=∠=∠60ACE ACB B ∴︒=∠+∠180ECB B∴BF ∥CE ………………………………1分 ∴四边形ECBF 是平行四边形 …………1分 ∴DC ∥EF又DF 与CE 不平行∴四边形CDFE 是梯形……………………1分 又CE FD =∴四边形CDFE 是等腰梯形………………1分24.解:(1) ∵直线2+=x y 经过点),2(m A∴422=+=m ………………………………1分∴点A 的坐标为)4,2(A ……………………1分 ∵双曲线)0(≠=k xky 经过点)4,2(A ∴24k=…………………………………………1分 ∴8=k …………………………………………1分(2)由(1)得:双曲线的表达式为xy 8=∵双曲线xy 8=经过点)2,(n B ,∴n 82=,∴2=n∴点B 的坐标为)2,4(……………………………………1分 ∵直线BC 与直线2+=x y 平行∴可设直线BC 的表达式为:b x y +=∴b +=42,∴2-=b ,∴直线BC 的表达式为:2-=x y ∴点C 的坐标为)2,0(-……………………………………1分∴22=AB ,24=BC ,102=AC ,∴222AC BC AB =+ ∴︒=∠90ABC …………………………………………1分∴△ABC 的面积为821=⨯⨯BC AB ……………………1分 (3)根据题意设点E 的坐标为)2,(-x x ,这里的0>x∵直线2+=x y 与y 轴交于点D ∴点D 的坐标为)2,0(∴22=AD ,x CE 2= ∵AD ∥BC∴ACE DAC ∠=∠…………………………………………1分 当CAE ADC ∠=∠时,△ADC ∽△CAE∴CE ACAC AD = ∴x 210210222= ∴10=x∴点E 的坐标为)8,10( ……………………………………2分 当CEA ADC ∠=∠时,△ADC ∽△CEA ∴AC ACEC AD = ∴EC AD =又ACE DAC ∠=∠,CA AC = ∴△ADC ≌△CEA又已知△ADC 与△CEA 的相似比不为1∴这种情况不存在 …………………………………………1分 综上所述点E 的坐标为)8,10(25.解:(1)当点M 与点B 重合,由旋转得:2==BD BC ,ED AC =, EBD CBA ∠=∠,︒=∠=∠90C EDB ∵CB EM ⊥∴∠EBC ∴︒=∠=∠45EBD CBA …………1分∴︒=∠=∠45CBA CAB∴2==CB AC∴22=AB …………………………………1分 ∴2==DB DE∴222-=AD ……………………………1分 ∴12cot -==∠DEADBAE ………………1分 (2)设EM 与边AB 交点为G 由题意可知:︒=∠+∠9021,︒=∠+∠903CBA又32∠=∠,∴CBA ∠=∠1∵CBA EBD ∠=∠,∴EBD ∠=∠1,∵BDE EDG ∠=∠,∴△EDG ∽△BDE ∴EDDGBD ED =…………………………………………1分 ∵2==BD BC ,x ED AC == ∴x DG x =2,∴22x DG =…………………………1分 由题意可知:ABBCBG MB ABC ==∠cos 42+=x AB ,242xGB -=∴422422+=-x x y ……………………1分 ∴444222++-=x x x y ……………………1分 定义域为20<<x …………………………1分(3)当点M 在边BC 上时,由旋转可知:EB AB =,∴BAE AEB ∠=∠设︒=∠x CBA ,则︒=∠x ABE ,∵EBM BAE ∠=∠,分别延长EA 、BC 交于点H ∴︒=∠=∠=∠x EMB BAE AEB 2,∵︒=∠+∠+∠180AEB BAE ABE ∴36=x 易得:︒=∠=∠=∠36ABE ABH H ,︒=∠=∠=∠72AEB BAE HBE ∴BE AB AH ==,HE HB =,∵︒=∠90ACB ,∴2==BC HC∴4==HE HB ,∴△BAE ∽△HBE ,∴BEAEHB AB =,又AB BE = AB HA HE AE -=-=4,∴ABABAB -=44,∴522±-=AB (负值舍去)∴522+-=AB …………………………2分当点M 在边CB 的延长线上时,∵BAE AEB ∠=∠,EBM BAE ∠=∠∴EBM AEB ∠=∠∴AE ∥MC ∴CBA BAE ∠=∠ ∵EBA CBA ∠=∠∴EBA CBA EBM ∠=∠=∠∴︒=∠60CBA ,∵AB BCCBA =∠cos ,2=BC∴4=AB …………………………2分 综上所述:522+-=AB 或4.(M )2014学年金山第二学期期末质量检测 初三数学试卷参考答案2015.4一、选择题:(每小题4分,共24分) 1.A 2.A 3.C4.D 5.C 6.B二、填空题:(每小题4分,共48分)7.0; 8.1; 9.)1)(1(-+x x x ; 10.7≥x ;11.xy 2=; 12.2-=x ; 13.3=x ; 14.53;15.041≠m m 且 ; 16.→→-a b 2132; 17.)1,4(),5,0(-; 18.53三、解答题:19.原式=〔(2)1()1(1---+x x x x x )〕22)1(-+⨯x x x (4分) = 222)1(1---x x x x 22)1(-+⨯x x x (2分) =22)1(1--x x (3分)=11-+x x (1分) 20.由(2)得:22,22-=-=-y x y x (2分)⎩⎨⎧=-=+-2201y x y x ⎩⎨⎧-=-=+-2201y x y x (2分) ⎩⎨⎧-=-=3411y x ⎩⎨⎧==122y x (4分) ∴⎩⎨⎧-=-=3411y x⎩⎨⎧==1022y x (2分) 21.设1小时后甲船在C 处乙船在D 处,联接CD 正北交于点E (1分)由题意得,50=AP ,60=BP , 30=∠APE ,45=∠BPE ,CD PE ⊥ (3分)10=AC 40=-=PC AP PC (1分)在PCD Rt ∆中 32030cos =⨯=PC PE (1分) 在PED Rt ∆中 62045cos ==PEPD (1分) 62060-=-=PD PB BD )(乙62060162060-=-=V 海里/时 (2分) 答乙船的速度是)(62060-海里/时 (1分)22.(1)略 (4分)(2) 162度 (2分) (3)C (2分) (4)11000人 (2分)23.(1)∵︒=∠90ACB ∴︒=∠=∠90ACB ACD (1分) ∵BC AC = CD CE = (2分)∴ACD BCE ∆≅∆ (1分)(2)∵ACD BCE ∆≅∆ ∴EBC DAC ∠=∠ (1分)∵CEB AEF ∠=∠ ∴︒=∠=∠90BCE AFE ︒=∠90BFG (1分)∵CG //BF ∴︒=∠=∠90AFE CGF (1分) ∵DCG HCE ∠=∠ ∴︒=∠=∠90ACD GCH (1分) ∴四边形FHCG 是矩形 (1分)∵︒=∠=∠90CHE CGD DCG HCE ∠=∠ CD CE = (1分)∴CEH CDG ∆≅∆ ∴CH CG = (1分) ∴四边形FHCG 是正方形 (1分)24. (1)⎩⎨⎧-+=--=841608240b a b a⎩⎨⎧-==21b a (2分) 822--=x x y (1分)9)1(8222--=--=x x x y )9,1(-P (1分)(2) 设对称轴直线1=x 与x 轴交于点D ,过A 作BP AH ⊥垂足为H∵)0,2(-A ,)0,4(B , )9,1(-P∴6=AB 9=PD 103==BP AP (2分) ∵AH PB PD AB ⨯=⨯2121 ∴1059=AH (1分) 在APH Rt ∆中 ∴53AP AH APB sin ==∠ (1分) (3)∵MCN ACO ∠=∠∴MNC ∆与AOC ∆相似时 ①︒=∠=∠90AOC MNCOC NC AO MN = 25=MN ∴)2,25(-M (2分)②︒=∠=∠90AOC NMC 设MN 与x 轴交于点E∵2==OA ON ︒=∠=∠90AOC EON ACO NEO ∠=∠ ∴AOC ENO ∆≅∆ 8==OC OE ∴)0,8(-E∵)0,2(-A ,)0,4(B∴直线MN 的解析式是:241y +=x 直线AB 的解析式是:84y --=x∴)1724,1740(-M (2分) 25.(1)过A 作BC 的高AH 垂足为H∵10==AC AB ∴CH BH = (1分)在ABH Rt ∆中 34tan =∠B 设a AH 4= a BH 3=222AB BH AH =+ 2)4(a 2)3(a +=210 2=a (1分)∴8=AH 6=BH ∴12=BC (1分)(2) 联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I∵D 、E 分别是边AB 、AC 的中点∴DE //BC ∴DOE ∆∽MON ∆ ∴JOIOMN DE = (1分) ∵8=AH ∴4=IJ∴624+=x IO (1分) 124621=⨯⨯=∆ADE S 672624621+=+⨯⨯=∆x x S DEO (1分)∴61441267212++=++=x x x y )120( x (2分) (3)联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I ,过E 作BC EF ⊥垂足为F∵421==AH EF 5=EC ∴3=FC ∴8=MF ①当ON OM =时 ∵IJ //EF ∴MFMJEF OJ = ∵4=EF 8=MF 21=MJ x ∴x OJ 41=∵DE //BC ∴DOE ∆∽MON ∆ ∴MNDEOJ OI = ∴ 10=x 10=MN (2分) ②当MN OM =时 ∵DE //BC ∴OMEOMN DE = ∴EO DE = 在EFM Rt ∆中 5422=+=MF EF ME654-=-=OE ME OM ∴654-=MN (2分)③当ON MN =时 6==DE DO在ABN ∆中,B ∠是一个锐角 5=BD x DN +=6BD DN ∴BND ∠一定是锐角 (1分)过D 作BC DG ⊥垂足为G 4=DG 3=BG 在DGN Rt ∆中 222DN GN DG =+222)6()2(4x x +=-+ 1-=x 不合题意 (1分)综上所述 10=MN 或 654-=MN静安区质量调研九年级数学试卷参考答案及评分标准2015.4.23一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.C ; 3.D ; 4.D ; 5.A ; 6.B .二.填空题:(本大题共12题,满分48分)7.22; 8.2)3(y x -; 9.1; 10.2>x ; 11.2; 12.32; 13.︒45; 14.5:3; 15.4143-; 16.(3,5); 17.10; 18.3≥r .(第18题答3>r , 得2分)三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=)1()1)(1(1)1(1+⎥⎦⎤⎢⎣⎡-+--x x x x x x …………………………………………(3分) =11)1()1)(1(1-=+⋅+-x x x x x x .……………………………………(2+1分)当1333021-=-=x 时,原式=23)23)(23(23231--=+-+=-.…(2+2分)20.解:由①得 3477+<-x x ,103<x ,310<x .…………………………………(3分) 由②得 1264+≥+x x ,52-≥x ,25-≥x .…………………………………(3分)不等式组的解集为:31025<≤-x .……………………………………………(2分)它的整数解为–2,–1,0,1,2,3.………………………………………(1分)21.解:(1)设反比例函数的解析式为xky =.…………………………………………(1分) ∵横坐标为3的点A 在直线2-=x y 上,∴点A 的坐标为(3,1),…(1分)∴1=3k,∴3=k ,…………………………………………………………(1分) ∴反比例函数的解析式为xy 3=.…………………………………………(1分)(2)设点C (m m,3),则点B (m m ,2+).…………………………………(2分)∴BC =mm 32-+= 4,………………………………………………………(2分) ∴m m m 4322=-+,∴0322=-+m m ,1,321-==m m ,……………(1分)1,321-==m m 都是方程的解,但1-=m 不符合题意,∴点B 的坐标为(5,3).……………………………………………………(1分)22.解:设甲乙两人原来每小时各加工零件分别为x 个、y 个,………………………(1分)∴⎪⎪⎩⎪⎪⎨⎧=-=-,123024,13030y x x y …………………………………………………………………(4分)解得⎩⎨⎧==.5,6y x ………………………………………………………………………(4分)经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.………………………(1分)23.证明:(1)∵在梯形ABCD 中,AB //CD ,AD =BC ,∴∠ADE =∠BCE ,………(1分)又∵DE=CE ,∴△ADE ≌△BCE .…………………………………………(1分) ∴AE =BE ,……………………………………………………………………(1分) ∵FG //AB ,∴BEBFAE AG =,…………………………………………………(2分) ∴AG=BF .……………………………………………………………………(1分)(2)∵CF CA AD ⋅=2,∴AD CFCA AD =,…………………………………………(1分) ∵AD =BC ,∴BCCFCA BC =.…………………………………………………(1分) ∵∠BCF =∠ACB ,∴△CAB ∽△CBF .……………………………………(1分)∴BCACBF AB =.…………………………………………………………………(1分) ∵BF=AG ,BC =AD , ∴ADACAG AB =.………………………………………(1分) ∴AC AG AD AB ⋅=⋅.………………………………………………………(1分)24.解:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=aax ,……………(1分)∴OC =1,OA=OC +AC = 4,∴点A (4,0).…………………………………(1分) ∵∠OBC =∠OAB ,∴tan ∠OAB= tan ∠OBC ,…………………………………(1分)∴OB OCOA OB =,…………………………………………………………………(1分) ∴OBOB 14=,∴OB =2,∴点B (0,2),……………………………………(1分) ∴⎩⎨⎧+-==,8160,2c a a c ……………………………………………………………(1分)∴⎪⎩⎪⎨⎧=-=.2,41c a ………………………………………………………………………(1分) ∴此抛物线的表达式为221412++-=x x y .…………………………………(1分)(2)由2:3:=∆∆A F G A D G S S 得DG :FG =3:2,DF :FG =5:2,…………………(1分) 设m OF =,得m AF -=4,221412++-=m m DF , 由FG //OB ,得OA AF OB FG =,∴24mFG -=,…………………………………(1分) ∴2:524:)22141(2=-++-m m m ,……………………………………………(1分) ∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45).