可以判断真假的语句叫命题
- 格式:ppt
- 大小:1.24 MB
- 文档页数:34
高中数学命题的基本概念一、命题的基本概念命题:可以判断真假的陈述句叫做命题。
也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件。
真命题:判断为真的语句叫做真命题。
假命题:判断为假的语句叫做假命题。
命题的否定:就是对命题的结论加以否定。
原命题逆命题否命题逆否命题若,则若,则若,则若,则另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题。
一般地,对于是互逆命题的两个命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的的条件和结论的否定,那么我们把这样的两个命题叫做互否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论和条件的否定,那么我们把这样的两个命题叫做互为逆否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题。
四种命题的相互关系图三、充分条件和必要条件的概念1、若,我们就说是的充分条件,是的必要条件。
2、一般地,如果既有,又有,就记作。
此时,我们说是的充分必要条件,简称充要条件。
3、一般地,若p⇒q,但q ≠>p,则称p是q的充分但不必要条件;若p≠>q,但q ⇒ p,则称p是q的必要但不充分条件;若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件。
四、重要结论1、互为逆否命题的两个命题真值相同:原命题与它的逆否命题等价;否命题与逆命题等价。
2、对于充分条件、必要条件的判定,我们需要将命题转化为集合,充分利用集合的关系进行判定,可以更加直观形象。
3、命题的否定和否命题是两个不同的概念。
典型例题知识点一:命题的基本概念以及四种命题的相互关系例1、判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。
1.命题的定义:我们把用语言、符号或式子表达的,可以判断真假的 叫做命题。
其中判断为真的语句叫做 ,判断为假的语句叫做 。
2.命题的结构:在数学中,具有“若p 则q ”这种形式的命题是较为常见的,我们把这种形式的的命题中的p 叫做 ,q 叫做 。
3.四种命题的概念:一般地,用p 和q 分别表示原命题的条件和结论,用p ⌝和q ⌝分别表示p 和q 的否定,于是四种命题的形式就是:原命题:若p 则q ;逆命题: ;否命题: ;逆否命题: 。
4.否命题与命题的否定是不相同的,若p 表示命题,“非p ”叫做命题的否定。
如果原命题是“若p 则q ”,否命题是“若p ⌝,则q ⌝”,而命题的否定是“p 则q ⌝”,即只否定结论。
5.当一个命题真假不易判断时,可以判断原命题逆否命题的真假,得出原命题的真假。
6.反证法常用于证明如下形式的问题:否定性问题、存在性问题、唯一性问题,至多、至少问题,结论的反面比原结论更具体更易于研究和掌握的问题。
7.常用的正面叙述词语和它的否定词语的关系(如下表):8.进行充分条件与必要条件的推理判断要注意以下几点:一是弄清先后顺序,“A 的充分不必要条件是B ”是指B 能推出A 且A 推不出B ,而“A 是B 的充分不必要条件”则是指A 能推出B 且B 推不出A ;二是要善于举出反例,如果从正面判断或证明一个命题的正确或错误不易进行时,则可以举出反例来说明一个命题是错误的;三是要注意转化,根据命题之间的关系我们可以知道:如果p 是q 的充分不必要条件,那么p ⌝是q ⌝的必要不充分条件;同理,如果p 是q 的必要不充分条件,那么p ⌝是q ⌝的充分不必要条件,如果p 是q 的充要条件,那么p ⌝是q ⌝的充要条件。
9.对逻辑联结词“或”“且”“非”的理解在集合部分中的学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切,对于理解逻辑联结词“或”“且”“非”很有用处:(1)“或”与日常生活中的用语“或”的意义不同,在日常生活用语中的“或”带有不可兼有的意思,而逻辑用语中的“或”可以同时兼有。
逻辑联结词和四种命题1、逻辑联结词(1)命题:一般地,我们把用语言、符号、式子表达的,可以判断真假的语句叫做命题其中判断为真的语句叫真命题,判断为假的语句叫假命题(2)逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词或:两个简单命题至少一个成立且:两个简单命题都成立非:对一个命题的否定(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫复合命题(4)表达形式用小写的拉丁字母p、 q 、 r 、 s……来表示简单命题复合命题有三类:① p或q ② p且q ③非p(5)真值表:表示命题真假的表叫真值表①非p② p且q③p或q2、四种命题(1)一般地,用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p则 q(p q);逆命题:若q则 p(q p);否命题:若┐p则┐q(┐p┐q);逆否命题:若┐q则┐p(┐q ┐p)(2)四种命题的关系原命题逆命题否命题逆否命题(3)一个命题的真假与其他三个命题的真假有如下四种关系①原命题为真,它的逆命题不一定为真②原命题为真,它的否命题不一定为真③原命题为真,它的逆否命题一定为真④逆命题为真,否命题一定为真3、反证法证明命题的一般步骤(1)否定结论(2)从假设出发,经过推理论证得出矛盾(3)断定假设错误,肯定结论成立反证法属于间接证法,当证明一个结论成立,已知条件较少,或结论的情况较多,或结论是以否定形式出现,如某些结论中含有“至多”、“至少”、“唯一”、“不可能”、“不都”等指示性词语时往往考虑采用反证法证明结论成立。
第2讲简易逻辑一、命题(一)知识归纳:1.可以判断真假的语句叫命题。
