有限元第2讲:加权余量法
- 格式:pdf
- 大小:1.54 MB
- 文档页数:34
加权余量法的基本原理
加权余量法是一种常用于工程设计中的计算方法,其基本原理是在设计时考虑各种偏差因素,通过对这些因素进行加权,得出可靠的设计参数。
加权余量法的主要思想是在设计时加入一定的安全余量,以应对可能存在的各种不确定因素,如材料强度、加工精度、负荷变化等。
这样,在实际使用时,即使存在一些误差或者随机因素,也能保证设计的可靠性和安全性。
在具体的计算中,加权余量法通常采用统计学方法,对各种偏差因素进行量化,并按照其权重进行加权。
这样,可以得到一个综合的设计余量,即在各种偏差因素都存在的情况下,仍能保证设计的可靠性和安全性。
总之,加权余量法是一种在工程设计中广泛应用的计算方法,其基本原理是考虑各种偏差因素,通过加权计算得出可靠的设计参数,以保证工程的可靠性和安全性。
- 1 -。
三维 B i o t 固结有限元方程的加权余量法推导李 伟 马 骏 安延云(天津市海岸带公司, 天津 300192)摘 要本文从土的平衡微分方程和连续性方程出发, 采用加权余量法推导出便于应用的土体三维 B i o t 固结有限元方程。
关键词 B i o t 固结理论 加权余量法 有限元 中图分类号: P 75文献标识码: B前言1 土体的固结是指土体在荷载作用下, 内部含水缓慢渗出, 体积逐渐缩减的现象。
对于一维 固结问题, T e rzagh i 固结方程是精确的, 对于多维固结问题并不严格。
B i o t 固结方程从较严格 的固结机理出发, 能正确反映孔隙应力消散与土骨架变形间相互关系, 在工程实践中得到普遍 应用。
目前已经提出了许多建立 B i o t 固结理论有限元方程的方法, 其中变分法在数学上严格但 物理概念不太明确 1 ; 虚位移原理和流量平衡方法在物理概念上明确, 易于为工程界接受, 但 难以推广到任何网格情况 2 ; 加权余量法也是一种数学物理方法, 比变分法有更大的灵活性, 在解固结问题中比变分法易于理解。
B io t 固结理论2 B i o t 固结理论的基本公式包含平衡微分方程和连续性微分方程两部分, 对于空间问题, 土体中任一点的平衡微分方程为:5Ρx y 5Ρx z 5p + + 5x = 05y 5z 5Ρy 5Ρy z 5p (1)5y + + + 5y = 0 5z 5Ρz y 5Ρz 5p5y + 5z ++ 5z = - Χ式中 Ρ, Σ为有效应力, p 为孔隙水压力, Χ为土体饱和容重。
此外, 由达西定律, , , :第 4 期三维 B i o t 固结有限元方程的加权余量法推导73(2)将式 (2) 代入则得: 5Εv - 2 2 5 p + k 5 p + k k x y z 5x 2 5y 25t假设土的渗透性各向相同, 即 k x = k y = k x = k , 并将 Εv 用位移表示出来, 则上式可写为以位 :5Εv 5 5u 5v 5w 52 p 52 p (3)5t 5x + 5y + 5z = - 5y 2 +5z 2式 (1) 和式 (3) 联立即为 B i o t 固结方程。
第三章 有限元法基础通常将有限元法分为两大类:变分法和加权余量法。
两种方法的出发点不同,但最后都归结为:①离散化:用若干个子区域(即单元)代替整个连续区域,②算子解析方程,即偏微分方程转化为代数方程组:区域的物理性质可以用节点上有限个自由度来描述,再应用离散系统分析方法将其汇集在一起。
§3-1 算子方程及变分原理 3.1.1 算子的概念(1)静电场中,泊松方程 ρϕε-=∇⋅∇ 可以写为 ρϕ=L ,其中∇⋅-∇=εL 称为算子。
(2)稳态磁场中,双旋度方程 J A =⨯∇⨯∇μ1J LA =⇒(3)时变场中,波动方程 J H H 2⨯∇=-⨯∇⨯∇νννk J H ⨯∇=⇒νL3.1.2 泛函 1、泛函的概念泛函是函数空间H 中,函数到数的映像,如()()[]x y I x I =也可以说泛函是函数的函数,函数空间中的某一函数()x y 有一个I 值与之对应,变量I 就是D 空间的函数()x y 的泛函。
例如 求()x y 所表示的曲线长度及所围面积。
曲线长度 ()[]⎰⎪⎭⎫⎝⎛+=2121x x dx dx dy x y I曲线所围面积 ()[]()⎰=21x x dx x y x y I不同的()x y ,有不同的I 与之对应,不同的 图3-1 求曲线长度及所围面积()[]x y I 构成了函数空间H 。
2、泛函连续若对于()x y 的微小改变,有泛函()[]x y I 的微小改变与之对应,就称泛函是连续的。
3、线性泛函若泛函满足 ()[]()[]x y cI x cy I = c 为常数 或 ()()[]()[]()[]x y I x y I x y x y I 2121+=+ 则称其为线性泛函。
4、函数的变分y δ泛函()[]x y I 的宗量()x y 的变分y δ是()x y 的微小增量 ()()x y x y y 1-=δ 5、泛函的变分I δ对于宗量()x y 的变分y δ,泛函的增量为()[]()[]()[]()[]y ,x y o y ,x y L I I I x y I y x y I I δδδδδδ+=+++=-+=∆ 32式中,()[]y x y L δ,是对y δ的线性泛函,是I ∆的主要部分,称为一阶(或一次)变分()[]y x y L I δδ,=()[]y x y o δ,是误差项。
加权余量法的基本原理