……………………………………………………(1分) 25.解:(1)在⊙O 中,∵OC ⊥AB ,∴AC =321=AB ,OC =22AC AO -=4.……(1分)∵OD //AB ,∴OD ⊥OC ,∴CD =41542222=+=+OD OC .……(1分)∵35==BC OD CE DE ,……………………………………………………………(1分)∴85=CD DE ,∴DE =4185.…………………………………………………(1分)(2)∵△OCD 是等腰三角形,OD >OC ,∴ ① 当DC =OD =5时,∠DOC =∠DCO ,∵∠DFC +∠DOC =∠DCF +∠DCO =90°,∴∠DFC =∠DCF .…(1分)∴DF =DC =DO =5,OF =10,CF =2124102222=-=-OC OF ,2123+=AF .………(1分) ② 当DC =OC =4时, 作△DOC 的高CH ,2521==OD OH , CH =3921)25(42222=-=-OH OC .……………………(1分) ∴tan ∠FOC=539==OH CH OC CF ,………………………………(1分) 5394=CF .53943+=AF .……………………………………(1分)(3)设OB =OD =r ,BC =x ,则2222x r BC OB OC -=-=,…………(1分)∵OD //AB ,OC ⊥AB ,∴OD ⊥OC ,又∵CD ⊥OB ,∴∠COB =90°-∠DOE =∠ODC ,∴tan ∠COB =tan ∠ODC ,…………(1分)∴OD OCOC BC =,∴r x r xr x 2222-=-,………………………………(1分) ∴22x r xr -=, 022--+r rx x ,∵0≠r ,01)(2≠-+rxrx,251±-=r x (负值舍去) ,…………………(1分) ∴sin ∠ODC =sin ∠COB 215-===r x OB BC .……………………………(1分)闵行区2014学年第二学期九年级质量调研考试数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.C ;3.D ;4.B ;5.D ;6.A .二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.2a ; 9.2(4)x x -; 10.223x ≤<; 11.1m <-; 12.113y x =-; 13.1233a b + ;14.125;15.13;16.12001200302x x -=-;17.tan h α(或cot h α⋅);181.三、解答题:(本大题共7题,满分78分) 19.解:原式13+-………………………………………………(6分)4=. ……………………………………………………………………(4分)20.解:由① 得 122x y =-. ③ ……………………………………(2分) 把③ 代入②,得 22(122)3(122)20y y y y ---+=.整理后,得 27120y y -+=.……………………………………………(2分) 解得 13y =,24y =. ……………………………………………………(2分) 分别代入③,得 16x =,24x =.…………………………………………(2分)所以,原方程组的解是116,3,x y =⎧⎨=⎩ 224,4.x y =⎧⎨=⎩…………………………………(2分)另解:由② 得 ()(2)0x y x y --=.………………………………………………(2分)即得 0x y -=,20x y -=. ………………………………………………(2分) 原方程组化为212,0,x y x y +=⎧⎨-=⎩ 212,20.x y x y +=⎧⎨-=⎩…………………………………………(2分)解得原方程组的解为 114,4,x y =⎧⎨=⎩ 226,3.x y =⎧⎨=⎩……………………………………(4分)21.解:(1)联结AD .∵ AB = AC ,D 为边BC 的中点,∴ AD ⊥BC .…………………(1分)在Rt △ABD 中,由AB =sin B ∠= 得sin 4AD AB B =⋅∠==. ……………………………(1分) ∴22B D ==.∴ 24BC BD ==.……………………………………………………(1分) ∵ CE = BC ,∴ CE = 4.即得 DE = 6.………………………(1分)在Rt △ADE 中,利用勾股定理,得23A E又∵ F 是边AE 的中点,∴12DF AE ==1分)(2)过点C 作CH ⊥AE ,垂足为点H .∵ CH ⊥AE ,AD ⊥BC ,∴ ∠CHE =∠ADE = 90º. ……………(1分) 又∵ ∠E =∠E ,∴ △CHE ∽△ADE .……………………………(1分)∴ C H E H C EA D D E A E ==,即得46CH EH ==. 解得CH =EH =.…………………………………(1分) ∴13A H A E E H =-=.………………………(1分)∴4tan 7CH CAE AH ∠===.…………………………………(1分)22.解:(1)设所求函数为 y k x b =+.…………………………………………(1分)根据题意,得 150,120.b k b =⎧⎨+=⎩…………………………………………(1分)解得 30,150.k b =-⎧⎨=⎩………………………………………………………(2分)∴ 所求函数的解析式为 30150y x =-+.………………………(1分) (2)设在D 处至少加w 升油.根据题意,得 360460121504303021060w -⨯--⨯+≥⨯⨯+.……(3分) 解得 94w ≥. …………………………………………………………(1分) 答:D 处至少加94升油,才能使货车到达B 处卸货后能顺利返回D 处加油.…………………………………………………………………………………(1分) 说明:利用算术方法分段分析解答正确也给满分.23.证明:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,∴ ∠ADH =∠DHC .……………………………(1分) ∵ DH ⊥BC ,∴ ∠ADH =∠DHC = 90º. 即得 ∠ADH =∠EDC = 90º. ……………………………………(1分)∵ A DE A DH E DH∠=∠-∠, C D H E D C E D H ∠=∠-∠, ∴ ∠ADE =∠CDH .………………………………………………(1分) ∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ AB = DH . ∵ AB = AD ,∴ AD = DH . 又∵ ∠A =∠DHC = 90º,∴ △ADE ≌△DHC .………………(2分) ∴ DE = DC .………………………………………………………(1分) (2)∵ DE = DC ,∠EDF =∠CDF ,∴ DF 垂直平分CE .………(1分)∴ FE = FC .即得 ∠FEC =∠FCE .……………………………(1分)∵ 2B E B F B C =⋅,∴ B E B CB F B E=. 又∵ ∠B =∠B ,∴ △BEC ∽△BEF .…………………………(2分) ∴ ∠BCE =∠BEF .………………………………………………(1分) ∴ ∠BEF =∠CEF .………………………………………………(1分)24.解:(1)抛物线224y ax ax =--经过点A (-3,0),∴ 2(3)2(3)40a a ----=.………………………………………(1分) 解得 415a =.…………………………………………………………(1分) ∴ 所求抛物线的关系式为 24841515y x x =--.…………………(1分)抛物线的对称轴是直线 1x =. ……………………………………(1分) (2)当 0x =,时,4y =-,即得 C (0,-4).又由 A (-3,0),得5AC .…………(1分) ∴ AD = AC = 5.又由 A (-3,0),得 D (2,0).∴CD =1分) 又由直线1x =为抛物线24841515y x x =--的对称轴,得 B (5,0). ∴ BD = 3.设圆C 的半径为r .∵ 圆D 与圆C 外切,∴ CD = BD + r .…………………………(1分) 即得3r =+. 解得3r =.……………………………………………………(1分)∴ 圆C的半径长为3.(3)联结DN .∵ AC = AD ,∴ ∠ACD =∠ADC .………………………………(1分) ∵ 线段MN 被直线CD 垂直平分,∴ MD = ND . 即得 ∠MDC =∠NDC .∴ ∠NDC =∠ACD .∴ ND // AC .∴ B N B D N C D A=.………………………………………………………(1分) 即得 AD = 5.…………………………………………………………(1分) ∴ AB = 8,即得 BD = 3,.∴ 35B N B D C N D A ==.……………………………………………………(1分)25.解:(1)∵ AD // BC ,EF // BC ,∴ EF // AD .……………………………(1分)又∵ ME // DN ,∴ 四边形EFDM 是平行四边形.∴ EF = DM .…………………………………………………………(1分) 同理可证,EF = AM .…………………………………………………(1分) ∴ AM = DM .∵ AD = 4,∴ 122E F A M A D ===.……………………………(1分)(2)∵ 38A D N M E N FS S ∆=四边形,∴ 58A M E D M F A D N S S S ∆∆∆+=. 即得 58A M E D M F A D N A D N S S S S ∆∆∆∆+=.……………………………………………(1分)。
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).; (B);(C) ;(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108; (B) 60。
8×109; (C) 6.08×1010;(D) 6。
08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1; (B)y=x2+1;(C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是( ).(此题图可能有问题) (A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.15.某事测得一周PM2。
5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( ).(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i=1∶2。
上海徐汇区初三数学二模试卷及答案The document was prepared on January 2, 20212014学年第二学期徐汇区学习能力诊断卷初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.下列各数中,无理数是( ▲ )A .722; B .9; C . ; D .38. 2.下列运算中,正确的是( ▲ )A .2x -x =1;B .x +x =2x ;C .(x 3)3=x 6 ;D .x 8÷x 2=x 4. 3.某反比例函数的图像经过点(-2,3),则此函数图像也经过点( ▲ )A .(2,3) ;B .(-3,-3) ;C .(2,-3) ;D .(-4,6) 4.如图,已知△ABC 中,∠ACB =90°,CH 、CM 分别是斜边AB 上的高和中线,则下列结论不正确...的是( ▲ )A .AB 2= AC 2+BC 2; B .CH 2=AH ·HB ;C .CM =12AB ;D .CB =12AB .5.某课外小组的同学们实践活动中调查了20户家庭某月用电量如下表所示:则这20户家庭用电量的众数和中位数分别是( ▲ ) A .180,160;B .160,180; C .160,160;D .180,180.6.下列命题中,假命题...是( ▲ )A .没有公共点的两圆叫两圆相离;B .相交两圆的交点关于这两个圆的连心线所在直线对称;C .联结相切两圆圆心的直线必经过切点;D .内含的两个圆的圆心距大于零 .二.填空题(本大题共12题,每题4分,满分48分) 7.计算:-22= ▲ .8.用科学记数法表示660 000的结果是 ▲ .9.函数2y=1xx -中自变量x 的取值范围是 ▲ . 10.分解因式2416a -=_ ▲ .11.不等式组2+51123xx-<⎧⎪-⎨≤⎪⎩的解是▲.12x=的解是▲.13.某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,则原计划每天销售多少台若原计划每天销售x台.则可得方程▲ .14.将1、2、3三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表。
2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2; (B)∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( ).(A)△ABD 与△ABC 的周长相等;(B)△ABD 与△ABC 的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a +1)=_________.8.函数11y x =-的定义域是_________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三鱼粉销售各种水笔_________支.11.如果关于x 的方程x2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是_________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.已知反比例函数k=(k是常数,k≠0),在其图像所在的每yx一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB =3EB.设AB a=,BC b=,那么DE=_________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是_________.17.一组数:2, 1, 3, x, 7, y, 23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为__________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD 交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为______________(用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分) 计算:13128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度. 水银柱的长度x (cm )4.2 … 8.2 9.8体温计的读数y (℃) 35.0 … 40.0 42.0 (1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)联结AE,交BD于点G,求证:DG DF.GB DB24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A(-1,0)和点B ,与y 轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P(t, 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP//CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案选择题:1.B2.C3.C4.D5.A6.B填空题:7.a2+a8.x≠19.3<x<410.35211.k<112.2620.x=021. 37.522.BE=3 23题24题25题。