①含有逻辑联结词,如“p或q”、“p且q”、“非p”形式的命题称复合命题。
②复合命题的真值表:“非p”形式的复合命题与p的真假相反;“p或q”形式的复合命题当p与q同时为假时为假,其它情况时为真;“p且q“形式的复合命题当p与q同时为真时为真,其它情况时为假。
2.命题的四种形式:①原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q 则p。
②一个命题与它的逆否命题是等价的。
③(p或q)= p且q,(p且q)= (p或q)。
(二)学习要点:1.复合命题真假的判断提学习上的难点,应从“真值表”、“集合”、“逆命题”等多个角度进行分析。
2.由简单命题构成复合命题,不一定是简单地加是“或、且、非”等逻辑联结词,另外应注意含“或、且、非”等词汇的命题也不一定是复合命题,在进行命题的合成或分解时一定要检验是否符合复合命题的“真值表”,如果不符要作语言上的调整。
3.命题的“否定”是学习上的重点,因为这是“反证法”证明的第一步,必须注意,命题的“否定”与一个命题的“否命题”是两个不同的概念,对命题p的否定(即非p)是否定命题p所作的判断,而“否命题”是对“若p则q“形式的命题而言,同时否定它的条件与结论。
但应注意,关于命题的学习只需作一般性的了解,不必过分钻牛角尖,高考基本上没有要求。
【例1】写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。
{解析}由简单命题构成复合命题,一定要检验是否符合“真值表”如果不符要作语言上的调整。
(1)p:9是144的约数,q:9是225的约数.(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1,(3)p:实数的平方是正数,q:实数的平方是0.{解析}(1)p或q:9是144或225的约数;p且q:9是144与225的公约数,(或写成:9是144的约数,且9是225的约数);非p:9不是144的约数.∵p真,q真,∴“p或q”为真,“p且q”为真,而“非p”为假.(2)p或q:方程x2-1=0的解是x=1,或方程x2-1=0的解是x=-1(注意,不能写成“方程x2-1=0的解是x=±1”,这与真值表不符);p且q:方程x2-1=0的解是x=1,且方程x2-1=0的解是x=-1;非p:方程x2-1=0的解不都是x=1(注意,在命题p中的“是”应理解为“都是”的意思);∵p假,q假,∴“p或q”与,“p且q”均为假,而“非p”为真.(3)p或q:实数的平方都是正数或实数的平方都是0;p且q:实数的平方都是正数且实数的平方都是0;非p:实数的平方不都是正数,(或:存在实数,其平方不是正数);∵p假,q假,∴“p或q”与“p且q”均为假,而“非p”为真.{评析}在命题p或命题q的语句中,由于中文表达的习惯常常会有些省略,这种情况下应作词语上的调整。
科 目数学 年级 高三 备课人 高三数学组 第 课时 1.2命题及其关系、充分条件、必要条件考纲定位 了解命题的逆命题、否命题与逆否命题;理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系疑难提示 1、命题真假的判断;2、四种命题的关系的应用;3、两个命题互为逆否命题;4、充要条件的证明应分别证明充分性和必要性两个方面;【考点整合】1、命题及四种命题的相互关系(1)可以判断真假的语句叫命题,由 两部分构成.(2)命题的四种形式:原命题:若p 则q ;逆命题:若 ,则 ;否命题:若 ,则 ;逆否命题:若 ,则(3)四种命题的关系:互为 的命题互为等价命题,它们同真同假.2、充分条件与必要条件(1)若,p q q ⇒⇒p ,则称p 是q 的 ,同时q 是p 的 ;(2)若p ⇒,q q p ⇒,则称p 是q 的 ,同时q 是p 的 ;(3)若,p q q p ⇒⇒,则称p 是q 的 .【真题演练】1、(2012 湖南)命题“若4πα=,则tan 1α=”的逆否命题是( ) A.若4πα≠,则tan 1α≠ B.若4πα=,则tan 1α≠ C.若tan 1α≠,则4πα≠ D.若tan 1α≠,则4πα= 2、(2010 天津)命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是( )A.若()f x 是偶函数,则()f x -是偶函数B.若()f x 不是奇函数,则()f x -不是奇函数C.若()f x -是奇函数,则()f x 是奇函数D.若()f x -不是奇函数,则()f x 不是奇函数3、(2011 重庆)“1x <-”是“210x ->”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、(2011 福建)若a R ∈,则“2a =”是“(1)(2)0a a --=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、(2013 湖南)“12x <<”是“2x <”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【经典例题】一、命题及其相互关系例1、分别写出下列命题的逆命题、否命题、逆否命题,同时分别指出它们的真假.(1)面积相等的两个三角形是全等三角形;(2)若1q <,则方程220x x q ++=有实根.变式训练:1、若命题p 的逆命题是q ,命题p 的否命题是r ,则q 是r 的( )A.逆命题B.否命题C.逆否命题D.以上都不对2、给出命题:“已知,,,a b c d 是实数,若,a b c d a c b d ≠≠+≠+且则”,对原命题、逆命题、否命题、逆否命题而言,其中的真命题有( )A. 0个B.1个C.2个D.4个3、分别写出下列命题的逆命题、否命题、逆否命题,同时分别指出它们的真假.(1)若xy=0,则x=0或y=0;(2)已知a,b,c,d 是实数,若a=b 且c=d,则a+c=b+d.