加权余量法是一种常用的风险控制方法,其基本原理为在投资决策时考虑一个适当的余量,以应对不确定性因素带来的风险。
具体来说,加权余量法的应用步骤如下:
1. 确定投资目标和预期收益率。
2. 评估投资组合中的风险,并计算出组合的标准差。
3. 根据投资者的偏好和风险承受能力,确定适当的加权余量。
这个余量通常是投资者的风险承受能力的一个百分比。
4. 通过将余量与标准差相乘,得出组合的最大净亏损额。
如果该净亏损额超过了投资者能够承受的最大亏损额,就需要对组合进行调整。
5. 确定投资组合中每个资产的权重,并根据加权余量的原则,对其进行调整。
加权余量法的基本原理是在保证投资者的收益率目标的同时,尽可能地降低风险。
通过合理的加权余量设置,投资者可以在保证收益的前提下,有效地控制风险,从而获得更加稳健的投资回报。
- 1 -。
有限元的基础理论包括哪几部分1.加权余量法加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weighted residual method WRM)加权余量法是求解微分方程近似解的一种有效的方法。
显然,任何独立的完全函数集都可以作为权函数。
按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。
其中伽辽金法的精度最高。
2. 里兹方法里兹方法:如果微分方程具有线性和自伴随的性质,那么它不仅可以建立它的等效积分形式,并利用加权余量法求其近似解,而且还可以建立与之相等效的变分原理,从而得到的另一种近似求解方法。
自然变分原理:原问题的微分方程和边界条件的等效积分的伽辽金法等效于它的变分原理,即原问题的微分方程和边界条件等效于泛函的变分为零,亦即泛函取驻值。
反之,如果泛函取驻值则等效于满足问题的微分方程和边界条件。
而泛函可以通过原问题的等效积分的伽辽金法而得到,我们称这样得到的变分原理为自然变分原理。
对于具有线性、自伴随性质的微分方程在得到与它相等效的变分原理以后,可以用来建立求近似解,这一过程即里兹方法。
它的实质是从一族假定解中寻求满足泛函变分的“最好的”解。
显然,近似解的精度与试探函数(形函数或试函数)的选择有关,如果知道所求解的一般性质,那么可以通过选择反映此性质的试探函数来改进近似解,提高近似解的精度。
3.虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。
他们都可以认为是与某些控制方程相等效的积分“弱”形式。
虚功原理:变形体中任意满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。
虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式;虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。
虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们上面所作的功的总和为零。
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。
加权余量法和变分法建立有限元方程 分片定义试函数和有限元法直接法只能用来推导比较简单的有限元方程。
例如假设温度、位移是线性变化的,因此在单元边界上热流、应力、表面力是常数,容易化成等效的节点热流和端点力。
直接法形式上把连续区域化为有限元网格,对每个有限元用直接法分析得到单元刚度矩阵再组合成总体刚度矩阵。
这种方法对计算结果的收敛性、误差和试函数选取的要求没有进行讨论。
0=+p ϕL 在D 内0=+γϕM 在Γ 上用加权余量方法,选取近似函数m Mm m a N ∑=+=≅1ˆψϕϕ建立加权余量公式()∫∫=+++ΓDl lW dD p W 0ˆ(ˆ)M L γϕϕ该方法在整个区域定义试函数和建立加权余量公式,只能求解比较简单的问题。
可以设想把整个求解区域 D 划分为若干个互相既不重合,也不分离的子区域e D 之和。
这些子区域叫做有限元。
然后在每个有限元内部分别构造近似函数e ϕˆ、选取加权函数。
当然在不同的有限元内部可用不同的方法构造近似函数,对整个区域建立的加权余量公式,就可以写成各个子区域公式之和,即()∑∫∫∑∫==+==Ee D eel DE e D eDel D l eedD p W dD R W dD R W 11ˆϕL()∑∫∫∑∫=ΓΓ=ΓΓΓΓ+=Γ=ΓEe e el Ee e el l eed W d R W d R W 11ˆγϕM 由于上式把全域的积分写成子域积分之和,所以对被积函数提出了一定的要求,要求被积函数在子域之间的边界上满足一定的连续性。
有限元法分片选取试函数,它们在各自的子区域中一般都具有足够的连续性,使被积函数满足要求,关键是在子区域之间的交界面上能否满足要求。
分片选取的试函数需要满足:1 如果在积分中只含未知数本身,不含导数,在有限元之间试函数本身可存在有限间断;2 如果在积分中对未知函数的最高阶导数是一阶,在有限元之间试函数本身连续,一阶导数可存在有限间断,称为C0阶问题;3 如果在积分中对未知函数的最高阶导数是二阶,在有限元之间试函数本身及其一阶导数连续,二阶导数可存在有限间断,称为C1阶问题;4 如果在积分中对未知函数的最高阶导数是 n 阶,在有限元之间试函数本身及直至其 (n-1) 阶导数连续,n 阶导数可存在有限间断,称为C n−1阶问题。