2013学年第二学期徐汇区学习能力诊断卷高三年级数学学科(理科) 2014.4一.填空题:(本题满分56分,每小题4分) 1.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2|230,B x x x x R =--≥∈,则=B A ____________. 2.直线10x +=的倾斜角的大小是____________. 3.函数cos 24y x π⎛⎫=+ ⎪⎝⎭的单调递减区间是____________. 4.函数()22y x x x=+≥的值域是____________. 5.设复数z 满足()132i z i +=-+,则z =____________.6.某学校高一、高二、高三共有2400名学生,为了调查学生的课余学习情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知高一有820名学生,高二有780名学生,则在该学校的高三应抽取____________名学生. 7.函数()()sin cos cos 2sin cos sin x x x f x xx xπ+-=-的最小正周期T =____________.8.已知函数)12(arcsin )(+=x x f ,则=-)6(1πf____________. 9.如图,在直三棱柱111ABC A B C -中,0190,2,1ACB AA AC BC ∠====,则异面直线1A B 与AC 所成角的余弦值是____________.10.若()211,1nn N n x *⎛⎫-∈> ⎪⎝⎭的展开式中4-x 的系数为n a ,则23111lim n n a a a →∞⎛⎫+++⎪⎝⎭=____________.11.在极坐标系中,定点A (2,),2π点B 在直线0sin cos =+θρθρ上运动,则点A 和点B 间的最短距离为____________.12.如图,三行三列的方阵中有9个数(123123)ij a i j ==,,;,,,从中任取三个数,111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ 则至少有两个数位于同行或同列的概率是____________. (结果用分数表示) 13.如图所示,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量(,AP mAB nAF m n =+为实数),则m n +的最大值为____________.14.对于集合12{,,,}n A a a a =⋅⋅⋅(*,3)n N n ∈≥,定义集合,1}{i j x a a i j n S x =+≤<≤=,记集合S 中的元素个数为()S A .若12,,,n a a a ⋅⋅⋅是公差大于零的等差数列,则()S A =____________.二.选择题:(本题满分20分,每小题5分)15.已知直线⊥l 平面α,直线m ⊆平面β,给出下列命题,其中正确的是-------------( ) ①m l ⊥⇒βα// ②m l //⇒⊥βα ③βα⊥⇒m l // ④βα//⇒⊥m l A .②④ B. ②③④ C. ①③ D. ①②③16.在ABC ∆中,角C B A 、、的对边分别是c b a 、、,且B A ∠=∠2,则BB3sin sin 等于-------( ) A .c a B .b c C .abD .c b17.函数y =...成为公比的数是---------------------------------------------------------------------------------- ( )A .23 B .21 C .33D .3 18.设圆O 1和圆O 2是两个相离的定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹可能是 ①两条双曲线;②一条双曲线和一条直线;③一条双曲线和一个椭圆.以上命题正确的是--( )A .① ③B .② ③C .① ②D .① ② ③三.解答题:(本大题共5题,满分74分)19.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,△ABC 中,090=∠ACB ,030=∠ABC ,3=BC ,在三角形内挖去一个半圆(圆心O 在边BC 上,半圆与AC 、AB 分别相切于点C 、M ,与BC 交于点N ),将△ABC 绕直线BC 旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC 旋转一周所得旋转体的体积.20.(本题满分14分)如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知0120ABC ∠=,0150ADC ∠=,1BD =(千米),3AC =(千米).假设小王和小李徒步攀登的速度为每小时1200米,请问:两位登山爱好者能否在2个小时内徒步登上山峰. (即从B 点出发到达C 点)21.(本题满分14分;第(1)小题6分,第(2)小题8分)已知椭圆2222(0)x y a a +=>的一个顶点和两个焦点构成的三角形的面积为4. (1)求椭圆C 的方程;(2)已知直线)1(-=x k y 与椭圆C 交于A 、B 两点,试问,是否存在x 轴上的点(),0M m ,使得对任意的k R ∈,MA MB ⋅为定值,若存在,求出M 点的坐标,若不存在,说明理由. 22.(本题满分16分;第(1)小题4分,第(2)小题5分,第(3)小题7分)定义:对于函数()f x ,若存在非零常数,M T ,使函数()f x 对于定义域内的任意实数x ,都有()()f x T f x M +-=,则称函数()f x 是广义周期函数,其中称T 为函数()f x 的广义周期,M 称为周距.(1)证明函数()()()1xf x x x Z =+-∈是以2为广义周期的广义周期函数,并求出它的相应周距M 的值;(2)试求一个函数()y g x =,使()()()()s i n fx g x A x x R ωϕ=++∈(A ωϕ、、为常数,0,0A ω>>)为广义周期函数,并求出它的一个广义周期T 和周距M ;(3)设函数()y g x =是周期2T =的周期函数,当函数()()2f x x g x =-+在[]1,3上的值域为[]3,3-时,求()f x 在[]9,9-上的最大值和最小值.ACBD23.(本题满分18分,第(1)小题3分,第(2)小题9分,第(3)小题6分) 一个三角形数表按如下方式构成(如图:其中项数5n ≥):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:()()()2,11,11,2f f f =+;(),f i j 为数表中第i 行的第j 个数.(1) 求第2行和第3行的通项公式()2,f j 和()3,f j ;(2) 证明:数表中除最后2行外每一行的数都依次成等差数列,并求(),1f i 关于i (1,2,,i n =)的表达式;(3)若()()(),111i f i i a =+-,11i i i b a a +=,试求一个等比数列()()1,2,,g i i n =,使得()()()121123n n S b g b g b g n =+++<,且对于任意的11,43m ⎛⎫∈ ⎪⎝⎭,均存在实数λ ,当n λ>时,都有n S m >.()()()()()()()()()()1,11,21,11,2,12,22,13,13,2,1f f f n f n f f f n f f n f n ---2013学年第二学期徐汇区学习能力诊断卷 高三年级数学学科(理科)参考答案及评分标准 2014.4一.填空题:(本题满分56分,每小题4分) 1.(]5,1-- 2.56π 3.()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 4.[)3,+∞5.13i - 6.40 7.π 8.14- 9 10.211 12.141313.5 14.23n - 二.选择题:(本题满分20分,每小题5分)15.C 16.D 17.B 18.C三.解答题:(本大题共5题,满分74分) 19.(本题满分12分,第(1)小题6分,第(2)小题6分)解:(1)连接OM ,则OM AB ⊥,设OM r =,则OB r =, 在BMO ∆中,1sin2OM ABC OB ∠===,所以3r =--------------------------(4分) 所以2443S r ππ==.-----------------(6分)(2)ABC ∆中,90ACB ∠=,30ABC ∠=,BC =,1AC ∴=,-------------------------------(8分)232314141(3333327V V V AC BC r ππππ∴=-=⨯⨯-=⨯=圆锥球.(12分) 20.(本题满分14分)解:由0150ADC ∠=知030ADB ∠=,由正弦定理得001sin 30sin120AD =,所以,AD =---------------------------------------(4分) 在ADC ∆中,由余弦定理得:2222cos150AC AD DC AD DC =+-⋅,即222032cos150DC DC =+-,即2360DC DC +⋅-=,解得 1.372DC =≈(千米), -----------------------------------------------(10分)2.372BC ∴≈(千米),--------------------------------------------------------------------(12分) 由于2.372 2.4<,所以两位登山爱好者能够在2个小时内徒步登上山峰.---(14分) 21.(本题满分14分;第(1)小题6分,第(2)小题8分)解:(1)设椭圆的短半轴为b ,半焦距为c ,则222a b =,由222c a b =-得222222a a c a =-=, 由4221=⨯⨯c b 解得4,822==b a ,则椭圆方程为14822=+y x . ----------(6分) (2)由22(1)28y k x x y =-⎧⎨+=⎩得2222(21)4280,k x k x k +-+-= 设1122(,),(,),A x y B x y 由韦达定理得:,1282,12422212221+-=+=+k k x x k k x x MA MB ∴⋅=221122121212(,)(,)()(1)(1)x m y x m y x x m x x m k x x -⋅-=-+++--=22221212(1)()()k x x m k x x k m +-++++=22222222284(1)()2121k k k m k k m k k -+-+++++=()22254821m k m k ++-++,----------------(10分) 当5416m +=,即114m =时,MA MB ⋅=167-为定值,所以,存在点11(,0)4M使得MA MB ⋅为定值(14分).22.(本题满分16分;第(1)小题4分,第(2)小题5分,第(3)小题7分) 解:(1)()()()1xf x x x Z =+-∈,∴()()()()()222112x x f x f x x x +⎡⎤⎡⎤+-=++--+-=⎣⎦⎣⎦,(非零常数) 所以函数()()()1xf x x x Z =+-∈是广义周期函数,它的周距为2.-----(4分)(2)设()()0g x kx b k =+≠,则()()sin f x kx b A x ωϕ=+++()2f x f x πω⎛⎫+- ⎪⎝⎭()222sin sin k k x b A x kx b A x πππωϕωϕωωω⎡⎤⎛⎫⎛⎫=+++++-+++=⎡⎤⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦(非零常数) 所以()f x 是广义周期函数,且22,k T M ππωω==.-----------------( 9分)(3)()()()()()222224f x f x x g x x g x +-=-++++-=-,所以()f x 是广义周期函数,且2,4T M ==- .------------------------------------------(10分)设[]12,1,3x x ∈满足()()123,3f x f x =-=, 由()()24f x f x +=-得:()()()()111164424444431215f x f x f x f x +=+-=+--=---=--=-,又()()()24f x f x f x +=-<知道()f x 在区间[]9,9-上的最小值是x 在[]7,9上获得的,而[]167,9x +∈,所以()f x 在[]9,9-上的最小值为15-.--------------------( 13分)由()()24f x f x +=-得()()24f x f x -=+得:()()()()222210846442023f x f x f x f x -=-+=-++==+=,又()()()24f x f x f x -=+>知道()f x 在区间[]9,9-上的最大值是x 在[]9,7--上获得的,而[]2109,7x -∈--,所以()f x 在[]9,9-上的最大值为23.-----------------------(16分) 23.(本题满分18分;第(1)小题3分,第(2)小题9分,第(3)小题6分.) 解:(1)()()()()()2,1,1,121,4841,2,,1f j f j f j f j j j n =++=+=+=-()()()()()()3,2,2,122,8284816161,2,,2f j f j f j f j j j j n =++=+=++=+=-.----(3分) (2)由已知,第一行是等差数列,假设第()13i i n ≤≤-行是以i d 为公差的等差数列, 则由()()()()()()1,11,,1,2,,1f i j f i j f i j f i j f i j f i j ++-+=+++-++⎡⎤⎡⎤⎣⎦⎣⎦()(),2,2i f i j f i j d =+-=(常数)知第()113i i n +≤≤-行的数也依次成等差数列,且其公差为2i d .