二、充分条件、必要条件的判断例2、用“充分不必要条件,必要不充分条件,充要条件或既不充分也不必要条件”填空(1)2424x x y y xy >+>⎧⎧⎨⎨>>⎩⎩是的 条件;(2)4(4)(1)001x x x x --+≥≥+是的 条件 (3)tan tan αβαβ==是的 条件;(4)312x y x y +≠≠≠“”是“或”的 条件例3、设命题:|43|1p x -≤;命题2:(21)(1)0q x a x a a -+++≤,若p 是q 的充分不必要条件,求实数a 的取值范围.变式训练:1、若向量(4,)()a y y R =∈,则“3y =”是“||5a =”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2、设{}n a 是等差数列,则“12a a <”是“数列{}n a 是递增数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、(2008 湖南)“|1|2x -<成立”是“(3)0x x -<成立”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、已知集合{|22},{|(2)(4)0}A x a x a B x x x =-<<+=+-≥,则A B φ=的充要条件是( )A.02a ≤≤B.22a -<<C.02a <≤D.02a <<三、充要条件的证明例4、已知函数2()||f x x x a b =+++,求证:函数()f x 是偶函数的充要条件是0a =.【作业】《胜券在握》P117页 第1、2题;【上本作业】《胜券在握》P117页 第3、4、5题.。
1.4 命题的形式及等价关系考点诠释1.命题:可以判断真假的语句叫做命题。
2.四种命题(1)四种命题:原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若p 则q ;逆否命题:若q 则p 。
(2)四种命题之间的相互关系若 则否命题原命题若 则若 则逆否命题互 逆互 逆互 为互为逆 否逆否互 否互 否q p 若 则逆命题q p q p q p这里,原命题与逆否命题,逆命题与否命题是等价命题。
3.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证)。
例题精析例1 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。
(1)若1≤q ,则方程022=++q x x 有实根; (2)若y x ,都是奇数,则y x +是偶数; (3)若0=xy ,则00==y x 或思维引领本题考查四种命题及其真假判断。
.精辟分析(1)原命题是真命题;逆命题:若方程022=++q x x 有实根,则1≤q 是真命题; 否命题:若1>q ,则方程022=++q x x 无实根,是真命题; 逆否命题:若方程022=++q x x 无实根,则1>q 是真命题; (2)原命题是真命题;逆命题:若y x +是偶数,则y x ,都是奇数,是假命题; 否命题:若y x ,不都是奇数,则y x +不是偶数,是假命题; 逆否命题:若y x +不是偶数,则y x ,不都是奇数,是真命题; (3)原命题为真命题;逆命题:若00==y x 或,则0=xy ,是真命题; 否命题:若0≠xy ,则00≠≠y x 且,是真命题; 逆否命题:若00≠≠y x 且,则0≠xy ,是真命题;方法规律总结(1)“原命题”与“逆否命题”同真同假....,“逆命题”与“否命题”同真同假....,但“互逆”或“互否”的命题真假性未必相同。
逻辑与关联词一、知识清单:1.常用逻辑用语(1)命题命题:可以判断真假的语句叫命题;逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题。
复合命题:由简单命题与逻辑联结词构成的命题。
常用小写的拉丁字母p,q,r,s,……表示命题,故复合命题有三种形式:p或q;p且q;非p。
(2)复合命题的真值“非p”形式复合命题的真假可以用下表表示:一真一假p 非p真假假真“p且q”形式复合命题的真假可以用下表表示:一假为假p q p且q真真真真假假假真假假假假“p或q”形式复合命题的真假可以用下表表示:一真为真p q P或q真真真真假真假真真假假假(3)四种命题如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假。
(4)条件一般地,如果已知p⇒q,那么就说:p是q的充分条件;q是p的必要条件。
可分为四类:(1)充分不必要条件,即p⇒q,而q⇒p;(2)必要不充分条件,即p⇒q,而q⇒p;(3)既充分又必要条件,即p⇒q,又有q⇒p;(4)既不充分也不必要条件,即p⇒q,又有q⇒p。
一般地,如果既有p⇒q,又有q⇒p,就记作:p⇔q.“⇔”叫做等价符号。
p⇔q表示p⇒q且q ⇒p 。
这时p 既是q 的充分条件,又是q 的必要条件,则p 是q 的充分必要条件,简称充要条件。
(5)全称命题与特称命题这里,短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号∀表示。
含有全体量词的命题,叫做全称命题。
1、命题的定义:可以判断真假的语句叫做命题。
2、逻辑联结词、简单命题与复合命题:
“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 。
3、“或”、“且”、“非”的真值判断
(1)“非p”形式复合命题的真假与F的真假相反;
(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;
(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P则q;逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。
若pq且qp,则称p是q的充要条件,记为p⇔q.
7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。