综上可得,数表中除最后2行以外每一行都成等差数列;------------(7分) 由于()114,22i i d d d i -==≥,所以11422i i i d -+=⋅=,所以1(,1)(1,1)(1,2)2(1,1)i f i f i f i f i d -=-+-=-+,由12i i d -=,得(),1f i 2(1,1)2i f i =-+,------------------------------------------------------------------------------------ (9分)于是()()1,11,1122i i f i f i --=+ , 即()()1,11,1122i i f i f i ---=, 又因为()11,14222f ==,所以,数列(),12i f i ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 所以,()(),12112if i i i =+-=+,所以()(),112i f i i =+⋅(1,2,,i n =). -------------------(12分)(3)()()(),111i f i i a =+-(),11211i i f i a i ⇒=+=++ , ()()11111111221212121i i i i i ii i b a a +++⎛⎫⇒===- ⎪++++⎝⎭, 令()2i g i =1111111()2221212121i i i i i i i b g i ++⎛⎫⇒=-⨯=- ⎪++++⎝⎭,-----------------(14分) 2231111111212121212121n n n S +⎛⎫⎛⎫⎛⎫⇒=-+-++- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11113213n +=-<+. -------(15分) n S m >111321n m +⇔->+111132133n m m +-⇔<-=+, 11,43m ⎛⎫∈ ⎪⎝⎭10134m ⇒<-<,132113n m +⇒+>-23log 1113n m ⎛⎫⇒>-- ⎪-⎝⎭,令λ=23log 113m ⎛⎫-⎪-⎝⎭,则当n λ>时,都有n S m >,∴适合题设的一个等比数列为()2i g i =.-------------------------------------------------------(18分)。
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.计算23的结果是().(A) 5; (B) 6; (C) 23; (D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等; (B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题4分,共48分) 【请将结果直接填入答题纸的相应位置】 7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________.9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数ky x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =u u u r r ,BC b =u u u r r ,那么DE u u u r=_______________(结果用a r 、b r表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2, 1, 3, x , 7, y , 23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为____________.18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分) 19.(本题满分1013128233-+.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标; (3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B 二、 填空题7、2a a +; 8、1x ≠; 9、34x p p ; 10、352 ; 11、1k p ; 12、26 ;13、13; 14、1(0y k x=-p 即可); 15、23a b -r r ; 16、乙; 17、-9; 18、23t .三、 解答题 19、解:原式233=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.5 22、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=Q g g g23、(1)求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴Q Q Q Y=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DF GB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF AD FB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=Q Q Q Y 为24、25、。
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23⋅的结果是().(A) 5;(B) 6;(C) 23;(D) 32.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1;(B) y=x2+1;(C) y=(x-1)2;(D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40 ,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx=-的定义域是_______________.9.不等式组12,28xx->⎧⎨<⎩的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是____________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx=(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设AB a=,BC b=,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示).三、解答题(本题共7题,满分78分) 19.(本题满分10分)计算:13128233--+-.20.(本题满分10分)解方程:2121111x x x x +-=--+.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm )4.2… 8.2 9.8 体温计的读数y (℃) 35.0…40.042.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1 备用图参考答案: 1-6, BCCAAB,7,2a a + 8,1x ≠ 9,34x 10,352 11,1k 12,26 13,1314,1(0y k x =-即可)15,23a b - 16,乙 17,-9 18,23t 19,233=20,0;1(x x ==舍)21,(1) 1.2529.75y x =+, (2)37.5 25,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=23,求证:四边形ACED 是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=. //,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为24,。
分150考15352;32-x x y x -b a 23x 9)3-x 的定义域是的定义域是 ▲ = ▲ .的解集是集是 ▲ B方程是 ▲ . ▲ 石的概率是的概率是 ▲ . 200°≈ ▲ 米3a b b a = ▲ .15. 的半径为 ▲ cm. ▲ 绕点= ▲ 度23长为 ▲ . 821A 厂B 厂16题图题图DCAD'CA21题图BAyxO23题图FE D CBA 22题图xx x40 m60 m x24题图CBAyxO21.(本题满分10分)如图,一次函数)0(1¹-=a ax y 的图像与反比例函数y =x k( k≠0)的图像相交于A 、B 两点且点A 的坐标为( 2,1),点,点B 的坐标(–1,n ). (1) 分别求两个函数的解析式; (2) 求△AOB 的面积. 22.(本题满分10分)如图,为了给小区居民增加锻炼场所,为了给小区居民增加锻炼场所,物业拟在一宽为物业拟在一宽为40米、米、长为长为60米的矩形区域内的四周修建宽度相同的鹅卵石小路,阴影部分用作绿化.当阴影部分面积为800平方米时,小路宽x 为多少米.为多少米.23.(本题满分12分)如图,在Rt △ABC 中,∠B =90°,∠C =30°,点D 、E 、F 分别在边BC 、AB 、AC 上,联结DE 、EF 、FD ,若BE =21ED ,且FD ⊥BC . (1) 求证:四边形AEDF 是平行四边形;是平行四边形; (2) 若AE AC 3=,求证:四边形AEDF 是菱形. 24.(本题满分12分)如图,在直角坐标平面内,四边形OABC 是等腰梯形,其中OA=AB=BC =4,tan ∠BCO =3. (1) 求经过O 、B 、C 三点的二次函数解析式;三点的二次函数解析式;(2) 若点P 在第四象限,且△POC ∽△AOB 相似,求满足条件的所有点P 的坐标;的坐标; (3) 在(2)的条件下,若⊙P 与以OC 为直径的⊙D 相切,请直接写出⊙P 的半径. 且∠和EN 25题图(2)C'QA BCDEPF EMDCB PNA PE DCBA。
2014年上海市初中毕业统一学业考试数学试卷考生注意:.本试卷含三个大题,共 题;.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 题,每题 分,满分 分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】).; ☎✆ ;☎✆.据统计, 年上海市全社会用于环境保护的资金约为 元,这个数用科学记数法表示为( ).☎✌✆ ; ☎✆ ; ☎✆ ;☎✆ ..如果将抛物线⍓=⌧ 向右平移 个单位,那么所得的抛物线的表达式是( ).☎✌✆ ⍓=⌧ - ; ☎✆ ⍓=⌧ + ; ☎✆ ⍓=☎⌧- ✆ ;☎✆ ⍓=☎⌧+ ✆ ..如图,已知直线♋、♌被直线♍所截,那么 的同位角是( ).(此题图可能有问题)☎✌✆ ; ☎✆ ; ☎✆ ;☎✆ ..某事测得一周 的日均值(单位:)如下:, , , , , , ,这组数据的中位数和众数分别是( ).☎✌✆和 ; ☎✆和 ; ☎✆和 ; ☎✆和 ..如图,已知✌、 是菱形✌的对角线,那么下列结论一定正确的是( ).☎✌✆✌与 ✌的周长相等; ☎✆✌与 ✌的面积相等;☎✆菱形的周长等于两条对角线之和的两倍;☎✆菱形的面积等于两条对角线之积的两倍.二、填空题:(每小题 分,共 分)【请将结果直接填入答题纸的相应位置】.计算:♋☎♋+ ✆=♉♉♉♉♉♉♉♉♉♉♉♉..函数11yx=-的定义域是♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉..不等式组12,28xx->⎧⎨<⎩的解集是♉♉♉♉♉♉♉♉♉♉♉♉♉..某文具店二月份销售各种水笔 支,三月份销售各种水笔的支数比二月份增长了 ,那么该文具店三月份销售各种水笔♉♉♉♉♉♉♉♉支..如果关于⌧的方程⌧ - ⌧+ = ( 为常数)有两个不相等的实数根,那么 的取值范围是♉♉♉♉♉♉♉♉♉♉..已知传送带与水平面所成斜坡的坡度♓= ,如果它把物体送到离地面 米高的地方,那么物体所经过的路程为♉♉♉♉♉♉♉♉♉米..如果从初三( )、( )、( )班中随机抽取一个班与初三( )班进行一场拔河比赛,那么恰好抽到初三( )班的概率是♉♉♉♉♉♉♉♉♉♉..已知反比例函数kyx=( 是常数, ♊),在其图像所在的每一个象限内,⍓的值随着⌧的值的增大而增大,那么这个反比例函数的解析式是♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉(只需写一个)..如图,已知在平行四边形✌中,点☜在边✌上,且✌= ☜.设AB a=,那=,BC b么DE=♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉(结果用a、b表示)..甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是♉♉♉♉♉♉♉♉♉♉♉..一组数: , , , ⌧, , ⍓, ,⑤,满足❽从第三个数起,前两个数依次为♋、♌,紧随其后的数就是 ♋-♌❾,例如这组数中的第三个数❽❾是由❽- ❾得到的,那么这组数中⍓表示的数为♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知在矩形✌中,点☜在边 上, ☜= ☜,将矩形沿着过点☜的直线翻折后,点 、 分别落在边 下方的点 、 处,且点 、 、 在同一条直线上,折痕与边✌交于点☞, ☞与 ☜交于点☝.设✌=♦,那么 ☜☞☝的周长为♉♉♉♉♉♉♉♉(用含♦的代数式表示)三、解答题:(本题共 题,满分 分).(本题满分 1382-+-..(本题满分 分)解方程:2121111x x x x +-=--+..(本题满分 分,第( )小题满分 分,第( )小题满分 分)已知水银体温计的读数⍓( )与水银柱的长度⌧(♍❍)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度⌧(♍❍)⑤ 体温计的读数⍓( )⑤ ( )求⍓关于⌧的函数关系式(不需要写出函数的定义域);( )用该体温计测体温时,水银柱的长度为 ♍❍,求此时体温计的读数..(本题满分 分,每小题满分各 分)如图,已知 ♦ ✌中, ✌= , 是斜边✌上的中线,过点✌作✌☜ ,✌☜分别与 、 相交于点☟、☜,✌☟= ☟.( )求♦♓⏹的值;( )如果 =5,求 ☜的值..(本题满分 分,每小题满分各 分)已知:如图,梯形✌中,✌ ,✌= ,对角线✌、 相交于点☞,点☜是边 延长线上一点,且 ☜= ✌..(本题满分 分,每小题满分各 分)在平面直角坐标系中(如图),已知抛物线223y x bx c =++与⌧轴交于点✌☎- ✆和点 ,与⍓轴交于点 ☎- ✆. ( )求该抛物线的表达式,并写出其对称轴;( )点☜为该抛物线的对称轴与⌧轴的交点,点☞在对称轴上,四边形✌☜☞为梯形,求点☞的坐标; ( )点 为该抛物线的顶点,设点 ☎♦ ✆,且♦> ,如果 和 的面积相等,求♦的值.♒♦♦☐♦♦♦♍♦⌧♍☐❍♍⏹.(本题满分 分,第( )小题满分 分,第( )小题满分 分,第( )小题满分 分)如图 ,已知在平行四边形✌中,✌= , = ,♍☐♦=45,点 是边 上的动点,以 为半径的圆 与边✌交于点☜、☞(点☞在点☜的右侧),射线 ☜与射线 ✌交于点☝.( )当圆 经过点✌时,求 的长;( )联结✌,当✌ ☝时,求弦☜☞的长;( )当 ✌☝☜是等腰三角形时,求圆 的半径长.图 备用图年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题、 ; 、 ; 、 ; 、✌; 、✌; 、二、 填空题、2a a +; 、1x ≠; 、34x ; 、352 ; 、1k ; 、26 ;、13; 、1(0y k x =-即可); 、23a b - ; 、乙; 、 ;、.三、 解答题、解:原式233=、0;1(x x ==舍)、☎✆ 1.2529.75y x =+ ☎✆ 、5,sinB sinCAE 5B DCB CAE ∠=∠=∠∴==5;2525cos 4;25sin 2tanCAE 13CD AB BC B AC B CE AC BE BC CE =∴=∴====∴==∴=-=、( )求证:四边形✌☜是平行四边形;,//DE //,,ABCD ADB DAC A CDE ABD CDE AC AD CE ADEC BD DCA DCA ∠∴∆≅∆∴∠=∠=∠∠∴∴∠∴=等腰梯形,为为( )联结✌☜,交 于点☝,求证:DG DFGB DB=.//,;,,;DG AD DF ADAD BC GB BE FB BCDF AD DF ADFB BC DF FB AD BCADEC AD CE AD BC BE DF AD DF AD DF FB AD BC DB BE DG DF GB DB ∴===∴=++∴=∴+=∴=⇒=++∴=为、、。
2014年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列计算正确的是()A.a2•a3=a6B.a+a=a2C.(a2)3=a6D.a8÷a2=a4考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相减;对各选项分析判断后利用排除法求解.解答:解:A、a2•a3=a2+3=a5,故本选项错误;B、a+a=2a,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a8÷a2=a8﹣2=a6,故本选项错误.故选C.点评:本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方的性质,熟练掌握运算性质,理清指数的变化是解题的关键.2.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:根据k,b的取值范围来确定图象在坐标平面内的位置.解答:解:∵一次函数y=2x+1中的2>0,∴该直线经过第一、三象限.又∵一次函数y=2x+1中的1>0,∴该直线与y轴交于正半轴,∴该直线经过第一、二、三象限,即不经过第四象限.故选:D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3.(4分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF的度数为()A.15°B.50°C.25°D.12.5°考点:平行线的性质;角平分线的定义.分析:根据两直线平行,同位角相等求出∠2,再根据角平分线的定义解答.解答:解:∵EF∥AC,∠1=25°,∴∠2=∠1=25°,∵AF是∠BAC的平分线,∴∠BAF=∠2=25°.故选C.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.4.(4分)在△ABC中,∠A、∠B都是锐角,且sinA=cosB=,那么△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定考点:特殊角的三角函数值.分析:根据∠A、∠B都是锐角,且sinA=cosB=,可得出∠A和∠B的度数,继而可得出三角形ABC的形状.解答:解:在△ABC中,∵∠A、∠B都是锐角,且sinA=cosB=,∴∠A=30°,∠B=60°,则∠A=180°﹣30°﹣60°=90°.故△ABC为直角三角形.故选B.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.5.(4分)“大衣哥”朱之文是从“我是大明星”这个舞台走出来的民间艺人.受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额.已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数考点:统计量的选择.分析:由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.解答:解:因为6位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(4分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,联结BC,若∠A=36°,则∠C 等于()A.36°B.54°C.60°D.27°考点:切线的性质.分析:根据题目条件易求∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.解答:∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故选D.点评:本题考查了三角形内角和定理,切线的性质,圆周角定理的应用,关键是求出∠BOA度数.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)函数y=的定义域是x≥﹣1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.点评:本题考查的知识点为:二次根式的被开方数是非负数.8.(4分)分解因式:a3﹣ab2=a(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.解答:解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).9.(4分)如果反比例函数的图象经过点(1,﹣2),那么这个函数的解析式是y=﹣.考点:待定系数法求反比例函数解析式.分析:设反比例函数解析式为(k≠0),把点(1,﹣2)代入函数解析式(k≠0),即可求得k的值.解答:解:设反比例函数的解析式为(k≠0).由图象可知,函数经过点(1,﹣2),∴﹣2=,得k=﹣2.∴反比例函数解析式为y=﹣.故答案为:y=﹣.点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.10.(4分)2014年政府报告中安排财政赤字约为13500亿元,13500亿用科学记数法表示为 1.35×104亿.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将13500用科学记数法表示为:1.35×104.故答案为:1.35×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.11.(4分)不等式组的解集是<x≤2.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.解答:解:,由①得:x>;由②得:x≤2,则不等式组的解集为<x≤2.故答案为:点评:此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.12.(4分)若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.考点:根的判别式.分析:根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.解答:解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.点评:本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.(4分)掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是.考点:概率公式.分析:由掷一个材质均匀的骰子,共有6种等可能的结果,其中向上一面的点数是3的倍数的有,3和6;直接利用概率公式求解即可求得答案.解答:解:∵掷一个材质均匀的骰子,共有6种等可能的结果,其中向上一面的点数是3的倍数的有,3和6;∴掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)如图,在△ABC中,D是BC的中点,设=,=,则=﹣.考点:*平面向量.分析:由=,=,利用三角形法则可求得,又由在△ABC中,D是BC的中点,即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D是BC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.15.(4分)解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除冰雪,该部官兵每小时比原计划多清除20米,结果提前24小时完成任务.若设原计划每小时清除公路冰雪x米,则可列出方程﹣=24.考点:由实际问题抽象出分式方程.分析:设原计划每小时清除公路冰雪x米,则实际每小时清除(x+20)米,根据提前24小时完成任务,列出方程即可.解答:解:设原计划每小时清除公路冰雪x米,则实际每小时清除(x+20)米,由题意得,﹣=24.故答案为:﹣=24.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是设出未知数,找出合适的等量关系列方程.16.(4分)如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=5,BO=4,则AO 的长为6.考点:三角形的重心;勾股定理.分析:先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.解答:解:∵BE⊥AD,BD=5,BO=4,∴OD==3,∵AC、BC上的中线交于点O,∴AO=2OD=6.故答案为:6.点评:此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.17.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.考点:二次函数综合题.分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.18.(4分)如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为.考点:翻折变换(折叠问题).分析:先根据勾股定理得到AC=5,再根据平行线分线段成比例得到AD:AE=AB:AC=4:5,设AD=x,则AE=A′E=x,EC=5﹣x,A′B=2x﹣4,在Rt△A′BC中,根据勾股定理得到A′C,再根据△A′EC是直角三角形,根据勾股定理得到关于x的方程,解方程即可求解.解答:解:在△ABC中,∠B=90°,BC=3,AB=4,∴AC=5,∵DE∥BC,∴AD:AB=AE:AC,即AD:AE=AB:AC=4:5,设AD=x,则AE=A′E=x,EC=5﹣x,A′B=2x﹣4,在Rt△A′BC中,A′C=,∵△A′EC是直角三角形,∴()2+(5﹣x)2=(x)2,解得x1=4(不合题意舍去),x2=.故AD长为.故答案为:.点评:此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)计算:÷+(2﹣)0﹣(﹣1)2014+|﹣2|+(﹣)﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行零指数幂、绝对值的化简、负整数指数幂等运算,然后合并.解答:解:原式=2+1﹣1+2﹣﹣2=2﹣.点评:本题考查了实数的运算,涉及了零指数幂、绝对值的化简、负整数指数幂等知识,属于基础题.20.(10分)先化简,再求值:(1+)÷(x﹣),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(10分)如图,在△ABC中,AB=AC=10,sinC=,点D是BC上一点,且DC=AC.(1)求BD的长;(2)求tan∠BAD.考点:解直角三角形.分析:(1)过点A作AE⊥BC于点E,求出CE,BE,再由CD=AC,可求出BD的长度.(2)过点D作DF⊥AB于点F,在Rt△BDF中求出DF,BF,继而可得AF,从而可求tan∠BAD.解答:解:(1)过点A作AE⊥BC于点E,∵AB=AC,∴BE=CE,在Rt△ACE中,AC=10,sin∠C=,∴AE=6,∴CE==8,∴CD=2CE=16,∴BD=BC﹣BD=BC﹣AC=6.(2)过点D作DF⊥AB于点F,在Rt△BDF中,BD=6,sin∠B=sin∠C=,∴DF=,∴BF==,∴AF=AB﹣BF=,∴tan∠BAD==.点评:本题考查了解直角三角形的知识,解答本题的关键是作出辅助线,构造直角三角形,注意熟练掌握锐角三角函数的定义.22.(10分)春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了20个班级,并将该条形统计图(图2)补充完整;(2)扇形图(图1)中患流感人数为4名所在扇形的圆心角的度数为72°;(3)若该校有45个班级,请估计该校此次患流感的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,再减去其它班级数,即可补全统计图;(2)用患流感人数为4名的班级4个除以抽查的班级数,再乘以360°即可;(3)先求出该校平均每班患流感的人数,再利用样本估计总体的思想,用这个平均数乘以45即可.解答:解:(1)抽查的班级个数为4÷20%=20(个),患流感人数只有2名的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)×360°=72°;(3)∵该校平均每班患流感的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4,∴若该校有45个班级,则此次患流感的人数为:4×45=180.点评:本题考查了条形统计图和扇形统计图以及利用样本估计总体的思想,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(12分)已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,点E是BC的中点、F是CD上的点,联结AE、EF、AC.(1)求证:AO•OF=OC•OE;(2)若点F是DC的中点,联结BD交AE于点G,求证:四边形EFDG是菱形.考点:相似三角形的判定与性质;菱形的判定;梯形.分析:(1)由BC=2AD,点E是BC的中点,可得AD=CE,又由AD∥BC,可得四边形AECD 是平行四边形,即可得AE∥CD,继而证得△AOE∽△COF,即可判定AO•OF=OC•OE;(2)易得EF是△BCD的中位线,则可判定四边形EFDG是平行四边形,又由直角三角形斜边上的中线的性质,证得DG=EG,继而证得四边形EFDG是菱形.解答:证明:(1)∵BC=2AD,点E是BC的中点,∴AD=EC=BC,∵在梯形ABCD中,AD∥BC,∴四边形AECD是平行四边形,∴AE∥CD,∴△AOE∽△COF,∴OA:OC=OE:OF,∴AO•OF=OC•OE;(2)∵E是BC的中点,F是CD的中点,∴EF是△BCD的中位线,∴EF∥BD,∵AE∥CD,∴四边形EFDG是平行四边形,∵AD∥BC,∴△ADG∽△EBG,∴DG:BG=AD:EB=AG:EG,∵AD=BE=BC,∴AG=EG,DG=BG,∵∠ABC=90°,∴BG=GE=AE,∴EG=DG,∴四边形EFDG是菱形.点评:此题考查了相似三角形的判定与性质、平行四边形的判定与性质、三角形中位线的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.(12分)如图,直线y=4x+4与x轴、y轴相交于B、C两点,抛物线y=ax2﹣2ax+c(a≠0)过点B、C,且与x轴另一个交点为A,以OC、OA为边作矩形OADC,CD交抛物线于点G.(1)求抛物线的解析式以及点A的坐标;(2)已知直线x=m交OA于点E,交CD于点F,交AC于点M,交抛物线(CD上方部分)于点P,请用含m的代数式表示PM的长;(3)在(2)的条件下,联结PC,若△PCF和△AEM相似,求m的值.考点:二次函数综合题.分析:(1)根据直线的解析式易求B,C的坐标将,再把其坐标分别代入y=ax2﹣2ax+c,即可求出抛物线的解析式,设y=0,解方程即可求出A的坐标;(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长;(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值.解答:解:(1)∵直线y=4x+4与x轴、y轴相交于B、C两点,∴C坐标为(0,4),设y=0,则x=﹣1,∴B坐标为(﹣1,0),∵抛物线y=ax2﹣2ax+c(a≠0)过点B、C,∴,解得:,∴抛物线的解析式为y=﹣x2+x+4,设y=0,0=﹣x2+x+4,解得:x=﹣1或3,∴A的坐标为:(3,0);(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得,∴直线AC的解析式为y=﹣x+4.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,﹣m+4),∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,∴点P的坐标为(m,﹣m2+m+4),∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,即PM=﹣m2+4m(0<m<3);(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,PF=﹣m2+m+4﹣4=﹣m2+m.若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即(﹣m2+m):(3﹣m)=m:(﹣m+4),∵m≠0且m≠3,∴m=.②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3﹣m)=(﹣m2+m):(﹣m+4),∵m≠0且m≠3,∴m=1.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.25.(14分)如图,已知∠MON两边分别为OM、ON,sin∠O=且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC=y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.考点:圆的综合题.专题:综合题.分析:(1)作AH⊥OM于H,如图1,在Rt△OAH中,根据正弦的定义求出AH=3,根据垂径定理由AH⊥BC得CH=BH=BC=y,由于OD=x,则AD=5﹣x,然后在Rt△ACH中利用勾股定理得到(y)2=(5﹣x)2﹣32,再整理即可得到y与x的函数关系;(2)作A′E⊥OA于E,根据折叠的性质得A′H=AH=3,⊙A′的半径为5﹣x,在Rt△OAH中,利用勾股定理计算出OH=4;由于⊙A′与直线OA相切,根据切线的性质得A′E=5﹣x,再证明Rt△OAH∽Rt△A′AE,利用相似比得到5:6=4:(5﹣x),然后解方程可得到x的值;(3)作A′G⊥OA于G,连结A′D,根据两圆相切的性质得A′D=x+5﹣x=5,再证明Rt△OAH∽Rt△A′AG,利用相似比可计算出AG=,A′G=,则DG=AG﹣AD=x﹣,然后在Rt△A′GD中,根据勾股定理得到()2+(x﹣)2=52,整理得x2﹣x=0,然后解方程即可.解答:解:(1)作AH⊥OM于H,如图1,在Rt△OAH中,OA=5,sin∠AOH==,∴AH=3,∵AH⊥BC,∴CH=BH=BC=y,∵OD=x,∴AD=5﹣x,在Rt△ACH中,AC=5﹣x,AH=3,CH=y,∴(y)2=(5﹣x)2﹣32,∴y=2(0<x<5);(2)作A′E⊥OA于E,如图,∵⊙A沿直线OM翻折后得到⊙A′,∴A′H=AH=3,⊙A′的半径为5﹣x,在Rt△OAH中,OH==4,∵⊙A′与直线OA相切,∴A′E=5﹣x,∵∠HAO=∠EAA′,∴Rt△OAH∽Rt△A′AE,∴OA:AA′=OH:A′E,即5:6=4:(5﹣x),∴x=;(3)作A′G⊥OA于G,连结A′D,如图3,∵⊙A′与以D为圆心、DO为半径的⊙D相切,∴A′D=x+5﹣x=5,∵∠HAO=∠GAA′,∴Rt△OAH∽Rt△A′AG,∴==,即==,∴AG=,A′G=,∴DG=AG﹣AD=﹣(5﹣x)=x﹣,在Rt△A′GD中,∵A′G2+GD2=A′D2,∴()2+(x﹣)2=52,整理得x2﹣x=0,解得x1=0(舍去),x2=,∴x的值为.点评:本题考查了圆的综合题:熟练掌握垂径定理、切线的性质和两圆相切的性质;会运用锐角三角函数、相似比和勾股定理进行几何计算.。
1崇明县2014学年第二学期教学质量调研测试卷九年级数学(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=± (B)3273-= (C)030-=()(D)2139-= 2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 ……………………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D)6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =2二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ .8.2=,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为 ▲ .11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ . 12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨. 14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b 表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE ∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .318.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-. 20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩421.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点,AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =.(1)求线段AE 的长; (2)求sin DAE ∠的值.522.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?(第22题图)10y (km )x (h )O0.5 1623.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H .(1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.A BDHG FEC(第23题图)7(第24题图)B AC O xy (备用图) B A C O xy 24.(本题满分12分,每小题各6分)如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C . (1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.825.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E , 点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域; (2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)AP D C E Q B (备用图1) B AC(备用图2) B AC92014学年奉贤区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+;B . 633a a a =⋅ ;C . 033=÷a a ; D .633)(a a =.2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限; C .图像是轴对称图形; D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10. 6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°; B .∠BAC =90°; C .BD =AC ; D .AB =AC .(第4题图) 次数环数3 2 1 07 8 9 10 D C B A(第6题图)10二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而 ▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ; 15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设ABa ,b BC =,那么AD →等于▲ (结果用a 、b 表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为 ▲ 米; 17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ;18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o )12(45cos 22218-++--+.20.(本题满分10分)CBOA (第18题图)11解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最.小整数解.....1221.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值;(2)求点C 到直线DE 的距离.CBA(第21题图)EDS22.(本题满分10分)某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.131423.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD 中,AB //CD ,点E 是对角线AC 上一点,∠DEC =∠ABC ,且CA CE CD ⋅=2.(1)求证:四边形ABCD 是平行四边形;(2)分别过点E 、B 作AB 和AC 的平行线交于点F ,联结CF ,若∠FCE= ∠DCE ,求证:四边形EFCD 是菱形.F DCBA(第23题图)AE1524.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.Oy (第24题图)Ax1625.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB(第25题图)AB(备用图)A172014学年虹口区调研测试九年级数学 2015.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.计算23()a 的结果是( )A .5a ; B .6a ; C .8a ; D .9a .21的一个有理化因式是( )ABC1+; D1.3.不等式组21010x x +≥⎧⎨-<⎩的解集是( )A .12x ≥-;B .1x <;C .112x -≤<;D .112x -<<. 4.下列事件中,是确定事件的是( )A .上海明天会下雨;B .将要过马路时恰好遇到红灯;C .有人把石头孵成了小鸭;D .冬天,盆里的水结成了冰. 5.下列多边形中,中心角等于内角的是( ) A .正三角形; B .正四边形; C .正六边形; D .正八边形.6.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等;B .有两边和第三边上的高对应相等的两个三角形全等;C .有两边和其中一边上的高对应相等的两个三角形全等;D .有两边和第三边上的中线对应相等的两个三角形全等. 二、填空题:(本大题共12题,每题4分,满分48分)7.据报道,截止2015年3月某市网名规模达5180000人.请将数据5180000用科学记数法表示为 .18(第题图)(第题图)(第题图)8.分解因式:228x x -= .9.如果关于x 的方程230x x a +-=有两个相等的实数根,那么a = .102x x -=的根是 .11.函数1y x +的定义域是 .12.在反比例函数23k y x-=的图像所在的每个象限中,如果函数值y 随自变量x 的值的增大而增大,那么常数k 的取值范围是 .13.为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有 名学生“步行上学”.14.在Rt ABC ∆中,90C ∠=︒,点G 是Rt ABC ∆的重心,如果6CG =,那么斜边AB 的长等于 .15.如图,在ABC ∆中,点E 、F 分别在边AC 、BC 上,EF ∥AB ,12CE AE =,若AC a =, BC b =,则EF = .16.如图,A 、B 的半径分别为1cm 、2cm ,圆心距AB 为5cm .将A 由图示位置沿直线AB 向右平移,当该圆与B 内切时,A 平移的距离是 .17.定义[],,a b c 为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-“特征数”是[]1,3,2-,函数4y x =-+“特征数”是[]0,1,4-.如果将“特征数”是[]2,0,4的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是 .18.在Rt ABC ∆中,90C ∠=︒,2AC BC ==,若将ABC ∆绕点A 顺时针方向旋转60︒到''AB C ∆的位置,联结'C B ,则'C B 的长为 .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:2211()933x xx x x+-÷-+-,其中3x=.20.(本题满分10分)解方程组:2269130x xy yx y⎧++=⎪⎨--=⎪⎩①②.1920(第题图)21.(本题满分10分) 如图,等腰ABC ∆内接于半径为5的O ,AB AC =,1tan 3ABC ∠=.求BC 的长.22.(本题满分12分,第1小题5分,第2小题5分)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y(件)是每件销售价格x (元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖40件.(1)试求y关于x的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定位多少元?(不考虑其他因素)2122(第题图)23.(本题满分12分,第1小题6分,第2小题6分)如图,四边形ABCD 是平行四边形,点E 为DC 延长线上一点,联结AE ,交边BC 于点F ,联结BE .(1)求证:AB AD BF ED ⋅=⋅;(2)若CD CA =,且90DAE ∠=︒,求证:四边形ABEC 是菱形.23(第题图)24.(本题满分14分,第1小题4分,第2小题5分,第3小题3分) 如图,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -、(3,0)B 、(2,3)C 三点,且与y 轴交于点D .(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD 、DC 、CB ,直线4y x m =+与线段DC 交于点E ,当此直线将四边形ABCD 的面积平分时,求m 的值.(3)设点F 为抛物线对称轴上的一点,当以点A 、B 、C 、F 为顶点的四边形是梯形时,请直接写出所有满足条件的点F 的坐标.24(第题图)25.(本题满分14分,第1小题4分,第2小题5分,第3小题5分)如图,在Rt ABC ∆中,90ACB ∠=︒,13AB =,CD ∥AB .点E 为射线CD 上一动点(不与点C 重合),联结AE ,交边BC 于点F ,BAE ∠的平分线交BC 于点G . (1)当3CE =时,求:CEF CAF S S ∆∆的值;(2)设CE x =,AE y =,当2CG GB =时,求y 与x 之间的函数关系式; (3)当5AC =时,联结EG ,若AEG ∆为直角三角形,求BG 的长.25黄浦区2015年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2015.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列分数中,可以化为有限小数的是 (A )115; (B )118; (C )315; (D )318. 2. 下列二次根式中最简根式是(A; (B )8; (C; (D3.C )这七天最低气温的众数和中位数分别是(A )4,4; (B )4,5; (C )6,5; (D )6,6.4. 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是 (A )2(1)2y x =-+; (B )2(2)1y x =-+; (C )2(1)2y x =+-; (D )2(2)1y x =+-.5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是 (A )内含; (B )内切; (C )外切; (D )相交.6. 下列命题中真命题是(A )对角线互相垂直的四边形是矩形; (B )对角线相等的四边形是矩形; (C )四条边都相等的四边形是矩形; (D )四个内角都相等的四边形是矩形.26二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7. 计算:22()a = ▲ . 8. 因式分解:2288x x -+= ▲ . 9. 计算:111x x x +=+- ▲ . 10. 方程71x x -=-的根是 ▲ .11. 如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ▲ .12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图1所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为 ▲ .13. 将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是 ▲ . 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ▲ .15. 已知AB 是⊙O 的弦,如果⊙O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是 ▲ .16. 如图2,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且12CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ▲ .图2 图3 图4-1 图4-217. 如图3,⊙ABC 是等边三角形,若点A 绕点C 顺时针旋转30︒至点'A ,联结'A B ,则'ABA ∠度数是 ▲ . 18. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt ⊙ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是▲ .MD CABNCABOPP'BOA图1一班 二班 三班 四班人数(人) 1282010三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:)11034811-+-+.20. (本题满分10分)解方程组:2222,1.x yx y⎧-=-⎨-=⎩①②2721. (本题满分10分,第(1)满分7分,(2)小题满分3分)温度通常有两种表示方法:华氏度(单位:F)与摄氏度(单位:C).已知华氏度数y与摄C)F)(1)选用表格中给出的数据,求y关于x的函数解析式(不需要写出该函数的定义域);(2)已知某天的最低气温是5C,求与之对应的华氏度数.282922. (本题满分10分,第(1)、(2)小题满分各5分)如图5,在梯形ABCD 中,AD //BC ,AB ⊥BC ,已知AD =2, 4cot 3ACB ∠=,梯形ABCD 的面积是9.(1)求AB 的长;(2)求tan ACD ∠的值.DAB C图53023. (本题满分12分,第(1),(2)小题满分各6分)如图6,在正方形ABCD 中,点E 在对角线AC 上,点F 在边B C 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE =DG .(1)求证:AE =CG ; (2)求证:BE //DF .图6 G FE C3124. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图7,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB //x 轴,AC //y 轴.(1)当点P 横坐标为6,求直线AO 的表达式; (2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP SS ∆∆的值;如果变化,请说明理由.图7 C B A P O xy (备用图)Oxy3225. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分)如图8,Rt⊙ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.DC BA (备用图)图8GD C A E332015年宝山嘉定联合模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,属无理数的是(▲)(A)722; (B) 010010001.1; (C) 27; (D)︒60cos .2.如果b a >,那么下列不等式一定成立的是(▲)(A) 0<-b a ; (B) b a ->-; (C)b a 2121<; (D) b a 22>. 3.数据6,7,5,7,6,13,5,6,8的众数是(▲)(A)5; (B)6; (C)7; (D)5或6或7. 4.抛物线3)2(2-+-=x y 向右平移了3个单位,那么平移后抛物线的顶点坐标是(▲)(A) ),35(--; (B) )31(-,; (C) )31(--,; (D) )02(,-. 5.下列命题中,真命题是(▲)(A)菱形的对角线互相平分且相等; (B)矩形的对角线互相垂直平分;(C)对角线相等且垂直的四边形是正方形; (D) 对角线互相平分的四边形是平行四边形. 6.Rt △ABC 中,已知︒=∠90C ,4==BC AC ,以点A 、B 、C 为圆心的圆分别记作圆A 、圆B 、圆C ,这三个圆的半径长都等于2,那么下列结论正确的是(▲) (A) 圆A 与圆B 外离; (B) 圆B 与圆C 外离; (C) 圆A 与圆C 外离; (D) 圆A 与圆B 相交.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7.计算:=-2)21( ▲ . 8.计算:=--)2(2x x ▲ .9.方程31=-x 的解是 ▲ .10.函数xx y 241-+=的定义域是 ▲ .11.如果正比例函数k kx y (=是常数,)0≠k 的图像经过点)2,1(-,那么这个函数的解析式是▲ .3412.抛物线222-++-=m x x y 与y 轴的交点为)4,0(-,那么=m ▲ .13.某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图1所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是 ▲ 元.14.在不透明的袋中装有2个红球、5个白球和3个黑球,它们除颜色外其它都相同,如果从这不透明的袋里随机摸出一个球,那么所摸到的球恰好为黑球的概率是 ▲ . 15.如图2,在△ABC 中,点M 在边BC 上,BM MC 2=,设向量a AB =,b AM =, 那么向量=BC ▲ (结果用a 、b 表示).16.如图3,在平行四边形ADBO 中,圆O 经过点A 、D 、B ,如果圆O 的半径4=OA ,那么弦=AB ▲ .17. 我们把两个三角形的外心之间的距离叫做外心距.如图4,在Rt △ABC 和Rt △ACD 中,︒=∠=∠90ACD ACB ,点D 在边BC 的延长线上,如果3==DC BC ,那么△ABC 和△ACD 的外心距是 ▲ . 18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=, 那么=DE ▲ .元 5 人数 10 15 20 25 4 6 8 10 12 图1 A BC M 图2 图3 A B CD 图4 A D B C GE F图535三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x x x x 124122222++---+- ,其中13-=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=+.,0658222y xy x y x ②①3621.(本题满分10分,每小题满分各5分)某住宅小区将现有一块三角形的绿化地改造为一块圆形的绿化地如图6.已知原来三角形绿化地中道路AB 长为216米,在点B 的拐弯处道路AB 与BC 所夹的B ∠为︒45,在点C 的拐弯处道路AC 与BC 所夹的C ∠的正切值为2(即2tan =∠C ),如图7. (1)求拐弯点B 与C 之间的距离;(2)在改造好的圆形(圆O )绿化地中,这个圆O 过点A 、C ,并与原道路BC 交于点D ,如果点A 是圆弧(优弧)道路DC 的中点,求圆O 的半径长.A .O B C D 图7 图622.(本题满分10分,每小题满分各5分)已知一水池的容积V(公升)与注入水的时间t(分钟)之间开始是一次函数关系,表中记(1;(2)从t为25分钟开始,每分钟注入的水量发生变化了,到t为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.373823.(本题满分12分,每小题满分各6分)如图8,已知△ABC 和△ADE 都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE .(1)求证:︒=∠60ACE ;(2)在边AB 上取一点F ,使BD BF =,联结DF 、EF .求证:四边形CDFE 是等腰梯形.A B C E DF 图83924.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (图9),双曲线)0(≠=k xky 与直线2+=x y 都经过点),2(m A .(1)求k 与m 的值;(2)此双曲线又经过点)2,(n B ,过点B 的直线BC 与直线2+=x y 平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;(3)在(2)的条件下,设直线2+=x y 与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.图9O11 xy4025.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.AC B (M ) ED 图10 A C B MED 图11412014学年金山第二学期期中质量检测初三数学试卷 2015.4(时间100分钟,满分150分)一、选择题(本题共6小题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列各数中与2是同类二次根式的是( )(A )2; (B )32; (C )4; (D )12. 2.下列代数式中是二次二项式的是( ) (A )1-xy ;(B )112+x ; (C )22xy x +; (D )14+x .3.若直线1+=x y 向下平移2个单位,那么所得新直线的解析式是( ) (A )3+=x y ;(B )3-=x y ;(C )1-=x y(D )1+-=x y .4.一次数学单元测试中,初三(1)班第一小组的10个学生的成绩分别是:58分、72分、76分、82分、82分、89分、91分、91分、91分、98分,那么这次测试第一小组10个学生成绩的众数和平均数分别是( )(A )82分、83分; (B )83分、89分; (C )91分、72分; (D )91分、83分.5.如图,AB ∥CD , 13=∠D ,28=∠B ,那么E ∠等于( ) (A )13;(B )14;(C ) 15; (D )16.6.在ABC Rt ∆中,︒=∠90C ,BC AC =,若以点C 为圆心,以cm 2长为半径的圆与斜边AB 相切,那么BC 的长等于( )(A )cm 2; (B )cm 22; (C )cm 32; (D )cm 4.二、填空题(本题共12题,每小题4分,满分48分) 7.计算:∣3-∣=-3 ▲8.已知函数12)(-=x x f ,那么=)3(f ▲ 9.因式分解:=-x x 3▲BCEDA第5题图4210.已知不等式321≥-x ,那么这个不等式的解集是 ▲ 11.已知反比例函数xky =)0(≠k 的图像经过点)2,1(,那么反比例函数的解析式是 ▲ 12.方程11211=---xx x 的解是 ▲ 13.方程x x =+32的解是 ▲14.有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是 ▲15.已知关于x 的一元二次方程012=++x mx 有两个不相等的实数根,那么m 的取值范围是▲16.在ABC ∆中,点E D 、分别在边AC AB 、上,BD AD =,EC AE 2=.设=AB a →,=AC b →,那么=DE ▲ (用 a →、b →的 式子表示)17.在平面直角坐标系中,我们把半径相等且外切、连心线与直线 x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为 ▲18.在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 ▲BCDM NA第18题图43三、(本题共有7题,满分78分) 19.(本题满分10分)化简:(12122+---+x x x x x x )22)1(1-+÷x x x20.(本题满分10分)解方程组⎩⎨⎧=-+-=+-04440122y xy x y x21.(本题满分10分)如图,点P表示某港口的位置,甲船在港口北偏西30方向距港口50海里的A处,乙船在港口北偏东45方向距港口60海里的B处,两船同时出发分别沿AP、BP方向匀速驶向港口P,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.ABP北东第21题图444522.(本题满分10分)为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中抽查了部分学生的视力,分成以下四类进行统计视力类型人数 视力在4.2及以下 A 10 视力在4.3—4.5之间 B 20视力在4.6—4.9之间 C视力在5.0及以上D注:(4.3—4.5之间表示包括4.3及4.5)根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是 度; (3) 本次调查数据的中位数落在 类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人 .10 80100 80 6040 20 0ABCD视力 类型人数图一C40% DB10% A图二 第22题图。
2013-2014学年第二学期徐汇区学习能力诊断卷(二模)九年级数学学科 2014.4(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求作答在答题纸规定位置,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1. 下列运算正确的是( ▲ )(A )236a a a ⋅=; (B )623a a a ÷=; (C )236()a a =; (D )624a a a -=. 2. 一次函数21y x =+的图像不经过的象限是( ▲ )(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 3. 如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E . 若∠1=25°,则BAF ∠的度数为( ▲ ) (A )15°; (B )50°; (C )25°; (D )12.5°4. 在ABC △中,∠A 、∠B 都是锐角,且1sin cos 2A B ==,那么ABC △的形状是( ▲ ). (A )钝角三角形; (B )直角三角形; (C )锐角三角形; (D )无法确定. 5. “大衣哥”朱之文是从“我是大明星” 这个舞台走出来的民间艺人。
受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额。
已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的( ▲ ) (A ) 众数; (B ) 方差; (C ) 中位数; (D )平均数. 6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,联结BC ,若∠A=36°,则∠C 等于( ▲ )(A )36°; (B )54°; (C )60°; (D )27°.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.函数y 的定义域是 ▲ .8. 分解因式:2ab ab -= ▲ .9. 如果反比例函数的图像经过点(1,-2),那么这个函数的解析式是 ▲ .AB10. 2014年政府报告中安排财政赤字约为13500亿元,13500亿用科学记数法表示为 ▲ 亿. 11. 不等式组320622x x ->⎧⎨-≥⎩的解集是 ▲ .12. 若关于x 的方程2430ax x -+=有两个相等的实数根,则常数a 的值是 ▲ . 13. 掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是 ▲ .14. 如图,在ABC △中,D 是BC 的中点,设AB a =,AC b =,则 BD = ▲ . 15. 解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除冰雪,该部官兵每小时比原计划多清除20米,结果提前24小时完成任务,若设原计划每小时清除公路冰雪x 米,则可列出方程16. 如图,ABC △中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若5BD =,4BO =,则 AO 的长为 ▲ .17. 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为223y x x =--,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 ▲ .18.如图,已知ABC △中,90B ∠=︒,3BC =,4AB =,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将ADE △沿DE 翻折得到'A DE △,若'A EC △是直角三角形,则AD 长为 ▲ . 三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算:0201411(2(1)2()2---++-.20. (本题满分10分)先化简,再求值:21111x x x x ⎛⎫⎛⎫+÷- ⎪ ⎪-+⎝⎭⎝⎭,其中x =.21.(本题满分10分)如图,在△ABC 中,AB =AC =10,sin C =35,点D 是BC 上一点,且DC =AC .(1) 求BD 的长; (2) 求tan ∠BAD .22. (本题满分10分)春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1) 抽查了 ▲ 个班级,并将该条形统计图补充完整;(2) 扇形图中患流感人数为4名所在扇形的圆心角的度数为 ▲ ; (3) 若该校有45个班级,请估计该校此次患流感的人数. 23. (本题满分12分)已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC . (1) 求证:AO OF OC OE ⋅=⋅;(2) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形.24. (本题满分12分)如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G . (1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,联结PC ,若△PCF 和△AEM 相似,求m 的值.2班2名1名123456各种患流感人数情况的班级数 占抽查班级总数的百分比分布图班级个数抽查班级患流感人数条形统计图抽查班级患流感人数条形图25. (本题满分14分)如图,已知∠MON两边分别为OM、ON,sin∠O=35且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.图1 备用图BA H2013-2014学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.D ; 3.C ; 4.B ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分) 7. 1x ≥-; 8.()1ab b -; 9.2y x=-; 10.41.3510⨯; 11.223x -<≤; 12.43a =;13.13;14.1122a b →→-; 15.150015002420x x -=+; 16.6;17.3 18.78或258. 三、(本大题共7题,满分78分)19.解:原式=21122+-+ …………………………………………………(7分)=2………………………………………………………(3分)20.原式=2211(1)11x x x xx x -++-÷-+……………………………………………………(2分) =22211x x x x+∙- ………………………………………………………(2分) =221(1)(1)x x x x x+∙+-=11x - ……………………………………………(3分) 将x =11x-,11x ==- ……………………………………(3分) 21.解:(1)过点A 作AH ⊥BC ,垂足为H ,则BH=CH =12BC ………………………(2分) 在Rt △ACD 中,sin C =35AH AC =, ∵AC =10,∴AH=6, ………………………………(2分)∴8HC BH ==== ………………………………(1分)∴BD =BC -CD =6.……………………………………………………………………(1分) (2)过点D 作DE ⊥AB ,垂足为E , …………………………………………… (1分)Rt △BED 中,sin B =ED BD 35=,BD = 6,∴185DE =……………………………(1分)∴245BE ==,∴265AE = …………………………………(1分) ∴tan ∠BAD =ED AE 913=………………………………………………………(1分) 22. 解:(1)20个班级;条形统计图中,缺少的部分对应纵轴值为2;…………… (4分)(2)︒=⨯︒72204360; ………………………………………………………(2分) (3)45(122233445564)18020⨯+⨯+⨯+⨯+⨯+⨯⨯=.…………… (1分) 23.(1)证明:∵点E 是BC 的中点,∴BC =2EC= 2BE .又∵BC =2AD ,∴EC=AD . ………………………………(1分)//AD EC ,∴四边形AECD 为平行四边形.……………………(1分)∴//AE CD , ………………………………………………………(1分)∴AO OEOC OF=即AO OF OC OE ∙=∙.………………………………(1分) (2)证明:∵E 、F 分别是BC 、CD 的中点,∴//EF BD 且12EF BD =.………………………………………………(1分)又//AE CD ,∴四边形EFDG 为平行四边形.………………… ……(1分)∵AD 平行且等于BE ,∴ 四边形ABED 是平行四边形.………… ……(1分) 又∵∠ABE =90°,∴ 四边形ABED 是矩形.…………………………………(1分) ∴ BD=AE 且12EG AE =12BD =…………………………………………(2分) ∴EG EF =,∴四边形EFDG 是菱形……………………………………(2分)24. 解:(1)直线44y x =+与x 轴、y 轴交于B (-1,0)、C (0,4),……………(1分)∵抛物线22y ax ax c =-+(a ≠ 0)经过点B (-1,0)、C (0,4),∴204a a c c ++=⎧⎨=⎩,解得434a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为248433y x x =-++.……(1分) ∵抛物线22y ax ax c =-+的对称轴为直线1x =,∴A (3,0).……………………(1分)(2)设直线AC 的解析式为y=kx+b (k ≠ 0).∵A (3,0)、点C (0,4).∴304k b b +=⎧⎨=⎩,解得434k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 的解析式为443y x =-+.…………(1分) ∵点M 在AC 上,点P 在抛物线248433y x x =-++上,且点M 的横坐标为m , ∴M (m ,443m -+)、P (m ,248433m m -++),∴ PM=PE -ME =2443m m -+.……………………………………………………(2分)(3)由题意PG= PE -EF= 24833m m -+, CG=m ………………………………(1分)∵//ME CO ,∴所以∆AOC ∽∆AEM .∵∆PCF 和∆AEM 相似,∴∆PCF 和∆AOC 相似 ……………………………(1分)①若∆PFC ∽∆AOC ,则PCF ACO ∠=∠,有3tan tan 4PG PCG ACO CG ∠==∠=,即2483334m m m ⎛⎫-+÷= ⎪⎝⎭;解得2316m =.(2分) ②若∆PFC ∽∆ACO ,则PCF AOC ∠=∠, 有3tan tan 4CG CPG ACO PG ∠==∠=,即2484333m m m ⎛⎫-+÷= ⎪⎝⎭,解得1m =.………………………………………(2分) 综上所述,当∆PCF 和∆AEM 相似时,2316m =或1m =25.(1)解:作AF OB ⊥,垂足为点F . 在Rt AOF ∆中,3sin 5AF O OA∠==5OE =,∴3AF =, ∴4OF ==O D x =,∴5AB AD x ==- ∴BF ===,A B A C A FB C=⊥, ∴2y BF ==(0x <<(2)解:由题意得点A ′在AF联结A ′D ,作A H OA '⊥,垂足为点H , 在Rt A HA '∆中424cos 655A H A A FAO ''=⨯∠=⨯=(1分)若⊙A ′与直线O A 相切,则有x -=5524 (1`分) ∴51=x ………(1`分) (3)解:57-=-=x AD HA HD 在Rt A HD '∆中,A D '=== ①若⊙'A 与⊙D 外切,则A D DO A B ''=+,有(5)x x +-=145x =. ………………………(2`分)②若⊙'A 与⊙D 内切,则A D DO A B ''=-,有(5)x x --=8615x ∴=(舍). ………………………(2分)综上所述,当x = 145时两圆相外切。